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Abstract—In recent years, the automation of detecting 

structural deformities, particularly cracks, has become vital 

across a wide range of applications, spanning from infrastructure 

maintenance to quality assurance. While numerous methods, 

ranging from traditional image processing to advanced deep 

learning architectures, have been introduced for crack 

segmentation, reliable and precise segmentation remains 

challenging, especially when dealing with complex or low-

resolution images. This paper introduces a novel method that 

adopts a dual-network model to optimize crack segmentation 

through a coarse-to-fine strategy. This model integrates both a 

coarse network, focusing on the global context of the entire image 

to identify probable crack areas, and a fine network that zooms 

in on these identified regions, processing them at higher 

resolutions to ensure detailed crack segmentation results. The 

foundation of this architecture lies in utilizing shared encoders 

throughout the networks, which highlights the extraction of 

uniform features, paired with the introduction of separate 

decoders for different segmentation levels. The efficiency of the 

proposed model is evaluated through experiments on two public 

datasets, highlighting its capability to deliver superior results in 

crack detection and segmentation. 
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I. INTRODUCTION 

The structural integrity and safety of infrastructures, such 
as buildings, roads, dams, and bridges, are vital to the well-
being of societies across the world. One of the earliest and 
most common indicators of deteriorating structural health is the 
appearance of cracks. Crack segmentation, an essential branch 
of computer vision and structural health monitoring, focuses on 
the accurate identification and tracking of cracks in various 
materials and surfaces. The primary objective is to detect 
cracks as early as possible, ensuring timely maintenance, 
prevention of potential catastrophic failures, and extension of 
the lifespan of structures. With the rapid development of deep 
learning [1], [2], [3], [4] and the emergence of segmentation 
models such as SegNet [5], UNet [6], FCNs [7], and the 
DeepLab series [8], [9], general semantic segmentation tasks 
and crack segmentation tasks, in particular, have achieved 
significant improvements [10], [11], [12]. However, crack 
segmentation still poses numerous challenges that need 
addressing [13], [14], [15]. First, cracks can appear in various 
shapes, ranging from fine lines to wide gaps, and may display 
in different depths, lengths, and orientations. This makes it 
challenging for models to generalize across all possible crack 
presentations. Second, the surface on which a crack appears 
often possesses its texture, which can resemble a crack, making 

it difficult to differentiate between actual defects and 
background patterns. Third, uneven and dynamic lighting 
conditions, as well as external factors such as dirt, moisture, or 
staining can either obscure cracks or create shadows that might 
be mistaken for cracks. In recent years, with the rapid 
advancement of convolutional neural networks (CNNs), many 
methods have been proposed to address these challenges. In 
study [16], the authors proposed a novel unsupervised multi-
scale fusion crack detection algorithm for pavement images, 
which addresses challenges posed by intensity inhomogeneity, 
topology complexity, and other factors without the need for 
training data. This method integrates a windowed minimal 
intensity path-based technique for candidate crack extraction, 
cross-scale crack correspondence, and a multivariate statistical 
hypothesis test for crack evaluation. In study [17], the authors 
introduced a cutting-edge network architecture called feature 
pyramid and hierarchical boosting network tailored for 
pavement crack detection. This network integrates context 
information into low-level features through a feature pyramid 
approach, and introduces a unique nested sample reweighting 
process, along with a new measurement method, the average 
intersection over union for enhanced crack detection accuracy. 
Yue et al. [18] presented CrackNet-V, an enhanced deep 
network tailored for pixel-level crack detection in 3D asphalt 
pavement images. This advanced network, building upon the 
foundational principles of CrackNet, features a deeper structure 
with fewer parameters, thereby offering superior accuracy and 
computational efficiency, while also incorporating novel 
features like the leaky rectified tanh activation function for 
precise shallow crack detection. Zhengxin et al. [19] proposed 
a semantic segmentation neural network designed for road area 
extraction, seamlessly merging the capabilities of residual 
learning and the U-Net architecture. This model incorporates 
residual units for simplified deep network training while its 
rich skip connections streamline information propagation, 
resulting in a leaner yet more performative network. In study 
[20], the authors introduced the Crack Transformer network 
(CrackFormer), a specialized solution tailored for fine-grained 
crack detection, integrating innovative attention mechanisms 
within a SegNet-inspired encoder-decoder framework. 
CrackFormer features unique self-attention modules and 
efficient positional embedding, while also incorporating new 
scaling-attention modules, emphasizing semantic crack 
features and reducing non-semantic interferences. 

