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Abstract—Semantic segmentation plays a pivotal role in 

enhancing the perception capabilities of autonomous vehicles and 

self-driving cars, enabling them to comprehend and navigate 

complex real-world environments. Numerous techniques have 

been developed to achieve semantic segmentation. Still, the paper 

emphasizes the effectiveness of deep learning approaches because 

they have demonstrated impressive capabilities in capturing 

intricate patterns and features from images, resulting in highly 

accurate segmentation results. Although various studies have 

been conducted in literature, there is needed for a careful 

investigation and analysis of the existing methods, especially in 

terms of two critical aspects: accuracy and inference time. To 

address this need for analysis and investigation, the research 

focuses on three widely-used deep learning architectures: ResNet, 

VGG, and MobileNet. By thoroughly evaluating these models 

based on accuracy and inference time, the study aims to identify 

the models that strike the best balance between precision and 

speed. The findings of this study highlight the most accurate and 

efficient models for semantic segmentation, aiding the 

development of reliable self-driving technology. 
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I. INTRODUCTION  

Semantic segmentation plays a pivotal role in the realm of 
computer vision, enabling machines to comprehend visual 
scenes by assigning each pixel of an image to a specific object 
category or class [1, 2]. This technique holds immense 
significance in a plethora of applications, including the 
navigation of autonomous vehicles [3]. The autonomous 
driving landscape, characterized by the emergence of self-
driving cars, has transformed transportation paradigms [4]. 
Precise scene understanding through semantic segmentation is 
paramount in ensuring these vehicles' safe and efficient control 
in real-time scenarios [5, 6], enabling them to make informed 
decisions based on the interpretation of their surroundings from 
video feeds. 

Autonomous vehicles, commonly referred to as self-driving 
cars, are reshaping the future of transportation [7]. Their ability 
to navigate complex environments autonomously relies on a 
myriad of technological advancements, and semantic 
segmentation stands as a linchpin among these. The process of 
accurately segmenting objects within a scene in real-time video 
feeds empowers self-driving cars to make split-second 
decisions [7-9], ensuring pedestrian safety, identifying lane 
boundaries, and interpreting traffic signals.  

Existing methodologies in semantic segmentation for 
autonomous vehicles have made substantial strides. Deep 
learning-based approaches, in particular, have garnered 
significant attention due to their exceptional performance in 
complex tasks [10, 11]. This preference is attributed to their 
ability to automatically learn intricate features and patterns 
from vast datasets, ultimately leading to heightened accuracy 
[12]. Among the deep learning architectures, ResNet [13], 
VGG [14], and MobileNet [15] have emerged as frontrunners 
due to their efficiency in capturing nuanced spatial 
relationships and features within images [16]. However, 
despite these advancements, a need persists to identify the most 
effective and efficient deep learning-based method that strikes 
a balance between accuracy and inference time, thus 
optimizing the performance of semantic segmentation for 
autonomous vehicles. 

The statement of the research problem is: How to achieve 
semantic segmentation for autonomous vehicles and self-
driving cars using deep learning models that have high 
accuracy and low inference time. Correspondingly, the 
research questions are: What are the strengths and weaknesses 
of ResNet, VGG, and MobileNet architectures for semantic 
segmentation? How do these models compare in terms of 
accuracy and inference time on different datasets and 
scenarios? Which model(s) can provide the best balance 
between precision and speed for semantic segmentation? 

In this study, we delve into the realm of DL-based models 
for semantic segmentation in autonomous vehicles, aiming to 
identify the most effective and efficient solutions. We examine 
three popular DL architectures: ResNet, VGG, and MobileNet, 
renowned for their contributions to computer vision tasks. 
Through a comprehensive analysis, we evaluate these models 
in terms of foreground accuracy, dice coefficient, and inference 
time, three crucial performance metrics in the context of 
autonomous driving systems. 

