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Abstract—Reliable classification of Land Use and Land Cover 

(LULC) using satellite images is essential for disaster 

management, environmental monitoring, and urban planning. 

This paper introduces a unique method that combines a 

Convolutional Neural Network (CNN) with Human Group-based 

Particle Swarm Optimization (HPSO) and Ant Colony 

Optimization (ACO) algorithms to improve the accuracy of 

LULC classification. The suggested hybrid HPSO-ACO-CNN 

architecture effectively solves the issues with feature selection, 

parameter optimization, and model training that are present in 

conventional LULC classification techniques. During the initial 

phases, HPSO and ACO are crucial in identifying the best 

hyperparameters for the CNN model and fine-tuning the 

selection of critical spectral bands. ACO modifies the CNN's 

hyperparameters (learning rate, batch size, and convolutional 

layers), whereas HPSO finds the optimal selection of spectral 

bands. This optimization technique reduces the probability of 

overfitting while substantially enhancing the model's ability to 

generalize. Utilizing the selected spectral bands and optimum 

parameter configuration, the CNN algorithm is trained in the 

second phase. With Python implementation, this method uses 

both the spatial and spectral characteristics that the CNN detects 

to reach an outstanding 99.3% accuracy in LULC classification. 

The hybrid approach outperforms traditional methods like Deep 

Neural Network (DNN), Multiclass Support Vector Machine 

(MSVM), and Long Short-Term Memory (LSTM) in 

experiments using benchmark satellite image datasets, 

demonstrating a significant 10.5% increase in accuracy. This 

hybrid HPSO-ACO-CNN architecture transforms accurate and 

dependable LULC classification, offering an advantageous 

instrument for remote sensing applications. It enhances the area 

of satellite imagery evaluation by combining the advantages of 

deep learning techniques with optimization algorithms, enabling 

more accurate mapping of land use and cover for sustainable 

land management and environmental preservation.  

Keywords—Land use and land cover; human group-based 

particle swarm optimization; ant colony optimization; convolutional 

neural network; satellite image 

I. INTRODUCTION 

A crucial challenge that has significant implications across 
a range of regions is the accurate categorization of land cover 
and land use using satellite images. The primary focus of the 
position is the organized classification and labelling of the 
surface of the Earth, which serves as a fundamental 
perspective for understanding and managing the planet's 
changing landscapes. The designation of urban regions, the 
identification of infrastructural requirements, and the 
reinforcement of well-informed choices on land utilization 
allocation all have been made possible by the LULC 
categorization, which is crucial for urban planning [1]. This 
allows for the establishment of effective and environmentally 
responsible cities. It is a vital instrument in the field of 
management of the environment for determining how 
ecosystems are changing, detecting deforestation, and keeping 
track of the condition of ecosystems in their natural state. In 
addition, LULC categorization in agriculture provides farmers 
with knowledge about different crop categories, production, 
and farming methods, permitting targeted farming methods 
and boosting food security [2]. Accurate mapping of LULC 
can help with evaluating susceptibility, organizing for 
minimizing disaster risks, and adapting quickly to 
emergencies throughout disaster reconstruction and prevention 
operations. The capacity of satellite imaging to take wide-
ranging images of the exterior of the planet from orbit is 
crucial for LULC categorization. These images provide us an 
unusual perspective from which can observe the intricate and 
constantly shifting topography of the earth [3]. The 
investigation has access to a variety of data on the Earth's 
surface, such as specifics about human behaviours, landscape 
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characteristics, and the surrounding environment, by using the 
camera's array of satellite sensors. A specific component of 
this categorization, known as land utilization, deals with the 
numerous ways individuals utilize and communicate with the 
land, including metropolitan regions, agricultural areas, 
transportation systems, manufacturing regions, and more. In 
contrast, land cover describes the physical properties of the 
Earth's surface independent of human activity, including 
forests, marshes, lakes and rivers, deserts, and arid areas. 
Together, the two distinct aspects related to land cover and 
land use provide an accurate representation of the Earth's 
surface and provide information regarding the complex 
interactions between the activities of humans and the 
surrounding ecosystem [4]. The level of accuracy of 
assessments made in a variety of disciplines is strongly 
impacted by how well LULC categorization is done. In urban 
planning, accurate regulatory control, infrastructure 
optimization, and support for ecologically friendly techniques 
are all aided by the definition of land utilization 
classifications. The capacity to distinguish between diverse 
kinds of land covers in management of the environment 
enables investigators to observe wildlife migratory patterns, 
follow habitat changes, and determine the effects of warming 
temperatures on ecosystems. In terms of agriculture, LULC 
categorization enables farmers to engage in decisions based on 
information, enabling them to select crops more effectively, 
manage irrigation more effectively, and lessen the impact of 
diseases and pests. Quick and precise LULC mapping is 
crucial for response to disasters in order to evaluate 
destruction, identifying impacted people, and efficiently 
arrange relief activities [5]. The key component for solving 
some of the most important issues confronting the global 
community, from development and deterioration of the 
environment to food availability and disaster resilience, is 
proper LULC categorization.  

Satellite imagery is now more widely available and of 
higher quality than ever due to notable technological 
breakthroughs in the area of remote sensing in recent years. 
The latest phase of Earth observations has begun as a result of 
the growth in gathering information, providing an unusual 
viewpoint on the globe from orbit. Researchers have been able 
to collect data about the outermost layer of the planet and its 
changing operations at a degree of complexity never before 
possible due to the installation of innovative Earth-observing 
satellites with modern sensors. These satellites continually 
gather enormous volumes of information that cover a wide 
range of spectral data, temporal frequencies, and geographical 
resolutions [6]. Because of this, the field of remote sensing 
today is distinguished by an extensive collection of extensive 
and varied satellite imagery, which serves as a significant 
resource for a wide range of scientific, ecological, and social 
purposes. Even if the amount of available imagery from 
satellites is increasing exponentially, there are still many 
difficult problems it raises. For the information to be used 
effectively, it requires advanced approaches due to their 
enormous number and complexity. The fact that these images 
are multi-spectral and hyperspectral, indicating that they 
collect data from a broad variety of wavelengths, which 
include those outside the visible spectrum, presents one of the 
main obstacles [7]. This spectral variety adds a degree of 

complexity that necessitates sophisticated analytical methods 
capable of understanding the subtle differences in the 
information. Conventional LULC categorization methods 
suffer to handle this complexity because they are unable to 
capture the complicated patterns seen in multi-spectral and 
hyperspectral data. These methods are frequently founded 
upon manual characteristic engineering and rule-based 
systems. Traditional LULC categorization techniques 
frequently depend on hand-made characteristics and pre-
established criteria, which may not be sufficient to capture the 
entire range of variability inherent in satellite images. These 
methods can be laborious and frequently need expertise in the 
area for extraction of features. Additionally, rule-based 
systems' low capacity for adapting to various and changing 
environments limits their usefulness. The immense 
prospective of deep learning methods, particularly CNNs, has, 
in comparison, emerged progressively more understood in the 
context of the analysis of satellite imagery [8]. CNNs are 
exceptionally effective at gathering pertinent characteristics 
from unprocessed information, which enables them to find 
complex spatial and spectral correlations that can resist 
manual characteristic engineering. They therefore provide a 
potential way to improve the accuracy and efficiency of 
LULC categorization using the vast amount of available 
satellite information. 