Although the above methods have addressed many 
challenges of crack segmentation, some difficulties remain, 
especially with thin cracks. As illustrated in Fig. 1, thin cracks 
are often more difficult to detect, particularly in low-resolution 
images. Furthermore, thin cracks can easily be mistaken for the 
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natural texture of asphalt, especially when the asphalt surface is 
rough or granular. Thin cracks can also appear darker or fainter 
depending on the lighting conditions and the angle of image 
capture, posing challenges for consistent detection. To address 
these issues, this paper introduces a dual-network model that 
employs a coarse-to-fine strategy for enhanced crack 
segmentation. The model consists of two networks: the coarse 
network captures global image context to identify potential 
crack areas, followed by the fine network, which focuses on 
these identified regions at a high resolution to achieve precise 
segmentation. Both networks share an encoder, but use 
separate decoders to process images, ensuring high-quality 
crack detection results. The proposed model is evaluated on 
two public datasets, including CrackTree260 and 
DeepCrack537 datasets. Experimental results show that the 
proposed model delivers superior results in crack detection and 
segmentation. 

 
Fig. 1. Some images illustrate the challenges faced when performing crack 

segmentation. 

II. PROPOSED MODEL 

Fig. 2 provides a detailed visualization of the multi-stage 
segmentation process implemented in the proposed method. 
The proposed pipeline consists of both a coarse and a fine 
network. While both networks use a shared encoder, denoted as 
 , they each have their own decoders:    for the coarse 
network and    for the fine network. The main objective of the 

coarse network is to capture global contextual information 
from the entire image and subsequently highlight regions 
potentially containing cracks. Based on the predictions from 
the coarse network, the fine network then zooms into these 
identified regions, focusing specifically on local patches 
considered to have cracks, to achieve high-resolution crack 
segmentation. An input image represented mathematically as 
         undergoes a downsampling step first. This 
optimizes its size for an initial analysis without sacrificing key 
details. Following this, the coarse network processes the 
downsized image to identify regions that may have cracks, 
resulting in a coarse crack map. This map essentially serves as 
a probability output, given by                    , 
highlighting pixels with a higher probability of being part of a 
crack. To refine this output, a thresholding technique is 
applied, producing a more defined coarse crack mask. This 
mask is then employed as a guide for the subsequent fine 
network. The fine network delves deeper, cropping and 

zooming into the previously identified regions. Its primary task 
is to work on these local patches, operating at a higher 
resolution to accurately segment the cracks, leading to a precise 
segmentation result. 

