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Abstract—With the continuous development of automatic 

driving technology, the requirements for the accuracy of 3D 

target detection in complex traffic scenes are getting higher and 

higher. To solve the problems of low recognition rate, long 

detection time, and poor robustness of traditional detection 

methods, this paper proposes a new method based on 

PointFusion model improvement. The method utilizes the 

PointFusion network architecture to input 3D point cloud data 

and RGB image data into the PointNet++ and ResNeXt neural 

network structures, respectively, and adopts a dense fusion 

method to predict the spatial offsets of each input point to each 

vertex in the 3D selection box point by point, to output the 3D 

prediction box of the target. Experimental results on the KITTI 

dataset show that compared with the PointFusion network 

model, the improved PointFusion-based model proposed in this 

paper improves the 3D target detection accuracy in three 

different difficulty modes (easy, medium, and hard) and 

performs best in the medium difficulty mode. These findings 

highlight the potential of the method proposed in this paper to be 

applied in the field of autonomous driving, providing a reliable 

basis for navigating self-driving cars in complex environments. 

Keywords—Neural network; target detection; autonomous 
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I. INTRODUCTION 

With the rapid development of computer vision and deep 
learning technology, driverless vehicles are moving towards 
the practical stage. However, in intricate road conditions and 
uncertain traffic scenarios, the safety of automated driving 
technology is becoming more and more important. How to 
recognize obstacles efficiently and accurately has become an 
important challenge in the field of autonomous driving.  

Target detection plays an important role in autonomous 
driving [1, 2]. A large number of methods have been proposed 
to solve the obstacle recognition problem in autonomous 
driving. In the field of 3D target detection, depending on the 
modality of the sensor data used in 3D detection networks, they 
can be broadly categorized into detection methods based on 
image, point cloud, and bimodal information fusion of image 
and point cloud. The SMOKE network model proposed by Liu 
et al. [3] is an image-based 3D target detection that utilizes 
feature point estimation and 3D spatial variable regression to 
determine the spatial location of the target, which has the 
advantage of a simple data preprocessing stage that improves 
the detection speed, while the network model solves the effect 
of noise introduced due to redundancy of 2D detection 
networks. The 3D-SSD network model proposed by Luo et al. 
[4] is a one-stage network for target detection based on depth 
information, and the prediction is realized with multi-scale 