The present article introduces a novel method that makes 
advantage of the interaction between algorithms for 
optimization and deep learning approaches to address the 
significant issues provided by the complexities of satellite 
images and the rising need for precise land use and land cover 
categorization. In particular, this innovative method combines 
Convolutional Neural Networks with two potent optimization 
algorithms—Human Group-based Particle Swarm 
Optimization and Ant Colony Optimization—to create a 
hybrid structure designed exclusively for the accurate and 
reliable categorization of LULC according to satellite imagery 
[9]. This integrative approach's primary driving force is to 
handle choosing characteristics and hyperparameter 
optimization, two crucial aspects of LULC categorization. The 
correct interpretation of satellite images depends heavily on 
identifying features, which involves choosing the most 
significant spectral bands or channels. Each of the categories 
are equally significant in the context of multi-spectral and 
hyperspectral imaging, and choosing a suitable combination of 
channels is essential for lowering distortion and redundancies 
while enhancing the approach capacity to discriminate 
between distinct land cover classifications. Human Group-
based PSO intelligently selects the most relevant spectral 
bands to improve the standard of data given into the CNN 
using a collaborative procedure of optimization motivated by 
social group characteristics. The subsequent crucial issue the 
hybrid system addresses is hyperparameter optimization. A 
wide range of hyperparameters, including learning rates, batch 
sizes, and the number of convolutional layers, are included in 
CNNs as algorithms for deep learning. The effectiveness of 
the simulation is significantly impacted by these 
hyperparameters, therefore determining the optimum setup is 
extremely important [10]. ACO is used to adjust these 
hyperparameters, in order to ensure that the CNN performs at 
its highest level. It aims to minimize overfitting while 
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optimizing categorization accuracy by balancing model 
complexities and generalization. This combined strategy 
transcends the constraints of conventional approaches that 
depend on manual characteristic engineering and rule-based 
systems, signalling an important change in LULC 
categorization. This structure aims to enhance the accuracy 
and resilience of satellite based LULC categorization, 
permitting the efficient usage of the extensive and complicated 
information contained within satellite data. It does this by 
integrating the effectiveness of optimization methods into 
deep learning [11].  

A crucial and fundamental stage in the field of satellite 
imagery evaluation, especially in the broader context of 
classifying land use and land cover, involves characteristic 
selection. The selection of the appropriate subset of spectral 
bands is crucial for a number of explanations, not the least of 
which is that not all spectral bands contributed similarly to the 
categorization process. Initially reducing data noise is 
accomplished by carefully choosing the spectral bands. Noise 
in imagery from satellites can come from a variety of places, 
such as air interference, sensor constraints, and changes in 
surface reflectance [12]. Feature selection eliminates or 
reduces the influence of noisy information by selecting the 
most pertinent bands, producing more accurate and precise 
categorization outcomes. This noise reduction improves the 
categorization model's general durability, making it less 
sensitive to incorrect classifications carried on by external 
influences. The process of categorization becomes quicker and 
more resource-efficient because to the reduction in 
redundancy, which also improves computing effectiveness. 
The present study uses Human Group-based Particle Swarm 
Optimization, a method informed by the combined 
intelligence of social networks, to carry out the process of 
characteristic selection effectively [13]. PSO replicates the 
cooperative behaviour of members of a group, where each 
member represents a possible mixture of spectral bands. These 
"particles" move around the spectral band subset search space, 
continuously modifying their placements in accordance with 
their individualized and shared understanding. Particles may 
successfully explore and utilize the search space thanks to 
PSO's cooperative characteristic by combining spectral bands 
in techniques that improve categorization accuracy while 
reducing noise and redundancies. 

Convolutional Neural Network architecture tuning of 
hyperparameters is crucial for obtaining optimal results and 
strong adaptation as well as to characteristics selection. 
Hyperparameters include important factors that control 
whether deep-learning algorithms develop and are built, such 
as learning rates, size of batches, and the quantity of 
convolutional layers. These hyperparameters have a 
substantial impact on how well a CNN can recognize and 
understand complicated patterns in the information being 
processed. For example, during optimization, the learning rate 
determines the phase size and might affect the algorithm's 
convergence rate and quality. The batch size influences both 
computational effectiveness and generalization by affecting 
how the system procedures and modifies parameters during 
training [14]. Additionally, both the complexity and depth of 
the CNN is directly determined by the quantity of 

convolutional layers, with a greater number possibly 
permitting the collection of more complicated data. Therefore, 
it is essential to optimize these hyperparameters to ensure that 
the CNN performs at its optimal level while minimizing the 
danger of overfitting, which occurs when the algorithm 
develops excessively specific to the information used for 
training. This study presents a complete technique that 
integrates feature selection and hyperparameter optimization, 
two essential components of satellite image evaluation. The 
resultant hybrid method, which incorporates CNNs, ACO, and 
HPSO, has the possibility to transform satellite image 
processing. The combination of PSO for characteristic 
selection and ACO for hyperparameter optimization results in 
an integrated structure that makes use of both the 
representational strength of deep learning systems and the 
collective knowledge of optimization algorithms. This 
innovative method improves categorization accuracy while 
also strengthening resilience against complicated or noisy 
satellite imaging information. The hybrid PSO-ACO-CNN 
strategy that has been developed marks a substantial 
advancement in the effort to fully use satellite images for 
important applications in a variety of fields. Land cover and 
land use categorization skills, which are essential for 
environmental monitoring, urban planning, agriculture, and 
disaster management, are set to become more precise and 
dependable as a result of this technology. The study advances 
the latest developments in satellite image evaluation by 
demonstrating the efficacy and effectiveness of this 
framework via thorough investigations and findings. The 
potential significance of this study extends beyond the limits 
of research by providing real-world details that can enable 
experts to reach better decisions about how to manage the 
resources of the planet and deal with difficult problems. In 
short, the study represents a crucial step toward releasing 
satellite imagery's hidden potential for tackling pressing 
problems that the planet is currently and in future generations 
will be confronting.  

The Key Contribution of the paper is given as follows: 

 The study introduces the EuroSAT dataset, a 
sophisticated collection of satellite images created 
specifically for categorizing land cover and usage. This 
collection includes imagery from satellites with labeled 
data covering, different categories of land cover and 
usage across thirteen spectral bands. The massive 
dataset will be a valuable resource for the remote 
sensing and computer vision research as it allows for 
the investigation of deep learning and multimodal 
fusion techniques. 

 The paper presents a unique hybrid optimization 
approach that combines Ant Colony Optimization for 
convolutional neural network hyperparameter 
optimization with Human Group-based Particle Swarm 
Optimization for feature selection. This technique 
addresses two important aspects of satellite image 
processing: selecting the appropriate spectral bands to 
employ and optimizing the CNN model for best results. 
The accuracy and robustness of the classification of 
land use and land cover are increased when these 
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optimization approaches are combined with deep 
learning.  

 The research employs effective image pre-processing 
techniques, such normalization and histogram 
equalization, to enhance the quality of the acquired 
satellite images. These techniques reduce noise and 
improve system performance while ensuring that the 
input data to the classification model is of 
exceptionally high quality.  