A. Shared Encoder 

We use ResNet-101 architecture in [21] as the shared 
encoder of our model. ResNet-101, a variant of the Residual 
Network (ResNet) family, is a deep convolutional neural 
network architecture known for its excellent performance on a 
variety of computer vision tasks. At its core, the design 
philosophy behind ResNet-101 is the introduction of "residual 
blocks" which address the vanishing gradient problem 
encountered in very deep neural networks. The network begins 
with a single convolutional layer with a 7×7 kernel, stride of 2, 
followed by a max pooling layer. The majority of the network 
consists of sequences of residual blocks. These blocks allow 
the model to learn identity functions that ease the training of 
deeper networks by providing shortcut connections across 
layers. Specifically, a residual block contains a skip connection 
that bypasses one or more layers. ResNet-101 contains four 
main groups of residual blocks. The first group has 3 blocks, 
the second group has 4 blocks, the third group comprises a 
significant 23 blocks, and the fourth group has 3 blocks. Each 
block within these groups consists of 3 layers (i.e., a 1×1 
convolution, a 3×3 convolution, and another 1×1 convolution), 
with the exception of the first block of each group, which 
adjusts the number of channels and downsamples using a stride 
of 2. For crack segmentation task, we remove fully connected 
layers at the end of the architecture to maintain spatial 
information throughout the network. In addition, to stabilize 
the activations and speed up training, batch normalization and 
ReLU (Rectified Linear Unit) activation functions are applied 
after each convolution within the blocks. The details of 
ResNet-101 structure used in this paper are shown in Table I. 
The deep nature of ResNet-101 enables it to capture a wide 
range of features at different scales, while its residual 
connections ensure that training remains stable and efficient 
even with its impressive depth. 

B. Segmentation Decoders 

For both coarse and fine segmentation decoders, this paper 
employs the Atrous Spatial Pyramid Pooling (ASPP) decoder 
in [22]. ASPP is a prominent module designed to capture 
multi-scale contextual information without the need for 
multiple input scales or exhaustive downsampling. Originally 
proposed for semantic image segmentation in the context of the 
DeepLab series of architectures, ASPP is specifically designed 
to handle the challenges posed by objects of varying scales in 
images. The core concept behind ASPP is to apply parallel 
dilated (or atrous) convolutions on the feature map, each 
having a different dilation rate. This results in capturing spatial 
information from different field-of-views without substantially 
increasing the number of parameters or the computational 
burden. The multi-scale feature maps resulting from these 
parallel operations are then concatenated. Specifically, the 
ASPP module comprises: A 1×1 convolution which captures 
the image's immediate context, three 3×3 convolutions but with 
varying dilation rates (e.g., 6, 12, and 18), which allow the 
network to capture spatial information from different ranges 
without downsampling, and a global average pooling layer to 
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process the feature map, capturing the holistic context of the 
image. The resulting features are then upsampled and 
concatenated with the other components. After concatenating 
the outputs from these parallel operations, the combined 
feature map passes through another convolution to produce the 
final enhanced feature map that fuses multi-scale contextual 
information. This feature map is then fed into the ASPP 
decoder for semantic segmentation, as shown in Fig. 3. In the 
ASPP decoder, the enhanced feature maps are first bilinearly 
upsampled by a factor of 4 and then concatenated with the 
corresponding low-level feature map from the backbone (i.e., 

Conv2 layer of ResNet-101). To implement the concatenation 
operation, a 1×1 convolution layer is applied to the low-level 
feature map to reduce the number of channels. After 
concatenation, two 3×3 convolution layers are used to refine 
the features, followed by another simple bilinear upsampling 
by a factor of 4. The refined feature map is finally fed into the 
segmentation head. The ASPP decoder enables the network to 
effectively segment objects of various sizes and scales in 
images, making it a powerful choice for many semantic 
segmentation tasks. 

 
Fig. 2. The structure of the proposed model for crack segmentation. 

 

Fig. 3. The pipeline of the ASPP decoder. 
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C. Cropping 

