
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

420 | P a g e

www.ijacsa.thesai.org

IAM-TSP: Iterative Approximate Methods for

Solving the Travelling Salesman Problem

Esra’a Alkafaween
1
, Samir Elmougy

2
, Ehab Essa

3
, Sami Mnasri

4
, Ahmad S.Tarawneh

5
, Ahmad Hassanat

6

E-Learning and Education Resources Center, Mutah University, Karak, Jordan
1

Department of Computer Science, Mansoura University, Mansoura, Egypt
2, 3

Department of Computer Science, University of Tabuk, Tabuk, Saudi Arabia
4

Computer Science Department, Mutah University, Karak, Jordan
5, 6

Abstract—TSP is a well-known combinatorial optimization

problem with several practical applications. It is an NP-hard

problem, which means that the optimal solution for huge

numbers of examples is computationally impractical. As a result,

researchers have focused their efforts on devising efficient

algorithms for obtaining approximate solutions to the TSP. This

paper proposes Iterative Approximate Methods for Solving TSP

(IAM-TSP), as a new method that provides an approximate

solution to TSP in polynomial time. This proposed method begins

by adding four extreme cities to the route, a loop, and then adds

each city to the route using a greedy technique that evaluates the

cost of adding each city to different positions along the route.

This method determines the best position to add the city and the

also the best city to be added. The resultant route is further

improved by employing local constant permutations. When

compared to existing state-of-the-art methods, our experimental

results show that the proposed method is more capable of

producing high-quality solutions. The proposed approach, with

an average approximation of 1.09, can be recommended for

practical usage in its current form or as a pre-processing step for

another optimizer.

Keywords—Greedy algorithms; TSP; NP-Hard problems;

polynomial time algorithms; combinatorial problems, optimization

methods

I. INTRODUCTION

At the beginning of the seventeenth century, Thomas
Penynington and William Hamilton modeled the first
mathematical problem corresponding to the Traveling
Salesman Problem (TSP). This problem represents a game in
which the winner connects twenty points by moving from one
point to another, following some precise paths. This
game/problem is called Hamilton Circuit Theory [1].
Afterward, in graph theory, TSP becomes a problem of
identifying the optimal (shortest) Hamiltonian cycle visiting a
set of cities (points) using a matrix of distances between the
cities. TSP is one of the classic problems of combinatorial
optimization, and it is widely investigated and considered a
standard for assessing the performance of computational
methodologies and algorithms.

The principal objective of TSP is that the salesman visits all
the cities in the minimal tour and then returns to the starting
point with the assumption that the distances between the cities
are known and the necessity of visiting each city is only once.
Despite high-size instances of TSP being resolved in the

literature, TSP is proven to be NP-hard even for small-size
instances [2].

The theoretical and practical relevance of the TSP problem
comes from the fact that numerous applicable real-world and
engineering problems can be solved by adapting the TSP
solutions, such as circuit design [3], scheduling [4], and DNA
[5, 6], in addition to logistics and transportation and even space
exploration missions [7]. Therefore, the study of TSP has
significant theoretical and practical value, leading to cost
savings and other benefits.

Moreover, the application fields of TSP include any
problem involving the search for the shortest paths. These
fields vary in domains from big data classification [8, 9, 10],
deployment and routing of IoT networks [11, 12, 13, 14, 15,
16], financial prediction [17, 18], image processing [19], and
[20], computer vision [21], [22], and [23]. TSP can be defined
by finding a Hamiltonian cycle that visits each vertex precisely
once, with the least amount of total weight feasible, given a full
undirected weighted graph G = (V, E) with vertex set V and
edge set E. The total weight of a cycle is equal to the weights
of each of its individual edges. The book in [24] presents a
comprehensive mathematical and theoretical analysis of the
calculability and complexity of the TSP. One of the critical
issues of methods of resolution of TSP is the enhancement of
the accuracy of the algorithm to rapidly find the optimal or
near-optimal solutions.