 By simultaneously optimizing numerous CNN model 
parameters, such as batch size and learning rate, the 
research expands on Ant Colony Optimization. The 
multi-parameter optimization technique ACO-DL 
enables the CNN to operate at peak efficiency, achieve 
ideal generalization, and avoid issues such as 
overfitting. It facilitates the training of the model more 
easily and leads to improved classification results.  

 A comprehensive method that integrates data 
collection, picture pre-processing, feature selection, 
hyperparameter optimization, and CNN-based 
classification into a unified architecture is presented in 
the study. This comprehensive technique offers an 
effective way to accurately categorize land cover and 
use utilizing satellite data, and it has the possibility 
of revolutionizing the area of satellite image processing 
for a number of applications, such as urban planning 
and environmental monitoring.  

The rest of the section is organised as shown below. 
Section II illustrates literature works on Land Use and Land 
Cover categorization. Section III gives the Problem Statement. 
Section IV covers the proposed technique for categorization of 
Land Use and Land Cover from satellite images. Section V 
illustrates the performance measures and summarises the 
findings and compares the method's performance to previous 
techniques. Section VI summarises the conclusion. 

II. RELATED WORKS 

The positive consequences of merging Sentinel-1 and 
Sentinel-2 imagery in the context of land use land 
cover categorization with U-Net and an evolving 
understanding of the combinatorial benefits of multi-sensor 
information fusion are highlighted. The benefits of using both 
Sentinel-1's radar data and Sentinel-2's optical information for 
improved LULC categorization have been studied in this field. 
Sentinel-1's radar information is useful for assessing land 
surfaces in a variety of environmental circumstances since it 
can operate in all weather conditions and can be observed 
through cloud cover. Contrarily, Sentinel-2's optical data 
offers high-resolution, multispectral data that specializes at 
catching specific spectral fingerprints, notably in 
differentiating between different plant varieties and urban 
characteristics. A potential method has evolved for combining 
these complementary information sources: U-Net, a deep 
learning architecture renowned for its capacity for semantic 
segmentation. In addition to increasing categorization 
accuracy, it also increases the resilience of LULC mapping by 
reducing the drawbacks of employing the various sensors 
separately, such as the sensitiveness of optical information to 

cloud cover and the sensitivity of radar information to specific 
varieties of land cover and roughness of the surfaces. 
Although this fusion strategy has a lot of potential, there are 
still difficulties in processing the volume of information, 
integrating multiple information modalities, and efficiently 
optimizing the deep learning algorithm's parameters [15]. 

A significant body of research highlighting the essential 
function of these technologies in evaluating environmental 
modifications in this important ecosystem has been revealed 
by the observation of land cover and land use modifications 
employing GIS and remote sensing methods in human-
induced mangrove forest regions in Bangladesh. 
Investigations in previous years have demonstrated how well 
Geographic Information Systems technologies paired with 
remote sensing information, especially from satellites like 
Landsat and Sentinel, can capture and analyze alterations in 
mangrove forest cover, extent, and health. These methods 
have provided benefits including extensive coverage, recurrent 
gathering of information, and the capacity to distinguish 
between different land cover classes, that are crucial for 
tracking changes brought on by humans in mangrove 
ecosystems. Indicators like the Normalized Difference 
Vegetation Index and spectral characteristics have been used 
by researchers to recognize and categorize modifications, 
facilitating the discovery of elements like urbanization, 
aquaculture growth, and deforestation that have an impact on 
these ecosystems. However, issues with information quality, 
imagine interpretation, and the requirement for fine-scale 
observation to detect minor modifications still exist. Even yet, 
the combination of remote sensing and GIS offers a lot of 
potential for improving the comprehension of the dynamics 
and preservation of Bangladesh's human-induced mangrove 
forests [16].  

Understanding the link between land cover and urban heat 
dynamics via remote sensing technologies is important, as 
demonstrated by the land-cover categorization and its effects 
on Peshawar's land surface temperature [17]. Previous studies 
have emphasized the benefits of using satellite imagery, 
especially Landsat and MODIS information, to map different 
types of land cover and measure how much that effect affects 
LST. Studies have shown how important land cover is in 
controlling urban microclimates, with permeable surfaces like 
buildings and roads causing higher LSTs that are frequently 
linked to the urban heat island effects. The influence of 
modifications to land cover on LST variations in Peshawar has 
been examined using a variety of categorization approaches, 
including supervised and unsupervised techniques, together 
with GIS tools. However, issues with information quality, 
geographical resolution, and the requirement for highly 
temporal-resolved statistics to record cyclical temperature 
fluctuations still exist. However, these studies contribute to the 
region's initiatives at development strategy and climate 
adaptation by offering significant understanding into the 
effects of urbanization-related modifications to land cover and 
their consequences for Peshawar's thermal environment.  

A variety of research has been done on employing remote 
sensing technologies in order to track and understand the 
dynamic character of urban settings. This is evident in the 
study of urban land cover and land use changes employing 
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Random Forest categorization of Landsat time series 
information. With its constant and wide-ranging coverage, 
Landsat satellite information has proven to be a useful tool for 
tracking modifications to urban land cover over time. Random 
Forest, a machine learning algorithm, has been used in several 
research due to its efficacy in categorizing different types of 
land cover in metropolitan settings. The benefits of Random 
Forest, including its capacity to manage complicated spectral 
and temporal structures, account for noisy input, and produce 
reliable and accurate categorization outcomes, have been 
demonstrated by these researches. The investigations covered 
a variety of urban applications, such as detecting land use 
changes, assessing urban expansion, and characterizing urban 
heat islands, demonstrating the adaptability of this method. 
Due to their considerable effects on urban sustainability, 
management of resources, and quality of the environment, it 
also emphasizes the rising significance of monitoring 
modifications to urban land cover and land use. Urbanization, 
a global trend, has caused fast and occasionally uncontrolled 
expansion, changing the number of impermeable surfaces, 
deforestation, and urbanization, among other aspects of the 
land cover. Wide-ranging effects of these changes include 
higher energy use, changing microclimates, and ecological 
disturbances. In order to give statistical knowledge into these 
urban transitions, academics have increasingly resorted to 
remote sensing and machine learning approaches like Random 
Forest. Although the approach has many benefits, there are 
still some problems, such as the necessity for strong validation 
techniques, complicated information pre-processing, and 
modifying variables in the model. The substantial body of 
research in this area however emphasizes the crucial role that 
remote sensing and Random Forest categorization serve in 
dealing with the changing dynamics of urban land cover and 
land use transformations [8]. 

The evaluation of deep learning approaches to solve the 
challenges of satellite imagery evaluation highlights the rising 
interest in utilizing techniques based on deep learning for land 
use and land cover categorization in Southern New Caledonia 
[18]. Convolutional neural networks, in particular, have shown 
potential in automating LULC categorization activities. They 
have the capacity to gather features from unprocessed 
information, adjust to heterogeneous landscapes, and scale to 
multi-spectral and hyperspectral datasets, among other 
benefits. The complex and changing landscapes of Southern 
New Caledonia require effective methods for identifying 
spatial interdependence within images. The necessity for 
significant training data that is labeled, problems with the 
algorithm's interpretability, vulnerability to overfitting, 
computing resource requirements, and the requirement for 
balancing the collection of local and contextual data are still 
problematic. However, deep learning constitutes a substantial 
development in LULC categorization and has the possibility to 
enhance the knowledge of and ability to control the dynamics 
of land cover and land use in Southern New Caledonia.  