To extract high-resolution crack patches from the original 
image based on the coarse crack map, we first convert the 
coarse crack probabilities generated by the coarse network into 
a binary mask using a hard-thresholding method. This will 
produce a binary mask indicating the presence of cracks. To 
ensure that all potential details of the crack, even those that 
might have been slightly missed by the coarse network, are 
captured, we apply a dilation operation on the binary mask. 
This slightly enlarges the mask region. Next, we compute the 
bounding box for each contiguous region in the dilated binary 
mask. To generate these bounding boxes for crack regions, we 
select all the pixels with a corresponding density mask value of 
“1”. We then merge the eight-neighbor connected pixels into a 
large candidate region. Finally, we use the circumscribed 
rectangle of the candidate region to crop the original image. 
This box encapsulates the region potentially containing the 
crack. Furthermore, we filter out crops with resolutions below 
the density threshold to eliminate noise and reject low-
resolution patches. This step is crucial because crack 
segmentation doesn't perform well on low-resolution patches. 
After extracting the corresponding high-resolution patches 
from the original image, we feed each one into the fine 
network for detailed segmentation. As this network focuses 
only on smaller regions containing potential cracks, it can pay 
more attention to details, yielding better segmentation quality. 
Once the fine module processes the patches, it generates high-
resolution segmentation for each patch. These segmented 
patches are then projected back to their original positions in the 
full-resolution image to obtain the final segmented result. By 
using this approach, the model benefit from both the global 
context provided by the coarse module and the local detail-
centric approach of the fine module, ensuring accurate 
segmentation of cracks even in high-resolution images. 

TABLE I. THE DETAILS OF RESNET-101 STRUCTURE USED AS THE 

SHARED ENCODER IN THIS PAPER 

Layer type Output size Details 

Input H × W × 3  

Conv1 H/2 × W/2 × 64 7×7 convolution, stride 2 

Max Pooling H/4 × W/4 × 64 3×3 max pool, stride 2 

Conv2_x (3 blocks) H/4 × W/4 × 256 
[1×1, 64], [3×3, 64], [1×1, 

256] for each block 

Conv3_x (4 blocks) H/8 × W/8 × 512 
[1×1, 128], [3×3, 128], [1×1, 

512] for each block 

Conv4_x (23 blocks) 
H/16 × W/16 × 
1024 

[1×1, 256], [3×3, 256], [1×1, 
1024] for each block 

Conv5_x (3 blocks) 
H/32 × W/32 × 

2048 

[1×1, 512], [3×3, 512], [1×1, 

2048] for each block 

D. Training Loss 

In the domain of crack segmentation, the objective is to 
classify each pixel as either being part of a crack or not. This 
pixel-wise classification task can be effectively formulated and 
optimized using the Binary Cross Entropy (BCE) loss as 
follow: 

  
 

 
∑          ̂          (1) 

       ̂         ̂               ̂  (2) 

where,   is the true label of the pixel,  ̂  is the predicted 
probability of the pixel belonging to the class labeled as 
foreground class. 

The BCE loss quantifies the divergence between the 
predicted probability distribution and the actual distribution of 
the pixel labels. Specifically, for every pixel in the segmented 
image, the model predicts a probability score representing its 
confidence that the pixel belongs to the crack class. The BCE 
loss then computes the logarithmic difference between these 
predicted probabilities and the ground truth labels. When the 
model's prediction aligns closely with the actual label, the BCE 
loss approaches zero, indicating a perfect prediction. 
Conversely, if the model's prediction deviates significantly 
from the ground truth, the loss value increases. This property 
makes BCE loss particularly suitable for the crack 
segmentation task, as it penalizes misclassifications heavily, 
thereby driving the model to improve its pixel-wise 
classification accuracy. By minimizing the BCE loss during 
training, the segmentation model is guided to produce 
predictions that closely match the true crack structures in the 
images, leading to precise and reliable segmentation results. 
We use the BCE loss to both coarse and fine networks. The 
final loss   is the sum of the two: 

                  (3) 

where,    and    are coefficients for each loss,    is the 

BCE loss for the coarse network,    is the BCE loss for the 

fine network. 

III. EXPERIMENTS 

A. Dataset and Metrics 

The proposed model is trained and evaluated on two public 
crack datasets: the CrackTree260 [23] and DeepCrack537 [24]. 