Our findings reveal that certain DL models exhibit notable 
accuracy and efficiency in semantic segmentation for 
autonomous vehicles. By conducting an in-depth comparison 
between ResNet, VGG, and MobileNet architectures, we shed 
light on their respective strengths and weaknesses. Moreover, 
we identify the DL models that excel in terms of accuracy and 
inference time, providing valuable insights for practitioners and 
researchers in the field. The results of this study serve as a 
guide to selecting appropriate DL models for real-time 
semantic segmentation tasks in autonomous vehicles, 
ultimately contributing to the advancement and reliability of 
self-driving technologies. By rigorously evaluating these 
models' performance on video data, this study aims to 
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contribute insights that advance the state-of-the-art in semantic 
segmentation for autonomous vehicles. This research 
endeavors to identify the most effective and efficient deep 
learning approach through meticulous experimentation and 
analysis, thereby fostering safer and more reliable autonomous 
driving systems. 

II. RELATED WORKS 

Ghosh et al. [17] introduced SegFast-V2, an approach to 
semantic image segmentation tailored for autonomous driving 
scenarios. Notably, the method prioritizes efficiency by 
utilizing fewer parameters within deep learning frameworks. 
With a focus on achieving accurate semantic segmentation, 
especially in the context of self-driving vehicles, SegFast-V2 
presents a solution that balances computational efficiency and 
performance. The research contributes to advancing the field of 
autonomous driving by addressing the challenge of efficient 
and effective semantic segmentation, which is crucial for safe 
and reliable navigation in complex environments. 

Colley et al. [18] investigated the impact of visualizing 
semantic segmentation in highly automated vehicles on trust, 
situation awareness, and cognitive load. By examining how 
providing visual cues of semantic segmentation affects drivers' 
perceptions and cognitive demands, the research aims to 
uncover insights into human-vehicle interaction dynamics. By 
analyzing the implications of semantic segmentation 
visualization on trust levels, understanding of the driving 
context, and mental workload, the paper enhances the design 
and implementation of automated driving systems to optimize 
driver experience, safety, and overall performance. 

Nesti et al. [19] assessed the resilience of semantic 
segmentation methods employed in autonomous driving 
scenarios against real-world adversarial patch attacks. Focusing 
on the critical task of accurately segmenting objects in complex 
driving environments, the study investigates the vulnerability 
of these methods to deliberate perturbations introduced by 
adversarial patches. By subjecting various semantic 
segmentation models to these real-world attacks, the research 
endeavors to unravel the potential weaknesses and challenges 
of such vulnerabilities in ensuring safe and reliable 
autonomous driving systems. Through meticulous evaluation 
and analysis, the paper sheds light on the robustness of 
semantic segmentation techniques under adversarial 
conditions, offering valuable insights into enhancing the 
security and performance of self-driving vehicles. The author 
in Mo et al. [20] conducts a comprehensive review of the latest 
advancements in semantic segmentation technologies grounded 
in deep learning methodologies. By critically examining the 
current state-of-the-art approaches, the study aims to provide 
an in-depth understanding of the evolution and capabilities of 
deep learning-based semantic segmentation. Through the 
analysis of various models, architectures, and techniques, the 
paper contributes to the field's knowledge by outlining cutting-
edge solutions that leverage deep learning for precise object 
delineation and scene understanding in diverse applications. 

Dang et al. [21] presented a lightweight pixel-level 
semantic segmentation technique based on deep learning for 
the purpose of detecting and analyzing sewer defects. By 

leveraging deep learning methods, the approach offers an 
efficient solution for identifying and classifying sewer system 
issues through pixel-level segmentation. The study's focus on 
lightweight architecture signifies a commitment to 
computational efficiency while maintaining accurate defect 
identification. This research contributes to the field of sewer 
infrastructure maintenance by offering a streamlined approach 
that employs deep learning for detailed and effective defect 
analysis, enhancing the overall assessment and management of 
sewer systems. 