mapping, the method has a good improvement in small target 
detection, as well as excellent performance in depth estimation 
against images. The Mono3D (Monocular 3D) model proposed 
by CHEN et al. is based on the improvement of the 3DOP 
model [5], which generates 3D candidate frames, then scores 
them with 2D image features and classifies and regresses the 
candidates with high scores, where the 2D image features are 
generated based on the information of semantic segmentation, 
instance segmentation, and location a priori. The practice has 
shown that the accuracy of the 3DOP model is insufficient 
relative to the estimation of depth, and some scholars have 
found that more accurate depth information can be obtained by 
utilizing parallax estimation. In 2019, LI et al. proposed a 
Stereo R-CNN model [6], which, relative to the 3D-SSD and 
the 3DOP model, utilizes the parallax estimation method to 
obtain more accurate depth information. In point cloud-based 
3D target detection methods, many researchers rasterize the 
point cloud and convert it into voxel form representation to 
easily handle irregular point cloud data. SIMON et al. [7] 
proposed Complex-YOLO, a point cloud-based 3D real-time 
target detection network based on YOLO, where the pose of an 
object is estimated by adding an imaginary and a real number 
to the regression network in a specific Euler-Region-Proposal 
Network (E-RPN). The voxel size setting is a difficult problem 
to be solved in point cloud voxelization. In 2020, M.Y et al. [8] 
proposed a hybrid voxel network (HVNet) for mixing point 
clouds with voxels, which solves this problem by fusing voxel 
features of different scales at the point-level of the point cloud 
and projecting them into multiple pseudo-image feature maps. 
Deng et al. proposed a two-stage voxel-based framework 
Voxel R-CNN network [9], which first generates region 
proposals based on a bird's-eye view, and then extracts region-
of-interest features directly from voxel features using a 
designed voxel RoI pool. However, the process of transforming 
the point cloud into either a voxel or bird's eye view projection 
map form causes some loss of point cloud data. To minimize or 
avoid this loss, some scholars have investigated the direct 
processing of the original point cloud. Qi et al. proposed the 
PointNet network [10], which ensures that the order of the 
points in the point cloud remains unchanged during the 
processing, and the structural connection between the points is 
preserved completely. Lehner et al. introduced a two-stage 
model, which consists of two VoxelNet [11] based networks, 
the Region Proposal Network (RPN) and the Local Refinement 
Network (LRN), for accurate detection and localization of 3D 
targets from point cloud data. Although different modal data 
have obvious effects when used individually in some specific 
scenarios [12], however, a sensor can only acquire a single 
modal data in the environment, and a large number of 
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experiments have proved that there are obvious inherent 
deficiencies in the environment sensing tasks accomplished by 
relying on only single modal data. The fusion of LiDAR point 
cloud data and camera image data with complementary 
relationships to improve the detection of targets in autonomous 
driving environment sensing tasks has been the focus of 
researchers [13]. Xu et al. proposed a PointFusion network 
structure [14], which is one of the typical pre-fusion structures. 
PointFusion first generates 2D selection frames on the image 
with a 2D detector projects the point cloud to the image plane, 
and selects the appropriate target region in the point cloud 
using the 2D selection frames region, and the selected 2D 
image data and the 3D point cloud data are used for feature 
extraction with ResNet [15] and PointNet networks for feature 
extraction to predict the location of the target in space. The 
advantage of this method is that the point cloud is directly 
input as raw data so that the information is preserved. 
However, the network is limited to dense point cloud data and 
is poor for sparse point clouds. Inspired by fusion methods 
such as PointFusion, Sindagi et al. proposed the MVX-Net 
network architecture for hybrid fusion based on earlier fusion 
[16], which utilized the Voxel Net network structure 
introduced at the time to combine two modal data, RGB 
images, and point clouds. Wang et al. proposed the F-ConvNet 
network [17], which, unlike the method of fusing voxelized 
point clouds with images, consists of a set of view cones 
proposed to be generated from 2D checkboxes, which are used 
to group the local point clouds, and the view cone features are 
formed through feature extraction. The VeloFCN network 
proposed by Li et al. [18] draws on the experience of 2D image 
detection by projecting a 3D point cloud to a front view similar 
to a camera image, and the data obtained from this processing 
is converted to a 2D image form, and the image is detected 
with a 2D target detector, but the point cloud in this method 
has multiple points that overlap in the process of projecting to 
the front view, resulting in loss of information.  

In recent years, with the continuous development of 
computer vision and deep learning, the detection of targets 
using deep learning techniques has become a popular research 
direction. Saranya. K.C et al. [19] proposed YOLO v3 to detect 
pedestrians, using this method reduces the computational 
resources and speeds up the computation speed based on 
guaranteeing the detection accuracy, but there will still be 
misdetection and omission problems for the targets occluding 
each other, overlapping and so on. Ren S [20] proposed to 

utilize neural networks instead of selective search and 
proposed the concept of anchor frames, the highlight of this 
method is the integration of subsequent steps such as feature 
extraction in the same network, which leads to an improvement 
in the overall performance. 

However, the current target detection algorithms are still 
unable to meet the practical needs, and many problems still 
need to be solved and improved. On the one hand, most of the 
autonomous driving scenarios are outdoor open scenarios, 
containing a large number of static and dynamic targets, and 
the traffic situation is complex; on the other hand, most of the 
sensors used for target detection in autonomous driving 
vehicles are more than three types, and the currently designed 
target detection algorithms have a single task on the network, 
and the fused sensor data types are fewer, which will deplete 
the limited arithmetic power of the vehicle control unit when 
carrying out multiple tasks at the same time. When performing 
multiple tasks at the same time, it consumes the limited 
arithmetic power of the vehicle control unit. Therefore, how to 
recognize obstacles efficiently and accurately is still of great 
significance in the field of autonomous driving. 

The rest of the paper is organized as follows: Section II 
describes the theoretical approach and optimization process of 
the proposed improved model, including the relevant parameter 
settings of the PointNet++ network and ResNeXt network. 
Section III examines the accuracy of this paper's model on the 
KITTI dataset, followed by a comprehensive analysis and 
discussion of the experimental results. Section IV summarizes 
the main contributions of this paper's model and proposes 
future research directions. 