Indeed, heuristics and meta-heuristics are the most
successful methods used to resolve the TSP [25, 26, 27]. In this
regard, Genetic Algorithms (GA), Ant Colony Optimization
(ACO), Simulated Annealing (SA), and Particle Swarm
Optimization (PSO) are among the most commonly used
algorithms to resolve TSP. GA was successfully used for
problems involving global search due to its rapid convergence
and fast search process. However, it has some issues and has
poor performance when achieving the local search. ACO is
another robust optimizer with a high-resolution capacity.
However, its convergence performance highly depends on the
initial parameters, mainly the appropriate initial quality of the
pheromone. PSO is characterized by its ease of use since it has
a few numbers of initial parameters to set. However, other
optimizers give better results for many TSP test problems. SA
is another optimizer known for its capacity to avoid local
optima and is often hybridized with other algorithms for this
capacity.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

421 | P a g e

www.ijacsa.thesai.org

However, like with ACO, the initial parameter values have
a significant impact on the search process. Despite substantial
research on TSP, its combinatorial nature suggests that there is
still opportunity for development in this field, motivating the
work of this paper. TSP is inextricably tied to handling other
combinatorial problems with comparable characteristics, such
as the Traveling Salesman Problem with Time Windows
(TSPTW), Vehicle Routing Problem (VRP), and Capacitated
Vehicle Routing Problem (CVRP). TSP approaches and
algorithms are frequently used as a foundation for addressing
these related optimization challenges. As a result, progress in
TSP solving may provide useful insights and tactics relevant to
a broader class of combinatorial problems in logistics,
transportation, and network optimization. Because these
challenges are interdisciplinary, knowledge and approaches can
be transferred across fields, creating a more thorough grasp of
combinatorial optimization.

The major contribution of this paper lies in presenting an
Iterative Approximate Method for Solving TSP (IAM-TSP),
which provides a polynomial-time approximate solution to the
TSP. The proposed method begins by including four extreme
cities along the path. Following that, a loop successively adds
each city to the route by calculating the cost at various points
along the route. The approach considers each city to add and
finds the most suitable location to put it, the one that minimizes
the total cost. This method is improved further by using local
constant permutations on the output of IAM-TSP, which
considerably improves the final route, referred to as IAM-
TSP+.

We evaluated the proposed algorithms against standard
TSP datasets to determine how they performed in terms of key
performance measures. The proposed IAM-TSP performed
nearly identically to some of the typical TSP approximation
algorithms given in the results section, but the proposed IAM-
TSP+ surpassed all approximation methods compared on the
majority of TSP instances.

The rest of the paper is organized as follows. Section II
illustrates and discusses the advantages and drawbacks of the
recent most relevant studies resolving the TSP. Section III
identifies and investigates the proposed methodology for
resolving the TSP. Section IV presents the experimental setup
and the results, Section V concludes the study.

II. RELATED WORK

Given TSP's extensive history, its cutting-edge landscape is
extremely diverse. To solve the TSP, several techniques,
paradigms, and approximations algorithms have been used.
Heuristics, for example, are a type of approximation method
aimed to finding near-optimal solutions to NP-hard problems
in polynomials time. One popular and simple method for
building a TSP tour involves starting the tour at any node,
traversing minimum-cost arcs to each successive node until all
nodes are visited, and then returning to the starting node to
finish the tour. This method is known as the Nearest Neighbor
heuristic [28].

There are also many popular methods, such as: the 2-Opt
heuristic [29], Farthest Insertion algorithm [30], Nearest
Insertion algorithm [30], Cheapest Insertion algorithm [30],

Arbitrary Insertion algorithm [31], Repetitive Nearest
Neighbor algorithm [32], Concave hull with heuristics, and
Concave Hull No Heuristic [33]. In what follows, the main
recent studies proposing TSP resolution methodologies are
investigated: The study in [33] introduces a concave hull-based
algorithm to resolve the Euclidean symmetric TSP by
establishing concentric hulls and then merging them in one
tour. Two novel metrics are suggested: the ―Average Waiting
Distance‖ and the ―min AWD‖ of a tour. The results show that
an optimal AWD does not guarantee the optimal tour.

In study [34], the authors enhanced the accuracy of TSP
solutions for numerous sizes of the problem. The used
algorithm is a modified ACO with a better convergence during
the TSP search process. To prevent trapping into local optima,
this algorithm decreases the high concentration of pheromone
during the route selection. The diversity in the algorithm is
ensured using entropy weighted learning. According to the
results, this work improved ACO and solved TSP better than
the standard ACO.