As results, there are many existing methods for semantic 
segmentation, but they need to be carefully investigated and 
analyzed, especially in terms of two critical aspects: accuracy 
and inference time. Accuracy is the measure of how well the 
model can correctly segment the image and match the ground 
truth labels. Inference time is the measure of how fast the 
model can process the image and produce the segmentation 
output. These two aspects are important because they affect the 
performance and safety of the autonomous vehicles and self-
driving cars. A model that has high accuracy can provide more 
reliable and detailed information for the vehicle, while a model 
that has low inference time can respond more quickly and 
adapt to changing situations. Therefore, the research paper 
wants to find the best balance between accuracy and inference 
time for semantic segmentation. 

III. MATERIAL AND METHOD 

A. Dataset Overview 

The Cambridge-driving Labeled Video Database, 
commonly known as CamVid, is a comprehensive and 
meticulously annotated dataset designed to advance the field of 
computer vision, particularly in the context of autonomous 
driving and scene understanding. The CamVid stands as a vital 
resource in the realm of computer vision with its diverse and 
meticulously labeled video sequences. CamVid features a 
diverse collection of high-resolution video sequences captured 
from a moving vehicle navigating through urban and suburban 
environments. These videos encompass a wide range of real-
world driving scenarios, presenting challenges such as varying 
lighting conditions, dynamic traffic, and intricate road layouts. 
One of the distinguishing aspects of CamVid is its extensive 
labeling. Each frame of the dataset is meticulously annotated 
with pixel-level semantic segmentation labels. This means that 
every pixel in the video frames is categorized, providing a 
detailed understanding of the objects and structures present in 
the scenes. Such detailed annotations enable the training and 
evaluation of advanced machine-learning models for tasks like 
object detection, semantic segmentation, and instance 
segmentation. CamVid's applications extend beyond 
autonomous driving research. The dataset's rich annotations 
make it highly suitable for projects related to urban scene 
understanding, environmental monitoring, and general 
semantic segmentation challenges. The dataset consists of a 
series of videos, each accompanied by semantic labels that 
categorize object classes. These labels are accompanied by 
additional metadata. The database includes accurate reference 
labels that link every individual pixel to one of 32 predefined 
semantic categories. Fig. 1 [22] demonstrates the semantic 
classes of the CamVid dataset. 
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Fig. 1. Semantic classes of the camvid dataset. 

B. Model Learning 

The proposed model in this study is designed to acquire 
detailed annotation for each individual pixel within a scene 
recorded from the perspective of an autonomous agent. The 
primary task of this model is to classify and isolate every pixel 
in the given scene into one of 32 specific categories. These 
categories include items such as roads, pedestrians, sidewalks, 
and cars, as showcased in the animated image of our product. 
This enables interaction with any particular image. 

The main objective is to understand and interpret the scene 
with exceptional precision. This understanding is achieved by 
categorizing each pixel into specific classes, which represent 
different objects or entities within the scene. For instance, a 
road, a pedestrian, a sidewalk, a car, and more – all of these are 
examples of classes that the model identifies. Imagine a picture 
of a street: the road, the people walking on the sidewalk, the 
parked cars, and other elements are contained. Our model 
performs something similar but for each and every pixel in the 
scene. It determines if a pixel belongs to the road, the sidewalk, 
a person, a car, or one of the other predefined categories – a 
total of 32 categories. 

C. Backbones 

For our initial set of experiments, we opted to employ a 
straightforward architecture that draws inspiration from the 
UNet model. This architecture incorporates backbones like 
ResNet50, VGG19, and MobileNetV2. Despite its simplicity in 
terms of implementation, this architecture has proven to be 
remarkably robust in terms of its performance. In other words, 
it strikes a balance between being relatively easy to create and 
yielding impressive results in various tasks. 

1) ResNet50 Backbone: The UNet architecture is a 

convolutional neural network (CNN) design that excels in 

image segmentation tasks. It consists of an encoding path that 

gradually reduces spatial resolution while capturing features 

and a decoding path that restores the resolution while refining 

segmentation maps. In this baseline, we enhance the UNet 

with a ResNet50 backbone, which is a deep residual network 

known for its excellent performance in various computer 

vision tasks. ResNet50 incorporates skip connections to 

mitigate vanishing gradient issues during training. As shown 

in Fig. 2 [23], the architecture of ResNet50 is depicted. 