II. PROPOSED METHOD 

A. Pointfusion Network Model Optimization 

In this paper, we improve the PointFusion architecture 
based on the PointFusion architecture, optimize the point cloud 
feature extraction module and the image feature extraction 
module, introduce the better performing PointNet++ and 
ResNeXt neural network structures instead of the PointNet 
module and the ResNet module, and use only the dense fusion 
structure to predict the 3D selection box point by point from 
each input point to the 8 corners (i.e., each vertex) of the 
spatial offsets, and in this way outputs the 3D prediction frame 
of the target. The structure is shown in Fig. 1. 
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Fig. 1. Improved converged architecture based on PointFusion. 
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The PointFusion network architecture is a pre-fusion two-
stage network structure. The network architecture performs 
target detection on the image data with a 2D target detector and 
enhances the point cloud information with the detected 2D 
target image information. Then the processed RGB image and 
point cloud image are used as input information, and the 
corresponding image and point cloud feature extraction 
network are used to extract features from the input data. 
Finally, the points in the point cloud of the target area are used 
as localization anchor points in space and predicted to obtain 
the 3D candidate frame of the target. 

PointFusion uses heterogeneous network architecture to 
process the input. 3D point cloud data and RGB image data are 
fed into different branches for feature extraction. A variant 
model of the PointNet network architecture is used to process 
the raw point cloud data directly, avoiding the lossy input 
preprocessing caused by converting the point cloud data into 
Range maps or voxel forms. However, the PointNet network 
itself has a poor ability to process sparse point cloud data, 
which leads to weak detection of sparse point cloud targets in 
PointFusion itself. In the architecture of PointFusion, on the 
one hand, the data enhancement of point cloud data is 
performed with a 2D target detection method before data input, 
which makes the input point cloud information a cropped dense 
point cloud, and its network architecture is also trained in the 
dense region of point cloud, which has a weak adaptive ability 
to sparse point cloud; on the other hand, when utilizing the 
point cloud as a spatial localization point, the dense point cloud 
can be very On the other hand, when using point clouds as 
spatial localization points, dense point clouds can predict the 
spatial location of the target, while sparse point clouds cannot 
predict the spatial location of the target very well using this 
method. 

B. PointNet++ Network 

PointNet++ is a deep optimization improvement based on 
PointNet.PointNet++ is a neural network structure consisting 
of a combination of multiple individual layers, which applies 
the PointNet network in feature extraction of the input point 
set. The PointNet++ network, by calculating the spatial 
distances between points in space, can follow the change in 
size between two neighboring layers to extract local features. 
Moreover, each ensemble sampling layer can be adapted to 

sample point cloud regions with different densities and can 
automatically combine feature information at different scales. 

PointNet++ employs hierarchical point set feature learning 
with a hierarchy consisting of multiple ensemble sampling 
layers. At each ensemble sampling layer, the point cloud sets 
within a region are first grouped and sampled, then undergo 
feature extraction and move to the next ensemble sampling 
layer. In the new ensemble sampling layer, each set of features 
from the previous layer is combined into a new point cloud 
element, and the previous operation is repeated until all the 
features are extracted. The ensemble sampling layer is the core 
layer and consists of the sampling layer, the grouping layer, 
and the point network layer. The sampling layer uses the 
farthest point sampling (FPS) method for sampling, which 
randomly takes a set of input points as the center of the region, 
then calculates the distances between other points and that 
point, and determines the adjacent points based on the 
distances between the points. The grouping layer constructs the 
neighborhood of each point cloud based on the distances 
between spatial points. The PointNet layer focuses on feature 
extraction of point clouds in the domain, using a simplified 
version of the PointNet network to extract features from 
different groups of point clouds in the grouping layer. The 
PointNet++ structure is shown in Fig. 2. 

The input to the ensemble sampling layer is N × (d + C), 
where d represents the coordinate dimension of the point cloud, 
C represents the feature vector dimension of each point in the 
point cloud, and N represents the number of points in each 

point cloud ensemble. The output of this layer is   ×（d+  ）
, where the coordinate dimensions of the points are unchanged, 
  represents the eigenvector dimension of each point in the 
point cloud collection in the input to the next ensemble 
sampling layer, and    represents the number of points in each 
point cloud collection in the input to the next ensemble 
sampling layer. 