CrackTree260 is a dataset comprising 260 road pavement 
images, which is an extended version of the dataset from [23]. 
Images are captured using an area-array camera under visible-
light illumination. This study utilized 200 of these images for 
training, 20 for validation, and 40 for testing. To enhance the 
training set, data augmentation techniques were employed. 
Specifically, each image was rotated at nine distinct angles 
ranging from 0 to 90 degrees in 10-degree increments. 
Following rotation, each image was then flipped both vertically 
and horizontally. From each flipped variant, five sub-images of 
512×512 pixels were extracted – four from the corners and one 
from the center. As a result of this augmentation process, the 
training set accumulates a total of 35,100 images. 

DeepCrack537 comprises 537 images, each having 
resolution of 544×384 pixels. These images depict a variety of 
cracks. Unlike other crack datasets, the diversity of cracks in 
DeepCrack537 is notable. Examples include top-down views, 
tilted views, cracks on both concrete and asphalt surfaces, 
variations in crack width from wide to thin, and instances 
where the cracks are partially occluded. For the purposes of 
this study, 300 images were utilized for training and 237 for 
testing. 
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For evaluation metrics, we use Precision ( ), Recall ( ), 
         , mean intersection over union (     ) to 
evaluate the proposed model. Precision evaluates how many of 
the detected/segmented cracks (positive predictions) are 
actually real cracks. 

  
  

      
      (4) 

where,    (True Positives) are the correctly detected 
cracks,    (False Positives) are the wrongly detected cracks 
(i.e., detected cracks that are not real). 

Recall measures how many of the actual cracks have been 
detected by the segmentation model. 

  
  

     
      (5) 

where,    (False Negatives) are the actual cracks that the 
model failed to detect. 

          is the harmonic mean of Precision and 
Recall. It provides a balance between the two. If either 
Precision or Recall is low, the           will also be low. 
It's especially useful when the class distribution is uneven. 

          
     

   
    (6) 

Mean intersection over union (    ) is a popular metric 
for segmentation tasks. It evaluates the overlap between the 
ground truth segmentation and the predicted segmentation.  

     
 

 
 

  

        
 

  

        
    (7) 

B. Experimental Settings 

The shared encoder based on ResNet-101 architecture is 
initialized with weights pre-trained on the ImageNet dataset 
[25] to take advantage of the extensive pretrained insights and 
rich feature representations it offers. The entire network was 
trained using the Adam optimizer [26] with a learning rate of 
0.0001, which was reduced by a factor of 10 whenever the 
validation loss stabilized. Data augmentation techniques, 
including random rotations, zooms, and horizontal flips, were 
applied to prevent overfitting and enhance the model's 
generalization capabilities. The model is trained for 100k 
iterations with a batch size of 4. All experiments were 
conducted on a machine equipped with an NVIDIA RTX 4080 
GPU, 64 GB RAM, and ran on the PyTorch framework. 

C. Performance Evaluation 

To demonstrate the effectiveness and superiority of the 
proposed method, we adopted eight existing and popular 
methods to compare to the proposed model, including Unet [6], 
TransUNet [27], FCNs [7], SegNet [5], and DeepCrack [28]. 
Table II shows results on the CrackTree260 dataset. From 
Table II, when examining the performance metrics of various 
models on the CrackTree260 dataset, the proposed model 
demonstrates superior performance across all metrics. With P 
of 0.892, R of 0.886, F-measure of 0.897, and mIoU of 0.894, 
the proposed model surpasses the other models in the ability to 
detect and segment cracks accurately. Notably, while 
DeepCrack comes closest to the proposed model with an F-
measure of 0.852 and mIoU of 0.865, the proposed model still 