Machine learning approaches were used to forecast land 
cover and land use from satellite photos, underscoring the 
increasing interest in utilizing cutting-edge technology for 
precise and effective land categorization. For tracking and 
comprehending modifications to land cover, imagery from 

satellites has evolved into a vital resource, and machine 
learning techniques have proven effective instruments in this 
field [19]. Several machine learning methods have been 
utilized in multiple studies to estimate the types of land cover 
and land use from satellite imagery. These methods have a 
number of benefits, including the capacity to handle big 
datasets, record complicated spatial patterns, and respond to 
various topographies. The breadth of research on machine 
learning-based land utilization forecasts has been 
demonstrated across a variety of applications, from urban 
planning and monitoring the environment to agricultural and 
disaster management. It also emphasizes the significance of 
precise land-use land-cover forecasts in tackling current issues 
like urbanization, deforestation, and environmental 
degradation. The capacity to observe and simulate 
modifications to land cover is essential for informed decision-
making and effective utilization of resources as the global 
population keeps on growing urbanize and landscapes 
transform. By simplifying the categorization procedure and 
supplying accurate and fast data, machine learning approaches 
have been important in expanding our knowledge of these 
shifts. The necessity for high-quality information with labels, 
modelling generalization across diverse locations, and the 
understanding of complicated machine learning systems 
remained obstacles regardless their benefits. Nevertheless, the 
collection of research in this area highlights the possibilities of 
machine learning approaches in improving the ability to 
anticipate and efficiently react to modifications in land cover 
and land use.  

An increasing number of researchers are interested in 
using advanced neural network topologies to improve the 
precision and effectiveness of land cover categorization 
operations, as shown by the examination of the deep learning 
framework for patch-based land cover categorization. Due to 
their ability to gather pertinent characteristics from image 
updates deep learning architectures, in particular 
Convolutional Neural Networks, have become increasingly 
popularity in recent years. It renders them ideal for classifying 
land cover from satellite or aerial images [20]. The benefits of 
CNNs have been demonstrated in research, particularly the 
capacity to deal with complicated land cover patterns, the 
capacity to concurrently record spatial and spectral data, and 
their adaptation to multi-spectral and high-resolution images. 
This research examined at a variety of deep learning 
architectures, including model topologies, hyperparameter 
tuning, and transfer learning, and have shown the way they 
may be used to achieve the highest possible accuracy in 
classifying land cover. The also highlights how important 
precise land cover categorization is for purposes in 
environmental evaluation, urban development, agriculture, and 
disaster prevention. For making decisions and policy creation, 
the capacity to autonomously and accurately classify different 
kinds of land cover at the patch levels is crucial. In this 
environment, deep learning architectures, which can handle 
massive datasets and provide real-time data, are emerging as 
an innovative technology. The necessity for large amounts of 
labeled information for training, the ability to interpret of 
models, and the computing resources necessary for deep 
network training are still issues. However, the large amount of 
research in this area shows the enormous potential of deep 
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learning architectures in enhancing the ability to categorizing 
land cover and addressing important problems with land cover 
and land use assessment.  

The comprehensive extraction of multiscale timing 
dependency used in the land-cover categorization with time-
series data remote sensing images emphasizes the growing 
significance of using temporal data in land cover assessment. 
Conventional land-cover categorization frequently employs 
images from a single date, which could not accurately 
represent how quickly land cover varies. On the other hand, 
time-series imagery from satellites, which are often collected 
over a long period of time, provide an extensive amount of 
information for comprehending land cover dynamics. 
Multiscale timing dependency, which takes into account not 
only the spectrum data but also time-dependent trends and 
relationships among observations, has been identified by 
investigators as having potential. Recurrent neural networks 
and machine learning methods have both been investigated to 
obtain thorough temporal information that will increase the 
reliability of land cover categorization. The results of these 
investigations show the benefits of using time-series 
information in land cover research, allowing for more accurate 
monitoring of modifications to land cover, urbanization, 
agricultural methods, and environmental alterations. The 
requirement for more study in this field is highlighted by the 
fact that there are still issues with data pre-processing, 
handling cloud cover, and dealing with the computing needs 
of analyzing large time-series datasets [21]. 

An integrated strategy that combines nature-inspired 
optimization approaches with modern deep learning 
methodologies to improve the accuracy of land cover 
categorization is reflected in the most effective orientation 
whale optimization algorithm and hybrid deep learning 
systems for land cover and use categorization. Due to the 
increasing accessibility of remote sensing information as well 
as computer resources, conventional land use land 
cover categorization methods have experienced substantial 
improvements. A potential optimization method for adjusting 
the hyperparameters of deep learning systems is the optimum 
guiding whale optimization algorithm, an extension of the 
whale optimization algorithm. This algorithm demonstrates 
increased convergence and optimization characteristics and is 
motivated by the social behaviour of humpback whales. This 
method uses spatial as well as temporal data from satellite 
images in combination with deep learning networks to 
accomplish accurate LULC categorization. The also highlights 
the significance of precise LULC categorization in several 
applications, such as urban planning, environmental 
surveillance, disaster preparation, and agriculture. Deep 
learning networks and the best guide whale optimization 
technique are used to solve the problem of improving 
complicated models while taking into account the special 
properties of remote sensing information. There continue to be 
issues with modelling interpretability, algorithm integration, 
and the requirement for a large amount of labeled training 
information. However, this method offers an innovative 
research area with the possibility of substantially enhance the 
accuracy and effectiveness of LULC categorization, which 

would be advantageous to many fields that depend on land 
cover data for making decisions and policy development [22]. 

The previously mentioned investigations pertaining to the 
classification of land use and cover highlight the growing need 
of using a wide range of remote sensing technologies and 
sophisticated methodologies to improve the ability to precisely 
and effectively evaluate the dynamics of land cover. These 
approaches have demonstrated an enormous amount of 
potential in terms of their ability to offer comprehensive data 
on alterations in land use and cover. The effectiveness of these 
methodologies in documenting changes in land cover and land 
use through time, for example, has been shown by studies 
undertaken in places like Peshawar, Southern New Caledonia, 
and human-induced mangrove forest areas in Bangladesh. 
Through the utilization of remote sensing technology, 
researchers have been able to get broad coverage, track 
alterations in land cover classes, and evaluate the effects of 
deforestation, urbanization, and aquaculture growth on diverse 
ecosystems. These methods have great potential to handle 
modern issues like catastrophe preparedness, urban planning, 
environmental protection, and agricultural management, 
where precise land cover data is essential. However, there are 
several difficulties and disadvantages with these intriguing 
approaches. The significant need for labeled training 
information which can be labour-intensive and time-
consuming to obtain, particularly for extensive land cover 
mapping projects is one of the main obstacles. Furthermore, 
because they might affect the precision and dependability of 
classification results, the reliability and interpretability of 
information from remote sensing remain to be a cause for 
concern. Large time-series dataset management and analysis 
can provide logistical and technological difficulties. In order 
to fully realize the potential of these techniques and assure 
their successful implementation in real-world scenarios where 
accurate and timely land cover information is critical for well-
informed decision-making and efficient resource management 
it must be essential that these obstacles be addressed.  