 

Fig. 2. ReseNet50 architecture [23]. 
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As shown in Fig. 2, the ResNet50 is a specific variant of 
the ResNet architecture, characterized by its depth of 50 layers. 
It builds upon the original ResNet's innovation of residual 
connections, enhancing its capacity to capture complex 
patterns and features from images. By incorporating a series of 
residual blocks, ResNet50 enables the efficient training of 
deeper neural networks while mitigating issues related to 
vanishing gradients. This architecture has proven highly 
effective in various computer vision tasks, such as image 
recognition and segmentation. In the context of enhancing the 
perception capabilities of autonomous vehicles, ResNet50's 
depth and feature-extraction prowess contribute to accurate and 
detailed semantic segmentation, aiding in the vehicles' 

understanding and navigation of intricate real-world 
environments. 

2) VGG19 backbone: Similar to the previous architecture, 

this baseline employs a UNet structure but integrates a 

VGG19 backbone. VGG19 is a deep CNN architecture known 

for its simplicity and effectiveness. It consists of multiple 

convolutional layers followed by max-pooling, and it captures 

progressively complex features through its layers. This 

backbone enhances the UNet's feature extraction capabilities, 

contributing to better segmentation performance. Fig. 3 

demonstrates the architecture of VGG19. 

 
Fig. 3. VGG19 architecture [24]. 

As shown in Fig. 3, VGG19 is a convolutional neural 
network architecture renowned for its simplicity and 
effectiveness in image recognition tasks. With 19 layers, it 
follows a straightforward design principle of stacking multiple 
3x3 convolutional layers, followed by max-pooling layers for 
down-sampling. This repetitive structure results in a deep 
network capable of capturing intricate features at different 
levels of abstraction. VGG19's uniform architecture makes it 
easy to understand and implement, contributing to its 
popularity. In the context of enhancing the perception 
capabilities of autonomous vehicles, VGG19's depth and 
feature-extraction capabilities play a crucial role in semantic 
segmentation, enabling the vehicles to accurately perceive and 
navigate complex real-world scenarios. 

3) MobileNetV2 Backbone: The UNet design combined 

with a MobileNetV2 backbone represents a lightweight yet 

powerful configuration. MobileNetV2 is optimized for 

efficiency and speed, making it suitable for real-time 

applications on resource-constrained devices. It utilizes 

depthwise separable convolutions to reduce computational 

complexity while preserving accuracy. Fig. 4 illustrates the 

architecture of MobileNetV2 

The architecture's core component is depth-wise separable 
convolutions. In these convolutions, the spatial information is 
decoupled from the channel-wise information, reducing the 
computational load. Each convolution is divided into a depth-
wise convolution, which applies a single convolutional filter to 
each input channel, followed by a point-wise convolution that 
merges the outputs into the desired number of output channels. 

MobileNetV2 also employs skip connections to retain 
important features, facilitating the flow of gradients during 
training. These innovative design choices collectively result in 
a lightweight architecture capable of achieving impressive 
accuracy on tasks like image classification and semantic 
segmentation. 

D. Hyperparameter Tuning 

To enhance the efficacy of our baseline model, a dual focus 
on both optimal model selection and hyperparameter tuning 
becomes imperative. The crux lies in identifying not only the 
most suitable model architecture but also the optimal 
configuration of hyperparameters for training. To achieve this, 
we utilize a Bayesian hyperparameter search methodology, a 
sophisticated technique aimed at systematically exploring the 
hyperparameter space to unearth the combination that yields 
the most favorable results. 

The essence of this method revolves around minimizing the 
model's loss function when evaluated against a dedicated 
validation dataset. By leveraging a Bayesian approach, we 
dynamically adapt the search process based on previous 
iterations, progressively honing in on the most promising areas 
of the hyperparameter space. This method is especially 
effective in mitigating the challenges posed by high-
dimensional and complex search spaces. Ultimately, the 
outcome of this meticulous hyperparameter search is a refined 
model configuration that not only aligns with the chosen 
architecture but also significantly bolsters the model's 
performance, setting the stage for more accurate and robust 
predictions. 
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Fig. 4. MobileNetV2 architecture [25]. 