A set of points{  ,    ,…,   } is input to the sampling 
layer, and a set of points {   ,    ,… ,   } is found using 

constant iterative sampling to determine that    
 is the 

maximum distance from the set {   ,    ,… ,     
}. This 

sampling ensures that all points in the point cloud collection 
are utilized. 
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Fig. 2. PointNet++ network structure.
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The grouping layer inputs are a point cloud collection and a 
center of mass collection. The point cloud collection contains 
the coordinate dimension of the point cloud, the eigenvector 
dimension of each point, and the number of points in the point 
cloud; the center of mass collection contains a set of center of 
mass coordinates. The output of this layer is   ×K×(d+C), 
with    denoting the number of neighbors in the set, and K 
being the center-of-mass points selected in the neighborhood 
with variable size. 

In the PointNet layer, the input is a localized region of    

points of size   ×K×（d+C）, and each localized region in the 

output is abstracted by its center of mass and local features 
encoding the neighborhood of the center of mass, with a data 

size of   ×K×（d+  ）. The PointNet layer is to extract the 

features of the point cloud data within each neighborhood 
partitioned by the previous layer, represented by a feature 

vector of uniform size. The input to this layer is   ×K×（d+C

） and the output is   ×K×（d+  ）. 

The PointNet++ network structure specifically addresses 
the problem that when the point cloud is inhomogeneous, the 
features learned in the dense region may not be suitable for the 
sparse region, and proposes a multiscale grouping (MSG), 
where the point cloud data with different densities are grouped 
into multiple local neighborhoods with different sizes, and 
these neighborhoods are first feature extracted, and then later 
the local neighborhood features are extracted by a point cloud 
feature extraction network to obtain the global features. 

C. ResNeXt Network 

In the image feature extraction branch, the ResNeXt neural 
network structure is used, which is developed based on ResNet 
and combines the experience of classic network structures such 
as VGG, ResNet, and Inception. It is composed of stacking 
multiple residual blocks of similar structure and in each block, 
three convolutional layers are used to realize various 
transformations from "dimensionality reduction-
transformation-upgrading". 

The ResNeXt network has been used as the core of many 
advanced networks for its performance in speed and accuracy 
in many image vision tasks. Although Resnet can be 
subdivided into 18, 34, 50, and 101 layers, the main body of 
the network structure is the same. The starting input of the 
Resnet network structure is a convolutional layer with 7*7 
convolutional kernels, followed by a maximum pooling 
downsampling layer with 3*3 convolutional kernels, followed 
by a residual structure with multiple blocks stacked in layers 
conv2~conv5, and the last layer is an average pooling 
downsampling layer with 3*3 pooling kernels. The first input 
of the Resnet network structure is a convolutional layer with 
7*7 convolutional kernels, followed by a maximally pooled 
downsampling layer with 3*3 convolutional kernels, followed 
by conv2~conv5 layers which are residual structures stacked 
with multiple blocks, and the last layer is an average pooled 
downsampling and fully-connected layer, and the result is 
outputted by softmax. The structure of the ResNeXt network is 
shown in Fig. 3. 

Fig. 3(a) shows the residual module of ResNet-18/34, and 
Fig. 3(b) shows the residual module of ResNet-50/101/152. 

Each module consists of a main branch and a shortcut branch, 
which are output after the convolution operation of the main 
branch on one hand, and the shortcut branch is directly the 
input, and then the results of the two branches are summed up 
and processed by the activation function, so the size and depth 
of the feature matrices of the shortcut branch and the output of 
the main branch should be the same. The size of the kernel of 
convolution and the input/output of the residual module of 
ResNet-18/34 are the same at each layer, and the size of the 
kernel of convolution and the input/output of ResNet-
50/101/152 is the same, while the size of the convolution 
kernel of the convolutional layers in the residual module of 
ResNet-50/101/152 is not consistent. In Fig. 3(b) 1*1 
convolution kernel is used for downscaling and upscaling, and 
it can be seen from the figure that the input of 256 channels in 
the first layer is output down to 64 channels, while the 64 
channels input in the second layer is increased to 256 channels 
by the output of the third layer. In Fig. 3(b), this structure 
serves to save more number of convolution kernels. Taking the 
input of 256 channels as an example, after calculation, there are 
1179648 convolutional kernels in Fig. 3(a) and 69632 
convolutional kernels in Fig. 3(b), compared to the reduction of 
111,016 convolutional kernels, which saves resources and 
improves the efficiency at the same time. 
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(a) The residual module of ResNet-18/34      (b) The residual module of 

ResNet-50/101/152 

Fig. 3. PointNet++ network structure. 