III. PROBLEM STATEMENT 

From the above literature review it is observed that the 
most important tasks in environmental monitoring, urban 
planning, and natural resource management is classifying land 
cover and land use utilizing satellite information. A critical 
component of decision-making processes is the correct 
categorization of land cover kinds, such as forests, urban 
areas, agricultural fields, and water bodies. The complexity 
and size of current satellite imaging information is frequently 
excessive for conventional strategies for land cover and land 
use categorization to manage [23]. This study suggests a 
unique method for addressing the issue by fusing the strength 
of hybrid HPSO and ACO with CNN for land use and land 
cover categorization. The goal is to create a categorization 
system that is accurate and effective, capable of autonomously 
analyzing satellite images and categorizing different types of 
land cover. By combining PSO and ACO with human input, 
the optimization procedure is regulated by human knowledge. 
By combining domain-specific expertise, this "human in the 
loop" method can produce superior outcomes. 
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IV. PROPOSED HPSO-ACO-CNN 

Data gathering, pre-processing, feature selection utilizing a 
human group based PSO algorithm, and CNN hyper parameter 
optimization employing ACO constituted the approach used in 
this study. The process of gathering data includes building the 
EuroSAT dataset, which consists of 27,000 annotated 
Sentinel-2 satellite photos representing ten distinct land use 
and land cover classifications over 13 spectral bands. After 
data collection, normalization and histogram equalization 
were used in image pre-processing to improve the quality of 
the images. PSO was used in feature selection to intelligently 
identify pertinent spectral bands, while ACO was used to 
optimize CNN hyperparameters which includes batch size and 
learning rate. The CNN model, created for LULC 
categorization, completed training, and optimization was made 
possible by ACO-DL, a modification of ACO that allows for 
simultaneous optimization of several parameters. This hybrid 
approach provides a comprehensive approach integrating 
optimization approaches with deep learning for efficient 
satellite image processing. Its goal is to increase LULC 
categorization accuracy. Fig. 1 shows the overall structure of 
the proposed framework. 

 
Fig. 1. Overall structure of the proposed framework. 

A. Data Collection 

The study presents an innovative set of satellite images for 
the categorization of land cover and land use. The Sentinel-2 
satellite imagery that constitute up the 27,000 annotated 
images that constitute up the provided EuroSAT dataset 
depend on an overall of 10 distinct classifications. The patches 
are 64 by 64 pixels in size. The European Urban Atlas cities 
were chosen for the study's satellite images1. The given 
satellite image dataset, which includes thirteen spectral bands 
and has a significant amount of two thousand to three 
thousand image patches per class, differs significantly from 

earlier datasets in that it enables the investigation of 
multimodal fusion strategies in the overall setting of these 
bands. If deep neural networks need to be used for 
categorization, this is a particularly challenging problem. The 
offered dataset additionally depends on publicly available 
Earth observation information, opening up a variety of novel 
real-world applications. In accordance with the coverage in 
the European Urban Atlas, the areas included in the dataset 
were collected from cities distributed over thirty different 
European nations. Additionally, each individual picture 
patch's geoformation is made accessible to the public together 
with the labeled dataset EuroSAT. In order to obtain as much 
variation from the covered land cover and land use 
classifications as feasible, the study also extracted images 
taken throughout the year [24]

1
.  

B. Image Pre-processing using Min-Max Normalization 

To improve the quality of the satellite images, 
normalization and histogram equalization techniques are used 
after data collection. By altering the range of pixel values, a 
process known as image normalization, or contrast stretching, 
one may enhance the visually appealing qualities of satellite-
image collection. (1) is a well-known simple formula that 
expresses the typical scenario of a min-max normalization to 
generate an additional image spanning from 0 to 1. 

     (       )
             

       
        (1) 

Where the original satellite image is denoted as   , the 
minimum and maximum intensity values, which range from 0 
to 255, are represented as     and  𝑎𝑥, respectively, the 
image after min-max normalization is denoted as    , and the 
new minimum and maximum values are denoted as 
𝑁      and     𝑎x. The histogram equalization approach 
is then applied to enhance the image quality without 
eliminating any of the image's borders, patches, or points. The 
histogram equalization approach adjusts the normalized 
images' mean brightness to the allowable range's midpoint, 
while maintaining the original brightness prevents intrusive 
artifacts from appearing in the images. 

C. Feature Selection using Human Group-based Particle 

Swarm Optimization 

In this work, feature selection is done using Human 
Group-based Particle Swarm Optimization, which has the 
distinct benefit of simulating human cognitive capacities in 
optimization problems. By adding a human-guided 
component, HPSO improves upon the communal intelligence 
of particle swarm optimization, in which particles stand in for 
potential subsets of characteristics. The feature selection 
process is guided by heuristics and important domain 
experience provided by this human-in-the-loop technique, 
which increases its efficiency and context awareness. HPSO 
assures the selection of the most important characteristics 
while minimizing computational overhead by fusing human 
understanding with the computational power of PSO. This 
method is especially well-suited for difficult tasks like satellite 
image processing where domain knowledge is essential for 
precise feature selection. It improves the quality of selected 

                                                           
1https://ieeexplore.ieee.org/abstract/document/8736785/ 
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characteristics, which in turn improves the efficiency of deep 
learning models like Convolutional Neural Networks. After 
generating the characteristic vectors, characteristics are chosen 
employing the human group-based PSO method. PSO is a 
population-based searching algorithm that usually simulates 
bird behaviour. In Eq. (2), is employed to modify the particle's 
position    and velocity    in order to produce new locations 

for each particle. 

  (   )      ( )        ( 𝑎 ( )    ( ))

       ( 𝑎 ( )    ( )) 

  (   )    ( )    (   )  (2) 

where,   stands for the number of iterations,    and    are 
expressed as random real integers between [0, 1], w is a 
representation for the acceleration weight, 𝑎  is a symbol for 

the best position,  𝑎 ( )is a symbol for the local best position, 

and  𝑎 ( ) is a symbol for the global optimal position of the 

particle. In PSO, an adaptable uniform mutation is used to 
increase convergence and simplify implementation after the 
HGO method has been used to initially affect the particles. 

A discrete multi-label is first converted into a continuous 
label using HGO. The employed approach locates the obtained 
feature vectors in accordance with decision  , where the 

vectors of the particle's location are supplied as   ( )  

(              ). 

The feature selection algorithm's capacity for exploration 
is improved by the adaptive uniform mutation. The variety and 
choice of the mutation on each particle,    in this operator are 

controlled by a nonlinear function  . Eq. (3) is used to update 
  at each cycle. 

        
(    

 

 
)     (3) 

Where, m represents the number of iterations, M is 
designated as the maximum iteration, and the   value tends to 
fall as the number of iterations rises. If the   value is greater 
than the random number between [0, 1], the mutation selects 
the s elements at random from the particle. The mutation value 
of the items contained in the search space is then reset, with s 
serving as an integer value that limits the mutation range. Eq. 
(4) mathematically denotes the value of s as: 

   𝑎𝑥{  |     |}  (4) 

The following describes the human group-based PSO 
algorithm's step-by-step procedure. 

Step 1: Establish the particle swarm's initial parameters, 
including (a) the number of iterations M, the swarm size    , 
and the archive size   . A non-dominated solution is saved 
into the archive after steps (b) initialize the particle locations, 
(c) estimate the aim of each particle, and do so. 