IV. EXPERIMENTAL RESULTS AND PERFORMANCE 

ANALYSIS 

The forthcoming section delves into the outcomes of our 
experiments, shedding light on the results obtained through 
rigorous testing and evaluation. It's important to underscore 
that for reasons of safety paramountcy, we have prioritized 
specific classes during the training process. These priority 
classes encompass entities that play pivotal roles in ensuring 
safety within various scenarios. The prioritized classes, due to 
their pronounced safety implications, encompass Pedestrians, 
Bicyclists, Children, Cars, Heavy Vehicles, and Traffic lights. 
These categories encapsulate elements that are central to the 
smooth functioning of urban environments and the safety of 
both pedestrians and drivers. By focusing on these classes 
during training, we aim to equip our model with the capability 
to distinctly recognize and respond to these critical entities. 

When evaluating the performance of models in semantic 
segmentation tasks, two essential metrics that provide valuable 
insights are Foreground accuracy and the dice coefficient. 
Foreground accuracy measures the precision with which a 
model correctly classifies the foreground objects of interest, 
which is particularly important in scenarios where specific 
classes carry more significance. 

A. Foreground Accuracy 

Foreground accuracy, in the context of semantic 
segmentation, is a metric used to gauge the accuracy of a 
model's predictions specifically concerning the foreground 
objects or classes of interest. Unlike overall accuracy, which 
considers all classes equally, foreground accuracy focuses 
solely on how well the model correctly identifies and classifies 
the relevant objects, ignoring the background and other 
unimportant classes. This metric provides a more insightful 
evaluation of a model's performance in tasks where certain 
classes are of greater significance than others, such as object 
detection or scene segmentation. It is computed by dividing the 

number of correctly classified foreground pixels by the total 
number of foreground pixels and can be represented as: 

                  

  
                                     

                  ⁄  

B. Dice Metric 

The dice coefficient, also known as the F1 score, offers a 
comprehensive assessment of segmentation accuracy by 
considering false positives and false negatives. It quantifies the 
overlap between the predicted segmentation and the ground 
truth, producing a value between 0 and 1, where 1 indicates 
perfect alignment. Fig. 5, 6 and 7 show dice metric for the 
methods. The dice metric is calculated as follows: 

      
                    

                                        
                  

⁄
 

C. Backbone Experiments 

In this section, we delve into the backbone experiments, 
wherein the focus lies on the fundamental architectural 
components of our models. These backbone models excel at 
assimilating contextual information from expansive image 
regions. This is achieved by adeptly pooling features through a 
variety of window sizes and seamlessly integrating them using 
both residual connections and adaptable weights. Our 
investigation involves subjecting the baseline models to 
thorough experimentation, including an exploration of different 
loss functions, to comprehensively understand their 
performance and capabilities. We present some experiments 
corresponding to the baselines. Table I presents the experiment 
name associated with each backbone. 
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D. Experiments with Hyperparameters 

As discussed in Section 5.6, in the process of assessing the 
effectiveness of models such as ResNet50, VGG19, and 
MobileNetV2, we harness the capabilities of the Sweep tool. 
This utility streamlines the execution of a Bayesian 
hyperparameter search strategy, which is employed to 
minimize the model's loss on the validation dataset. Sweeps 
significantly simplify our ability to conduct various 
experiments while utilizing this search method. The results of 
foreground accuracy and dice are shown in Fig. 8, 9, 10 and 
11. 

TABLE I. EXPERIMENT NAME FOR THE BACKBONES 

Experiment name Backbone name 

baseline-train-1 ResNet50 

baseline-train-2 VGG19 

baseline-train-3 MobileNetV2 

 

 

 

 

Fig. 5. Foreground accuracy for baseline experiments.  Fig. 6. Dice score for baseline experiments. 

 
Fig. 7. Validation loss for baseline experiments. 