A new variant of TSP, called TSPJ, which includes the
schedule of jobs in a set of positions, was introduced in study
[35]. Since in TSP, the transport time is longer than the
operation time, the considered objective in TSPJ is to minimize
the make-span, equal to the needed time to achieve the longest
job. The resolution of the TSPJ involves four local search
methods. Using the CPLEX system, the results indicated that
the solutions given by the four used heuristics are too close to
the optimal (a gap less than 6%). In the same regard, the study
in [36] aims to resolve the TSPJ. Applicative and practical
contexts of TSPJ had been discussed, as well as the parameters
specific to TSPJ such as the completion time, configuration
time, and resource variation.

In study [37], the authors used the aim was to resolve a TSP
variant called the multiple TSP (mTSP) problems using a
hybrid algorithm. The latter relies on an EAX heuristic to
optimize the intra-tour and a tabu search neighborhood search
to optimize the inter-tour. The objectives of the problem were
the minimization of both the longest path and the total traveled
distance. To reduce the neighborhood search time, a reduction
approach is proposed to avoid computing the nonpromising
possible solutions. The experiments involve a comparison with
five approaches tested on 41 known TSP test problems and 36
new large-size ones. However, the other variants of TSP were
not assessed, and comparisons with other classes of heuristics
were not achieved.

The study in [38] suggests a new seriation strategy named
―tree-penalized Path Length‖ (tpPL). Data seriation is a famous
problem in data analysis. Itis the process of sequencing and
ordering data according to their similarity. TSP in this study is
considered a seriation method. The goal is to linearly order the
data using simultaneously the TSP, tpPL, and optimal leaf
order (OLO) methods. Optimal paths are transferred from TSP
to OLO. In terms of computational complexity, TSP and tpPL
have the same order of complexity. Hence, TSP heuristics may
be used to resolve the tpPL. Tested on more than forty datasets,
the tpPL has a better performance than TSP and OLO with the
same computational complexity. The study in [39] introduces a
compression-based TSP heuristic for data micro-aggregation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

422 | P a g e

www.ijacsa.thesai.org

Micro-aggregation is a method for disrupting and aggregating
personal data using the concept of k-anonymity. By
simultaneously considering the respect for privacy and the
usefulness of data, the introduced TSP heuristic was the most
efficient in solving the problem of micro-aggregation. In
contrast, heuristics relying on TSP encrust scalability issues.
Unlike other heuristics, the algorithm proposed in this study
can reduce the execution time of the TSP. The tests carried out
on small and medium-sized data affirm the trade-off between
computation time and the rate of loss of micro-aggregation
information.

In study [40], a new problem, named the traveling thief
problem (TTP), is proposed by combining the knapsack
problem (KP) and the TSP. The PTT resolution method relies
on sequences selection heuristics. A set of selection
operators/thieves are involved to select the cities/objects to
progressively create the tour.

The study in [41] introduces two new TSP versions. Named
pollution TSP(PTSP) and energy minimization TSP (EMTSP),
the new versions add environmental constraints to the TSP.
The aim of PTSP is to reduce fuel consumption, and carbon
emissions. The aim of EMTSP is to reduce the cost of a trip
according to the distance and the carried load. The method of
resolution of the two TSP variants, MILP-GA-LS, relies on a
mixed integer linear programming model to identify initial
possible solutions, then multi-operator GA to enhance the
found solutions. Afterward, an iterative local search algorithm
was used to enhance the solutions. However, numerous
constraints were not considered such as the time-window of
customers. Moreover, an issue arises concerning the
complexity of the introduced approach, since it was proven
that, for small-size instances of PTSP and EMTSP, exact
methods give better results than the MILP-GA-LS.

In study [42], a new ACO variant is proposed to solve the
TSP. Named DAACO; this algorithm dynamically changes the
number of ants to avoid falling into local optima and to prevent
long time of convergence. Besides, DAACO uses a local
selection process to enhance the quality of ants and the needed
time for the search process. Among the used twenty TSPLIB
test problems, all the DAACO solutions were optimal except
one. These results confirm the advantageous quality of
solutions and time of convergence of DAACO compared to
other optimizers.

In study [43], a hybrid Ant Colony (AC)-Tabu Search (TS)-
Firefly Algorithm (FA) called ACTS-FATS is proposed. The
hybridization avoids the probability of premature convergence,
then, reduces the chance of trapped in local optima. Tested
with the TSPLIB95, the hybridization does not generate
additional execution time compared to AC, TS and FA.

In study [44], Dhouib-Matrix, a column-row method, is
proposed to resolve polynomial time TSP. The process of this
method is as follows: after defining the distance matrix, a start
position is selected to choose rows. Then, columns are
discarded, and the route is transformed to a tour. The
advantage of the introduced Dhouib Matrix is that it needs only
n iterations to find the route between n cities.