Step 2: The particular best position of the particles is 
updated using the Pareto dominance relationship. The 
particular best position of the particles continues to remain 
unaltered if the new position   (   ) is superior to the 

previous personal best position 𝑎 ( ), set 𝑎 (   )  

  (   ), where 𝑎  is shown as the best position and  𝑎 ( ) 
is shown as the local best position. 

Step 3: Choose the global finest position from the archives 
according to the variety of solutions. To choose the particle's 
global optimal position 𝑎 ( ), a binary tournament is 

employed after initially calculating the crowding distance 
value. 

Step 4: The decision value    is then initialized depending 

on 𝑎 ( ). The feature vector c's decision    is each a binary 

value               . Each characteristic vector c is 

associated to the fitness value V(c), which is thought of as the 
weighted average of T stochastic 

contributions  (     
      

 ). However, the significance of 

decisions   
             and other K selections affects their 

contributions. 

Eq. (5) mathematically illustrates the fitness function. 

 ( )  
 

 
∑   (     

    
      

 ) 
     (5) 

The total quantity of variables that interact decision values 
is denoted by the integer index            . The 
parameter  [   ], which represents the probability that each 
member has been informed of their contribution to the 

decision, determines the knowledge level of the        
member. Each member n determines their individual estimated 
fitness utilizing (6) depending on their degree of knowledge. 

  ( )  
∑    ̆  (     

    
      

 ) 
   

∑    ̆
 
   

  (6) 

where,   ̆ is referred to as the matrix, whose generic 
member     examines the numerical value one with 
probabilities (P and 0) with probabilities (1-P). 

Step 5: Eq. (7) is employed to modify the particle's 
location   and velocity    in accordance with the decision 

value  . 

  (   )      ( )        ( 𝑎 ( )    ( ))  

      ( 𝑎 ( )    ( ))  (7) 

  (   )    ( )    (   )  (8) 

Step 6: Apply Eq. (7) and Eq. (8) to uniform mutation. 

Step 7: Utilizing the crowding distance approach, upgrade 
the external archives. 

Step 8: Examine the termination circumstance: if the 
proposed algorithm completes the maximum number of 
iterations, the process should be terminated; otherwise, move 
back to phase 2. The HGO algorithm's fitness function   ( ) 
is used to remove the most deficient particles. 

D. Optimizing CNN Hyperparameters using Ant Colony 

Optimization Strategy 

The study utilizes Ant Colony Optimization to optimize 
numerous parameters simultaneously, which makes it a 
suitable method for fine-tuning Convolutional Neural Network 
hyperparameters. ACO is an optimization method that draws 
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inspiration from nature and is particularly efficient at 
navigating intricate search spaces. As such, it may be used to 
determine the best possible combination of hyperparameters 
for deep learning models. Its benefit is that it can investigate a 
large variety of hyperparameter values and adaptively modify 
them while optimizing. When working with hyperparameters, 
ACO's probabilistic method is extremely beneficial since it 
resembles how actual ants choose the shortest path in their 
natural environment. This method facilitates effective 
parameter space exploration and exploitation. This work uses 
the effectiveness of ACO to achieve optimal generalization, 
decreased overfitting risk, and enhanced CNN performance. 
As a result, it provides a reliable method for improving the 
model's accuracy in applications like satellite image 
categorization. ACO, developed by Marco Dorigo in 1992, is 
a standard heuristic swarm intelligence program that uses 
probabilistic calculations to identify the best planning 
pathway. ACO is a system based on positive feedback in 
which the ant finally chooses the path with the highest 
pheromone concentrations in order to obtain the best outcome 
possible in terms of the regulatory mechanisms. 

The Convolutional Neural Network utilized in this study's 
Deep Learning framework was optimized using ACO. The 
study also altered the conventional ACO by using multitype 
ants to simultaneously improve different variables. The total 
quantity of ant varieties in ACO-DL is equal to the number of 
characteristics that need to be optimized. As a result, ACO-DL 
was able to optimize simultaneously a number of parameters 
related to the model in order to produce the best possible 
answer to the function of objective. The number of batches 
(A) in the network and the starting learning rate (L) in Adam 
were optimized for the CNN framework using ACO. The 
objective function (F (A, L)) selected was an accurate rate of 
predictions. Additionally, a given interval's values for A and L 
were determined in Eq. (9) and Eq. (10). 

    (   )  (9) 

    {
  [         ]

  [         ]
  (10) 

The fundamental concept is to iteratively discover the 
shortest path to the best solution of the goal function. In 
the meantime, the study established the subsequent two 
termination standards in order to ensure the efficiency of the 
optimization algorithm: 1) No apparent increase in accuracy; 
2) the maximum number of repeats.  

E. Classification Using Convolutional Neural Network 

The CNN is the most efficient and productive approach 
network among deep learning techniques. Because CNNs can 
categorize intricate contextual images, they are widely used to 
categorize remote sensing data. Usually, these methods are not 
required for completing an output image prediction. CNNs are 
feed-forward neural structures that employ substantially local 
correlations to produce judgements by imposing an immediate 
interaction arrangement between neurons in neighbouring 
segments of the system. A maximal layer of pooling, the 
network layer, numerous convolutional layers, and fully 
linked layers constitute their architecture. Every stage of 

convolution calculates the weighted average of the prior 
characteristic using a channel before sending its findings via a 
stimulation functions to obtain the outcome. Using this 
method, the kernel measurement is computed to find 
neighbourhood correlations while preserving consistency for 
each region throughout the data clusters. The final 
characteristic pattern is created using constants at the lowest 
attainable unit level. The many levels of convolutional or 
layers of pooling are finally interfaced into a coherent unit 
using a fully coupled network of neurons. Eq. (11) and Eq. 
(12) gives the convolution operation. 

   
 (   )      (   )  

 
(   )

         

  (11) 

  
 
 [   

 (   )      
 (   )      

 (   )] (12) 

Following the extraction of the characteristics, a down 
sampling or pooling process is employed to gather the 
intersection of characteristics that are resistant to moderate 
transverse changes and deformation. It is given in Eq. (13). 

  
 
   (  

 
)   (13) 

Similar to this,   
 
 stands for the Qth input feature-map's 

pooling characteristics-map of the mth layer, and    stands for 
the pooling operation. The maximum, average, L2, 
overlapping, and spatial pyramid pooling formulae are used in 
CNN. An activation function is used to speed up learning and 
offer a method of decision-making for a complicated feature-
map. Both the non-linearity of the characteristics and the 
accelerated learning rate are provided by these activation 
functions. ReLu, sigmoid, tanh, maxout, and SWISH 
activation functions all have the same capability for supplying 
nonlinearity and resolving the vanishing gradient issue. 

  
 
   (  

 
)   (14) 

   stands for the activation function in Eq. (14),   
 
 for the 

convolution output, and   
 
 for the converted output. 