The improved network uses a dense fusion network 
structure. The network uses the input spatial points as spatial 
anchors and predicts the spatial positional offsets of each 
spatial point to each vertex of the neighboring preselected 
boxes. An unsupervised approach is utilized to predict a score 
for each spatial point, and the point with a high prediction 
score receives a high confidence level. The high confidence 
point is used as the final prediction point. The unsupervised 
scoring loss function is: 

       
 

 
∑(       
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where, w is the weight coefficient,    is the confidence 

level, and        
  is the spatial angular offset loss at the first 

spatial point.      is the spatial transformation regularization 
loss. The loss function of the dense fusion network is: 
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where, N is the number of input points,        
   is the offset 

between the true checkbox vertex position and the  th spatial 

point, and        
  is the spatial position offset between the 

predicted checkbox vertex position and the  th spatial point. 

III. EXPERIMENTAL RESULTS 

A. Experimental Parameter setting 

1) PointNet++ parameter settings: This experiment uses 

the MSG network (Multi-Scale Network) of the PointNet++ 

network to set up three ensemble sampling layers, and some of 

the parameters of each ensemble sampling layer are shown in 

Table I. 

TABLE I. PARAMETER SETTINGS FOR EACH ENSEMBLE SAMPLING 

LAYER 

Ensemble 
sampling 

layer 

Number 
of input 

points 

Number of 
sampling 

points 

Sampling 

radius 

characteristic 

channel 

SA1 1024 512 [0.1,0.2,0.4] - 

SA2 512 128 [0.2,0.4,0.8] 320 

SA3 128 - - 640+3 

During model training, batch is set to 24 and epoch is set to 
200. The MSG model has three layers SA1, SA2, and SA3 
used for point cloud data feature extraction. 

1) Ensemble Sampling Layer: The MSG network model 
has three layers, sa1, sa2, and sa3, which are used for point 
cloud data feature extraction. The output of this layer mainly 
has seven-dimensional features. The first-dimensional feature 
is the number of sampled points; the second-dimensional 
feature is the radius size, a total of three radius parameters are 
set, [0.1,0.2,0.4] for the first layer, [0.2,0.4,0.8] for the second 
layer; the third-dimensional feature is the number of points in 
the group corresponding to the radius; the fourth-dimensional 
feature is the number of features or the channel size of the 
input points; and the fifth to the seventh-dimensional features 
are corresponding to the three radiuses respectively. The fifth 
to seventh-dimensional features are the number of feature 
dimensions corresponding to each of the three radii. 

2) ResNeXt parameter settings: The ResNeXt101 network 

is used in this experiment, where the batch is set to 32, 

num_workers is set to 4, and epoch is set to 100. The optimizer 

is ADAM, and the learning rate is 0.001. The parameters of 

conv2~conv5 of the ResNeXt residual structure are set to {3, 4, 

23, 3}. 

B. Analysis and Discussion of Results 

To test the model precision on the KITTI dataset, to better 
compare with other target detection methods, the experiment 

uses the evaluation method provided by the official KITTI 
dataset, sets the thresholds for cars, cyclists, and pedestrians at 
0.7 respectively, and divides the test set among the KITTI 
dataset into three modes: simple, medium and difficult. The 
accuracy and recall in the three modes are calculated to obtain 
the average precision as the evaluation performance metric. 
According to the method of PointFusion, Fast-Rcnn is used as 
a 2D target detector with ResNeXt-101 to extract the input 
image feature information and average over the feature map 
positions. For each input 2D frame, the image is cropped and 
resized to 224 × 224, and up to 400 3D point clouds are 
randomly sampled as input for training and evaluation. 