In study [45], a comparative study is proposed to discuss
the recent algorithms and methodologies used to resolve the
TSP using metaheuristics. The focus is set on the numerous
versions of the BA, FA and PSO optimizers.

In study [46], a new version of the TSP, called TSP-D is
proposed. The latter is a classic TSP that involves a truck and a
drone (Unmanned Aerial Vehicles (UAV)). In TSP-D, it is
assumed that UAV has low battery capacities and can transport
cargo per flight. The issue is to determine which UAV and
which truck should serve which client. The tests demonstrate
that the time of service can be reduced by using the UAVs with
distinct speeds according to the cargo weight. However, the
used samples (number of clients) are between 30 and 60, which
makes the method valid only for small-size TDP-D instances.

The authors in [47] propose an algorithm to minimize
travel costs and maximize the overall profit. Simulated
annealing (SA) and genetic algorithm (GA) with dedicated
mutation operators were used. A concept of tour plots is used
to generate the final solutions. In terms of computation time,
the SA is better than the GA.

In study [48], Qi-ACO, an ACO based on quantum
computing, is developed to resolve the four-dimensional TSP
(4DTSP). Fuzzy type-2 variables are used due to the uncertain
aspect of the investigated problem of travel emissions and
costs. The 4DTSP is characterized by the existence of
numerous paths and conveyances between the cities. A process
is implemented in Qi-ACO for generating qubits considering
the constraints of carbon emission, cost, and time. The
initialization and update of pheromone is based on qubit. A
faster computation is achieved in Qi-ACO due to the quantum
calculations. Performed statistical tests to confirm the
performance of the introduced approach. However, numerous
constraints are not considered such as vehicle speed and route
selection. The readers are referred to [49] for more
comprehensive methodologies on modeling and designing
greedy heuristic methods to resolve the TSP.

III. THE PROPOSED ITERATIVE APPROXIMATE METHODS

FOR SOLVING TSP (IAM-TSP)

The IAM-TSP is proposed in this paper as an
approximation to the TSP, which has a greedy algorithmic
nature. It begins by selecting four cities from the input set to
represent the east, north, west, and south most positions. These
cities are added to the route list in the following order: east,
north, west and south, followed by a return to the beginning
point (east). The algorithm then enters a loop, adding each
remaining city to the path one by one. The method calculates
the cost of adding a city to various points along the route
throughout each iteration. It carefully investigates all feasible
positions for each city, picking the best position and city at the
lowest cost. Finally, this approach computes the route's total
cost and outputs the final result.

The cost is calculated using the Euclidean distance between
the consecutive cities on the route. Algorithm 1 shows the
pseudocode processes of the proposed IAM-TSP. Fig. 1
illustrates the progress of the IAM-TSP solution of the Rat195
LIBTSP real-world problem [50]. Because the TSP is a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

423 | P a g e

www.ijacsa.thesai.org

minimization problem, the term ―best‖ refers to the smallest
value throughout this paper, i.e., minimum route.

Fig. 1. The progress of the IAM-TSP solution of the Rat195 LIBTSP real-

world problem, the progress is made from left to right and from top to bottom,
and the results are displayed after ten iterations from the previous state.

According to Algorithm 1, the proposed IAM-TSP has a
time complexity of O(n

2
), where n is the number of cities in the

Cities x y list. This is because, in the while loop, the algorithm
finds the best position to put each city from the Open list into
rout and checks every feasible solution, which takes O(n) time.
This operation is repeated until Open is empty, which means
that in the worst scenario, the while loop runs n times, giving a
total time complexity of O(n

2
).

The space complexity of the solution is O(2n + n
2
), where n

is the number of cities in the Cities xy list. This is because we
use two lists rout and open of size n, which take O(2n) space,
and the quadratic space comes from the space reserved by the
Possible Solutions matrix, whose size is n rows, each hosting n
cities. The rest of the data structures used in the solution take

O(1) or O(n) space, so the overall space complexity can be
asymptotically approximated to O(n

2
). However, if we

establish a square matrix storing the distances between each
city and the others, space complexity stays asymptotically
quadratic too; this is not done in this study, but it is a typical
approach to removing the burden of distance computation. It
should be emphasized that IAM-TSP provides an
approximation solution for the TSP, and it does not ensure
finding the optimal solution, because finding the best position
for each city alone does not guarantee finding the optimal
solution, which necessitates the involvement of all cities at the
same time.