The two main decisions regarding design for CNN that 
offer superior efficiency and eliminate the overfitting issue are 
training and optimization. The number of extra problems for 
training the information generally grows along with the 
volume of information. The framework has difficulties when a 
novel or unfamiliar dataset is presented. Overfitting is a result 
of this issue, which dropout and batch normalization can 
solve. The dropout mechanism is employed to disable a large 
number of nodes at the conclusion of each cycle of the 
training phase. To enhance entire accuracy, strengthen the 
system's resistance to overfitting, and quicken the gradient 
descent process' convergence, batch normalization aims to 
impose a zero mean and a one standard deviation across every 
activation function in the established layer and for every 
single inadequate batch. The fully connected layer, the last 
component of the CNN framework as depicted in Fig. 2, 
combines every component with an additional layer to 
categorize. It gathers data from the characteristic extraction 
phase and analyses the output from every step before it. As a 
consequence, data categorization is accomplished by 
nonlinearly linking a set of chosen characteristics. 
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Fig. 2. CNN model. 

V. RESULTS AND DISCUSSION 

The study first acquired a special EuroSAT dataset made 
up of twenty-seven thousand annotated satellite images from 
Sentinel-2 that included thirteen spectral bands and ten 
different land cover and land use classifications. To improve 
the quality and usability of these images for subsequent 
evaluation, necessary pre-processing techniques such as 
normalization and histogram equalization were used. The 
main contribution of this research is the combination of CNNs 
and PSO and ACO optimization approaches to enhance the 
accuracy of land cover and land use categorization. PSO was 
utilized to effectively choose the most pertinent spectral 
bands, decreasing data noise and redundancies. ACO 
significantly improved crucial CNN hyperparameters 
including batch size and learning rate, which improved the 
efficiency of the framework as a whole. On the EuroSAT 
dataset, the study assessed the hybrid PSO-ACO-CNN 
architecture and contrasted its performance with that of 
conventional categorization techniques and independent CNN 
models.  

A. Performance Evaluation 

To evaluate the success of categorization, assessment 
indicators are crucial. The method most frequently used for 
this objective is an estimation of precision. A classifier's 
accuracy for any particular set of data may be assessed by the 
proportion of test datasets that it properly classifies. Because 
making the optimal decisions will not be possible if the 
accuracy metric is used alone. To evaluate the performance of 
the classifier, researchers additionally employed other factors.  
Accuracy, recall, precision, and F1-score measures were used 
to evaluate the performance of the suggested technique. The 
following is a description of each measure's definitions: 

     (True Positive) refers to the amount of information 

that has been correctly categorized. 

The term      (False Positive) represents the volume of 
reliable information that was incorrectly categorized. 

False negatives (    ) are instances where incorrect 

information has been given an actual classification.  

The categorization of incorrect information values is 
referred to as      (True Negative). 

The classifier's accuracy displays how frequently it makes 
the right assumption. The ratio of accurate forecasts to all 
other credible hypotheses is known as accuracy. It is 
demonstrated by Eq. (15). 

     𝑎    
         

                   
  (15) 

The amount of correctly classified outcomes is determined 
by calculating the precision, or level of accuracy, of a 
classifier. Reduced false positives are the result of improved 
accuracy, whereas many more are the result of decreased 
precision. The percentage of instances that are correctly 
categorized compared to all occurrences is the definition of 
precision. It is defined by Eq. (16). 

    
    

         
   (16) 

The sensitivity of a categorization, or how much relevant 
information it produces, are determined by recall. The overall 
quantity of      reduces with improved recall. Recall is the 

ratio of cases that have been correctly categorized to all of the 
predicted occurrences. This is demonstrable by Eq. (17). 

   
    

          
   (17) 

The combination of metrics known as F-measure, which 
reflects the weighted mean of recall and accuracy, are 
obtained by adding precision and recall. It is characterised by 
Eq. (18). 
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  (18) 

Area under the ROC Curve, or AUC, is a well-known 
evaluation metric for binary classification problems in deep 
learning and machine learning. The area under the receiver 
operating characteristic (ROC) curve, which is a graphic 
representation of the binary identification algorithm's efficacy, 
is evaluated by the area under the curve (AOC). The classifier 
in a binary classified problem tries to figure out whether the 
input information belongs to a positive or negative division. 
The      vs. the     is shown on the ROC curve for various 

classification criteria. AOC values range from 0 to 1, with 
higher numbers denoting more efficiency. An absolutely 
randomized classifier has an AOC of 0.5, whereas an optimal 
classifier has an AOC of one. Because the method considers 
all possible degree of detection and provides a single number 
to compare the performance of different classifiers. 

A deep learning model's training and testing accuracy 
score over a number of training epochs are summarized in Fig. 
3. Every row displays the associated training accuracy and 
testing accuracy for an epoch number that ranges from 10 to 
100. Testing accuracy assesses the model's effectiveness on 
new or validation information, whereas training accuracy 
shows how effectively the model is effective on the training 
information it was shown during training. Both training and 
testing accuracy often increase as the number of training 
epoch’s rises, suggesting that the framework is learning from 
the information and getting more proficient in generating 
predictions. The model attains exceptionally accurate levels on 
both the training and testing datasets by the end of 100 epochs, 
indicating that it has acquired the ability to generalize to new, 
unanticipated information successfully. The graph shows the 
growth of the model's effectiveness as it goes through training. 

 
Fig. 3. Training and testing accuracy. 

 
Fig. 4. Training and testing loss. 
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The testing and training loss values for a deep learning 
model throughout a variety of training epochs are shown in 
Fig. 4. The testing loss and the training loss are shown in each 
row, which is associated with an individual epoch number 
between 10 and 100. Testing loss evaluates the model's 
effectiveness on observed or validation information, where 
usually lower values indicate higher generalization. Training 
loss examines how well the model fits the training 
information, with lower values suggesting a better fit. This 

graph shows that both training and testing loss constantly 
reduce as the number of training epochs rises. The pattern 
indicates that if the model is trained, it becomes better at 
reducing errors and making predictions that are more accurate. 
The model's decreasing loss values show how it learns, and 
the lowest losses after 100 iterations show that the model has 
successfully converged and is capable of making accurate 
projections on both the training and testing datasets.  

 

Fig. 5. Fitness improvement over iteration. 

The development of an optimization algorithm—
specifically, Ant Colony Optimization—over a number of 
iterations is seen in Fig. 5. The y-axis shows the fitness of the 
algorithm's created solutions, while the x-axis shows the 
quantity of iterations or generations. In ACO, fitness often 
refers to how well or effectively a solution addresses the issue 
at hand. The algorithm continually updates and improves its 
solutions to increase their fitness as it moves through 
iterations. As a result, the graph depicts how the solutions' 
fitness changes over time and, ideally, converges to an 
optimum or substantially optimal solution. Any levelling out 
or stability in the graph's later iterations denotes that the 
algorithm has probably achieved an optimal solution or a point 
of decreasing effectiveness. The sharp decrease or large loss in 
fitness towards the beginning of the graph's iterations signals 
rapid improvement. This illustration assists in evaluating the 
algorithm's rate of convergence and potency in locating 
superior solutions to the current optimization challenge. 

The performance metrics of the HPSO-ACO-CNN hybrid 
deep learning model are summarized in Fig. 6. In order to 
evaluate the model's performance in a classification position, 
it offers important assessment metrics. The "Accuracy" 
statistic measures the model's overall accuracy in making 
predictions, and a high result of 99.3% shows that the model 
performs well in terms of categorization. "Recall" (98.7%) 
assesses the model's capability to properly recognize every 

single positive example, while "Precision" (99.2%) measures 
the model's capacity to correctly categorize positive cases. 
Precision and recall are combined into one score called the 
"F1-Score" (98.7%), which takes into account the trade-off 
between both. The HPSO-ACO-CNN model is very accurate 
and dependable in its categorization task, with an especially 
strong capacity to categorize positive situations properly while 
retaining a high overall accuracy level, according to these high 
values across all metrics. 