 
Fig. 8. Foreground accuracy. 
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Fig. 8 depicts foreground accuracy for various hyper-
parameters tuning using Sweep. The provided chart illustrates 
the Foreground accuracy achieved across ten distinct 
experiments, offering a comparative analysis of various fine-
tuned models. Among these experiments, the recorded 
accuracy values reveal a hierarchy of performance. Notably, 
the experiment named "honest-sweep-24" attains the highest 
accuracy, followed by "solar-sweep-26," "valiant-sweep-5," 
"solar-sweep-26" once again, and "expert-sweep-37." 
Conversely, the models "neat-sweep-29," "winter-sweep-32," 
"happy-sweep-31," "iconic-sweep-30," and "unique-sweep-16" 
exhibit the lowest accuracy values. 

Starting with the highest accuracy achieved in the 
experiment labeled "honest-sweep-24," it showcases the 
model's exceptional ability to accurately classify foreground 
objects. The meticulously tuned parameters of this model 

contribute to its precision in segmenting relevant classes within 
the image. This high accuracy score signifies that the model 
successfully distinguishes and labels the target objects, a 
crucial feat in tasks like object recognition or scene 
understanding. The reliability of the "honest-sweep-24" 
experiment's outcome implies that its fine-tuning process 
effectively optimized its performance, rendering it a formidable 
contender in semantic segmentation tasks. 

On the other hand, Fig. 9 presents the performances of the 
models with various backbones in terms of mean foreground 
accuracy. The backbones involve resnet34, resnet50, Resnet18, 
vgg19, mobilenetv2_100, mobilenetv3_large_100, 
mobilenetv3_small_050. The mean foreground accuracy 
indicates how well the model is performing in correctly 
classifying instances belonging to the class of interest, often in 
the context of object recognition or segmentation.

 

Fig. 9. Mean foreground accuracy for different backbones. 

As shown in Fig. 9, among the listed backbone models, 
"Resnet18" stands out as the best performer, with an accuracy 
of 89.67%. Resnet18 is a variant of the Residual Network 
(ResNet) architecture, designed with 18 layers. This 
architecture utilizes residual blocks, allowing it to efficiently 
train deep neural networks by mitigating the vanishing gradient 
problem. Resnet18's success can be attributed to several 
factors. Firstly, its moderate depth strikes a balance between 
model complexity and capacity, preventing overfitting while 
still capturing intricate features in the data. Secondly, 
Resnet18's residual connections enable efficient gradient flow 
during training, fostering better convergence and feature 
representation. Thirdly, Resnet18's design incorporates skip 
connections, which allow information to bypass certain layers, 
further enhancing its ability to capture relevant features. 

Comparatively, other backbones might struggle due to 
either excessive complexity leading to overfitting (as with 
deeper architectures) or limited depth hindering feature 
extraction (as with shallower architectures). Resnet18 strikes a 
favorable balance, resulting in its superior mean foreground 
accuracy. Its intermediate depth, residual connections, and skip 
connections collectively contribute to achieving a strong 

balance between capacity and generalization, making Resnet18 
a top performer in the comparison. 

Finally, the mean dice score presents different backbones, 
as shown in Fig. 8. It quantifies the similarity between 
predicted and ground truth segmented regions by measuring 
the overlap of pixels. This metric's significance lies in its 
ability to assess the model's capability to accurately delineate 
object boundaries and capture fine-grained details in complex 
scenes, providing a comprehensive measure of segmentation 
quality and performance. 

As demonstrated in Fig. 10 presents the mean dice score 
values collected for different backbone architectures, including 
"resnet34," "resnet50," "vgg19," "mobilenetv2_100," and 
"mobilenetv3_large_100." These scores reflect the 
performance of each backbone on specific tasks or datasets. 
Notably, "resnet34" emerges as the top-performing architecture 
with the highest dice scores across multiple columns, followed 
closely by "resnet50." Both these architectures consistently 
exhibit superior performance compared to others like "vgg19," 
"mobilenetv2_100," and "mobilenetv3_large_100." The 
provided scores reflect the efficacy of these backbones in 
tackling the given tasks, with "resnet34" standing out as a 
particularly strong model. 
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Fig. 10. Mean dice score for the backbones. 