offers improvements, particularly in capturing the true positive 
rate as indicated by the highest recall. UNet and SegNet also 
demonstrate competitive results, with F-measures of 0.847 and 
0.844 respectively. However, FCNs, with an F-measure of 
0.463 and mIoU of 0.612, is the least effective among the 
mentioned models. TransUNet, despite being a transformer-
based model, shows a relatively moderate performance with an 
F-measure of 0.771. Overall, the results suggest that the two-
step approach of the proposed model is highly effective in 
detecting and segmenting cracks on the CrackTree260 dataset. 
For the DeepCrack537 dataset, the results are shown in Table 
III. From Table III, it's evident that the proposed model 
delivers the most impressive results in terms of crack detection 
and segmentation. With P of 0.891, R of 0.846, F-measure of 
0.875, and mIoU of 0.878, the proposed model surpasses the 
other evaluated models. The DeepCrack model is the closest 
competitor with an F-measure of 0.847 and mIoU of 0.861, 
indicating a relatively high accuracy. SegNet also exhibits 
strong results with an F-measure of 0.840. In comparison, 
UNet and FCNs, while displaying reasonable performances, 
fall slightly behind with F-measures of 0.815 and 0.812, 
respectively. It is apparent from these results that the bi-level 
approach of the proposed model, involving a global context 
capture followed by focused high-resolution segmentation, is 
effective in the context of the DeepCrack537 dataset. 

The visualization results of the model across datasets are 
depicted in Fig. 4. In this figure, the rows labeled "Input 
image" display images of various surfaces, each with distinct 
crack morphologies. The "Ground-truth labels" rows accurately 
depict the actual cracks present in the images. In contrast, the 
"Segmentation results" rows present the model's predictions. 
For most of the images, the segmentation results align closely 
with the ground-truth labels, indicating a high degree of 
accuracy in crack detection. This demonstrates the strength of 
our method in capturing both the global context through the 
coarse network and then refining the details through the fine 
network. Particularly in areas with intricate crack patterns or 
smaller fissures, the fine network provides superior results in 
segmenting these challenging features. However, there are 
instances, especially in the second set of images, where the 
segmentation results show a slightly broader crack outline than 
the ground-truth, suggesting a potential overestimation by the 
model in those cases. Overall, the visualization validates the 
effectiveness of our approach. While there are minor deviations 
in a few cases, the proposed pipeline demonstrates robust 
performance in segmenting cracks across diverse scenarios. 

TABLE II. RESULTS ON THE CRACKTREE260 DATASET 

Model Metrics 

 P R F-measure mIoU 

UNet 0.860 0.834 0.847 0.861 

TransUNet 0.797 0.746 0.771 0.803 

FCNs 0.519 0.418 0.463 0.612 

SegNet 0.851 0.837 0.844 0.858 

DeepCrack 0.871 0.834 0.852 0.865 

Proposed model 0.892 0.886 0.897 0.894 
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Fig. 4. Visualization results of the model on the datasets. 
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TABLE III. RESULTS ON THE DEEPCRACK537 DATASET 

Model Metrics 

 P R F-measure mIoU 

UNet 0.841 0.791 0.815 0.837 

FCNs 0.829 0.796 0.812 0.833 

SegNet 0.857 0.824 0.840 0.851 

DeepCrack 0.876 0.819 0.847 0.861 

Proposed model 0.891 0.846 0.875 0.878 

IV. CONCLUSION 

This study presents a dual-network model that optimally 
leverages the combined strengths of both a coarse and a fine 
network to enhance crack segmentation. Each network utilizes 
a shared encoder, with separate decoders tailored to their 
specific roles: the coarse network captures a holistic view of 
the image, emphasizing regions that potentially contain cracks, 
while the fine network focuses on these highlighted regions for 
precise high-resolution crack segmentation. The integration of 
the coarse network with the fine network was effective in 
addressing the challenges of crack detection. The experimental 
results on two public datasets underscore the robustness and 
effectiveness of the proposed approach in diverse scenarios. 
However, our model may struggle with extremely subtle cracks 
or those obscured by environmental factors, such as shadows 
or debris. Furthermore, the model's performance might vary 
depending on the quality and resolution of the input images. In 
future work, we plan to incorporate additional data 
augmentation techniques and explore the integration of 
advanced sensors for better crack detection in challenging 
conditions. 
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