 
Fig. 6. Model performance. 
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Fig. 7. ROC curve. 

The True Positive Rate and False Positive Rate values for 
a binary categorization model at various threshold levels are 
shown in Fig. 7. These numbers are frequently employed to 
build a ROC curve. The fraction of real positive cases that the 
model properly classifies as positive is measured by TPR, 
sometimes referred to as sensitivity or recall. 

TABLE I. COMPARISON OF PERFORMANCE METRICS OF PROPOSED 

METHOD WITH OTHER EXISTING APPROACHES 

Models 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-Score 

(%) 

DNN [25] 88.2 87.89 90 90 

MSVM [26] 93.70 94.90 96.50 94.90 

LSTM [27] 97.40 97.80 98.70 97.80 

Proposed 
HPSO-ACO-

CNN 

99.3 99.2 98.7 98.7 

On the other hand, FPR measures the percentage of real 
negative cases that the model misclassifies as positive. The 
graph displays how these rates alter when the threshold for 
categorization changes from 0 to 0.6. The TPR typically rises 
as the threshold rises, showing that the model gets better at 
properly recognizing positive situations but frequently at the 
expense of a larger FPR. The ROC curve, created from these 
results, graphically illustrates the trade-off between TPR and 
FPR at various threshold levels, assisting in evaluating the 
model's categorization effectiveness and determining the best 
threshold in accordance with the demands of the particular 
application. 

The suggested HPSO-ACO-CNN is a hybrid of the Deep 
Neural Network (DNN), Multiclass Support Vector Machine 

(MSVM), Long Short-Term Memory (LSTM), and Deep 
Neural Network for a specific task. The Table I and Fig. 8 
provides a number of significant efficiency measures for each 
model, one for each row: "Precision" measures the model's 
capacity to accurately classify positive cases, "Recall" 
measures the model's capacity for correctly recognizing all 
actual positive cases, and "F1-Score" is a balanced metric 
combining precision and recall. "Accuracy" denotes the 
overall proportion of correct predictions generated by the 
model. 

The outcomes show that the suggested HPSO-ACO-CNN 
model exceeds the competition with the greatest values for 
accuracy (99.3%), precision (99.2%), and F1-Score (98.7%), 
demonstrating its better performance in the task at hand. 
Additionally, LSTM performs well, whereas DNN and 
MSVM score slightly more severe on these criteria. Together, 
these measures offer insightful comparisons of these models' 
success in the particular categorization task, with higher 
values representing better model effectiveness. 

TABLE II. COMPARISON OF DATASETS OF PROPOSED METHOD WITH 

OTHER EXISTING APPROACHES 

Datasets 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-Score 

(%) 

Landsat 8 
Imagery 

2014 [28] 

89 87 87 88 

Landsat 5 

Thematic 

Mapper 

Imagery [29] 

94.17 95 96 94 

Proposed 

EuroSAT 

Dataset 

99.3 99.2 98.7 98.7 
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Fig. 8. Comparison of performance metrics of proposed method with other existing approaches. 

 
Fig. 9. Comparison of datasets of proposed method with other existing approaches. 
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in comparison to other current methodologies is shown in 
Table II and Fig. 9. Four important criteria are used to assess 
their effectiveness: F1-Score, Accuracy, Precision, and Recall. 
The initial dataset, the 2014 Landsat 8 Imagery, has an 
accuracy of 89%, 87% recall, 87% precision, and an 88% F1-
Score. Landsat 5 Thematic Mapper Imagery, the second 
dataset, was particularly better than the initial one, with an F1-
Score of 94%, accuracy of 94.17%, precision of 95%, and 
recall of 96%. The suggested EuroSAT Dataset performed 
outstandingly, achieving 98.7% recall, 99.2% precision, 
99.3% accuracy, and a 98.7% F1-Score. These findings show 
that the suggested EuroSAT Dataset outperforms the other 
datasets in all four standards, indicating that it is the most 
effective alternative for the given objective, which is probably 
connected to the categorization or analysis of satellite images. 
Variability in data features, including resolution, spectral 
bands, and landscape variety, might be the cause of the 

variances in comparison results between datasets. The 
suggested methods could perform better on datasets whose 
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during the development of the EuroSAT dataset. These 
datasets might include high-resolution and diversified satellite 
images.  

B. Discussion 

The findings show that the proposed HPSO-ACO-CNN 
model has a number of benefits over other machine learning 
techniques already in utilization for the categorization of land 
use and land cover using satellite images. With an accuracy of 
99.3%, precision of 99.2%, recall of 98.7%, and an F1-Score 
of 98.7%, the HPSO-ACO-CNN model outperformed in all 
assessment measures. These findings demonstrate that the 
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ACO, significantly improves the classification capabilities of 
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instances while reducing false positives and false negatives, as 
seen by its excellent accuracy and recall scores. A precise 
categorization of land cover and land use is essential in 
applications like environmental monitoring and catastrophe 
management. While DNN and MSVM are reasonable models 
in comparison, they fall short of HPSO-ACO-CNN's 
performance. Although the LSTM model also exhibits 
comparable performance, HPSO-ACO-CNN stands out 
because to its greater accuracy and precision. These results 
illustrate the effectiveness of combining deep learning 
methods with optimization algorithms, emphasizing the 
potential for more precise and reliable mapping of land use 
and land cover in the context of sustainable land management 
and protecting the environment. 

VI. CONCLUSION AND FUTURE WORKS 

The study concludes by presenting a novel technique that 
substantially enhances the precision of classifying land use 
and land cover using satellite images. The merging of ACO, 
CNN, and HPSO algorithms results in significant performance 
increases in the proposed HPSO-ACO-CNN model. 
Combining CNN hyperparameter optimization with spectral 
band selection yields remarkable accuracy, precision, recall, 
and F1-Score performance for this hybrid architecture. Results 
from experiments conducted on the EuroSAT dataset 
demonstrate how well the HPSO-ACO-CNN model performs 
when compared to other methods and standalone CNN 
models. In addition to addressing important problems with 
feature selection, parameter optimization, and model training, 
the work creates new opportunities for satellite image 
analysis. This novel method has great potential for a number 
of uses, such as sustainable land use, urban planning, 
environmental monitoring, and disaster management. It 
highlights how deep learning techniques and optimization 
strategies may be combined to improve remote sensing 
applications. Regarding potential avenues for future research, 
there are a number of intriguing options to consider. 
An intriguing line of investigation is the expansion of the 
HPSO-ACO-CNN architecture to handle larger and more 
complicated datasets of satellite images, potentially 
incorporating other spectral bands and land cover categories. 
Additionally, assessing the model's resilience and scalability 
in various environmental conditions and geographical areas 
may yield unexpected findings. Finally, there is potential to 
further the more general goals of environmental conservation 
and sustainable land management by investigating 
applications of transfer learning and customizing the model 
for additional Earth observation tasks, such change detection 
and crop monitoring.  
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