The P-R curves obtained from the experiment are shown in 
Fig. 4, and the final experimental AP result statistics are shown 
in Table II. 

Table II results show the improved fusion network model 
detection results. The evaluation results for 3D detection in 
both evaluation criteria show that the detection accuracy for the 
automobile class is improved to 79.97% in the simple model; 
the detection accuracy for pedestrians is still below fifty 
percent. Some of the visualized test results are shown in Fig. 5. 

TABLE II. MODEL TEST RESULTS 

objectives 
APBEV(%) AP3D(%) 

Easy Medium Difficult Easy Medium Difficult 

vehicle 89.10 83.14 71.41 79.97 69.13 58.57 

pedestrians 56.52 47.80 43.63 48.65 40.11 35.99 

cyclist 71.92 57.99 51.55 65.51 51.33 45.05 

The PointFusion model before and after improvement is 
compared with other state-of-the-art models in Table Ⅲ. The 
experimental results show that the improved PointFusion-based 
model proposed in this paper performs well for the target 
detection task in general and improves the performance 
compared to the original model. Among them, the highest 
improvement is 6.13% in the medium mode, 2.05%, and 5.3% 
in the easy and difficult modes, respectively. In the medium 
and difficult modes, the proportion of accuracy improvement 
before the improvement relative to that after the improvement 
is larger, indicating that the generalization ability of the 
improved model to the original model has been improved. The 
method proposed in this paper reaches or approaches the 
results of the current state-of-the-art methods in all three 
difficulty modes, but there is an obvious gap in accuracy 
compared to AOVD and F-PointNets in the difficulty level. 
The comparison reveals that both the original model and the 
improved model based on this paper have poor performance in 
the difficulty modes relative to the above two models. This 
indicates that the detection of large occluded targets and small 
targets needs to be improved. 
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(a) PR curve for Bev_Car                                                                                                 (b) PR curve for 3D_Car 

                                                 
(d) PR curve for 3D_Pedestrian                                                                                      (c) PR curve for Bev_Pedestrian 

                                                 
(e) PR curve for Bev_Cyclist                                                                                           (f) PR curve for 3D_Cyclist 

Fig. 4. Improved P-R curves of Disp R-CNN on bird's eye view (Bev) and 3D detection tasks. 

   
(a) Scene I 

   
(b) Scene II 

Fig. 5. Visualization of some of the test results. 
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TABLE III. MODEL TEST RESULTS 

Network model 
APBEV(%) AP3D(%) 

Easy Medium Difficult Easy Medium Difficult 

F-PointNets 91.17 84.67 74.77 82.19 69.79 60.59 

AOVD 89.75 84.95 78.32 76.39 66.47 60.23 

MV3D 86.62 78.93 69.80 74.97 63.63 54.00 

PointFusion - - - 77.92 63.00 53.27 

paper model 89.10 83.14 71.41 79.97 69.13 58.57 

 

IV. CONCLUSION 

In this paper, we propose to optimize the PointFusion 
architecture based on the improved PointFusion fusion 
algorithm by replacing the PointNet module and ResNet 
module in the point cloud feature extraction module and image 
feature extraction module with PointNet++ and ResNeXt 
network structures, respectively, to achieve more accurate 3D 
target detection. The key difference with the existing methods 
is that we consider the problems of poor generalization ability 
of the PointNet network and poor feature extraction in sparse 
regions of the point cloud. We feature extract image and point 
cloud information from the input data and use a dense fusion 
approach to obtain the final prediction, which effectively 
reduces the number of hyperparameters in the image feature 
extraction module and improves the computing speed without 
affecting the accuracy of the final prediction. Finally, we used 
experiments on the KITTI dataset to demonstrate the 
effectiveness of the method, and compared with the original 
prediction model, the model in this paper has the highest 
improvement among the medium modes, reaching 6.13%. 
Most of the current neural networks for autonomous driving 
perception tasks are designed for a single task, which generates 
a large amount of arithmetic power consumption for the in-
vehicle main controller that works on multiple tasks at the 
same time. How to integrate the networks of different tasks 
into one main network, optimizing the arithmetic power, and 
improve the cooperative work of each task will be a future 
research direction. 
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