E. Inference Time 

Inference time refers to the amount of time a model takes to 
process an input and produce an output prediction. In the 
context of semantic segmentation models, it measures how 
quickly a model can analyze an image and generate pixel-wise 
segmentation results. 

The inference times were collected for various backbone 
models, including "resnet34," "resnet50," "Resnet18," "vgg19," 
"mobilenetv2_100," "mobilenetv3_large_100," and 
"mobilenetv3_small_050." Notably, the "Resnet18" model 
achieved the lowest inference time, while "Vgg19" had the 
highest.

 
Fig. 11. Inference time of different backbones. 

As illustrated in Fig. 11, the superior model in terms of 
inference time appears to be "Resnet18," which exhibits the 
lowest processing time among the listed models. This faster 
inference time can be attributed to Resnet architectural design, 
which balances depth and complexity, enabling efficient 
feature extraction while minimizing computational overhead. 

In contrast, "Vgg19," while offering strong performance, likely 
incurs higher inference times due to its greater depth and more 
complex architecture. Therefore, "Resnet18" emerges as the 
superior choice for applications that prioritize faster semantic 
segmentation inference times. 
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V. DISCUSSION 

The analysis conducted yields critical insights that 
significantly inform the optimization of the training process 
and the selection of backbone architectures for a semantic 
segmentation model. Firstly, it's evident that employing lower 
learning rates and weight decay parameters leads to improved 
foreground accuracy and dice scores. This underscores the 
necessity of precise parameter tuning to achieve superior 
segmentation results. 

Secondly, the study identifies the batch size and image 
resize factor as key factors with strong positive correlations to 
the evaluation metrics. This highlights the pivotal role these 
factors play in shaping model performance, emphasizing their 
potential for enhancing accuracy and dice scores. 

Additionally, caution is advised against the utilization of 
VGG-based backbones for the final model. The findings 
suggest that these architectures are susceptible to vanishing 
gradients, which can impede gradient propagation during 
training and hinder optimal model performance. 

Ultimately, the analysis underscores the superior 
performance of ResNet backbones across various metrics. 
ResNet34 and ResNet50 emerge as optimal choices for the 
final model due to their impressive performance and quicker 
inference times compared to other architectures. These insights 
provide actionable recommendations for refining model 
training, selecting appropriate backbones, and ultimately 
improving the efficiency and accuracy of semantic 
segmentation models. 

VI. CONCLUSION 

This study extensively explores various deep learning 
models for semantic segmentation, particularly ResNet, VGG, 
and MobileNet architectures, aiming to determine the most 
effective and efficient approach in terms of accuracy and 
inference time. Through thorough analysis of real-world video 
data, the research strives to advance semantic segmentation for 
autonomous vehicles, enhancing their safety and reliability. 
The investigation's outcomes offer crucial insights into 
optimizing training processes and selecting backbone 
architectures, with lower learning rates and weight decay 
parameters enhancing accuracy, while the batch size and image 
resize factor positively influence model performance. Caution 
against using VGG-based backbones due to vanishing 
gradients is noted, favoring ResNet34 and ResNet50 for their 
strong metrics and quicker inference times. These findings 
provide actionable guidelines for refining model training and 
selecting suitable backbones to enhance the efficiency and 
precision of semantic segmentation models. For future studies, 
firstly, researchers could explore hybrid architectures that 
combine the strengths of ResNet, VGG, and MobileNet for 
semantic segmentation. This approach seeks to harness the 
unique features of each architecture to create novel solutions 
that offer a balance between accuracy, efficiency, and 
robustness. Secondly, a promising avenue involves enhancing 
the adversarial robustness of semantic segmentation models. 
This entails investigating techniques to counter real-world 
adversarial attacks, particularly in the context of self-driving 
vehicles. By developing defense mechanisms against such 

attacks, researchers could contribute to improving the 
reliability and safety of autonomous driving systems. 
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