In order to improve the IAM-TSP performance, and
because involving all cities makes the problem NP-hard, we
opt for involving a constant number of local cities (k), and
calculate all the permutation sequences starting from the first
city in the output Route until the k city, finding the best
solution and updating the Rout during this process, after which
the algorithm goes into a loop moving by one city to find the
next k permutations until n − k, this enhanced version is called
IAM-TSP+. Algorithm 2 shows the pseudocode processes of
the proposed IAM-TSP+, and Fig. 2 depicts the IAM-TSP+
resultant Route of the ATT48 TSPLIB real-world problem [50]
in comparison to its optimal route.

Algorithm 1: The proposed IAM-TSP algorithm

Require: Cities xy (List of cities with x and y coordinates) of

size n (number of cities)

Ensure: Cost (Total cost of the route using Euclidean distance),

and Route (the best possible sequence of cities)

1: Create an empty list Route to store the order of visited cities.

2: Get the East, North, West, and South cities and add them to

the Route list. This is done using the minimum/maximum of x

and y coordinates.

3: Initialize a Boolean list Visited of size n (number of cities)

and set all elements to false.

4: Set the Visited status of the cities in Route to true (East,

North, West, and South).

5: Create an empty list Open to store the cities that have not

been visited.

6: Add all cities in Cities xy to Open if their Visited status is

false.

7: while Open is not empty do

8: Create an empty list of list Possible Solutions to store the

possible solutions (routs).

9: for each city i in Open do

10: Find the best location to insert it into Route and add the

new route to possible Solutions.

11: end for

12: Find the best solution Best in Possible Solutions and keep

track of the city ID.

13: Update Route by Best.

14: Remove the city ID from Open that satisfies Best.

15: end while

16: Calculate the cost of the Route using the Euclidean

distance and store it in

Cost.

17: return Cost, Route

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

424 | P a g e

www.ijacsa.thesai.org

Algorithm 2: The proposed IAM-TSP+ algorithm

Require: Cities xy of size n and k=5 (local permutations)

Ensure: Cost, Route

1: Route=IAM-TSP(Cities xy)

2: for i = 1 to n − k do

3: Create an empty list of list Possible Solutions

4: Possible Solutions= all k local permutations of Route(from i

to i + k)

5: Update Cost(Possible Solutions)

6: index = argmin(Cost)

7: Route = Possible Solutions[index]

8: end for

9: return Cost(Route), Route

Fig. 2. The IAM-TSP+ resultant route of the ATT48 TSPLIB real-world

problem (in blue) n comparison to its optimal route (in red), k = 5, IAM-TSP+
cost = 34877, and the optimal cost = 33523. The optimal route is a little

shifted right and down to avoid edge overdrawing.

According to Algorithm 2, the proposed IAM-TSP+ has a
time complexity of O(n

2
 + n.k!), where n is the number of

cities in the Cities xy list. This is because the improved version
uses the proposed IAM-TSP as an initial solution, this time is
added to the time consumed by sliding the k permutations
along the Route, which consumes O(n.k!) in the worst
scenario, giving a total time complexity of O(n

2
 + n.k!). Since

k is a constant number, the time complexity of O(n.k!) is often
greater than that of O(n

2
). O(n.k!) may still be more efficient

than O(n
2
) for small values of k, but as (k) grows higher, the

growth rate of O(n.k!) quickly exceeds that of O(n
2
).

Therefore, the time complexity of IAM-TSP+ can be
asymptotically approximated to O(n.k!). The space complexity
of the IAM-TSP+ is similar to that of the proposed IAM-TSP,
with the exception of the space required by the possible
Solutions matrix, which contains k! rows of routes, each of

which hosts n cities, resulting in a total space complexity of
O(n

2
 +n.k!), which can be asymptotically approximated to

O(n.k!). This is a problem for machines that have limited
memory resources, particularly when k is large, and therefore,
k needs to be decided based on the available memory
resources.

IV. EXPERIMENTAL SETUP AND RESULTS

To verify the quality and effectiveness of the proposed
methods for solving TSP, IAM-TSP and IAM-TSP+ were
applied to nine TSP instances, each with a known optimal
solution. Those TSPs are from the TSPLIB [50], which has
vertices between 40 and 500, namely: a280, att48, berlin52,
KroA100, ch150, ch130, pr76, lin105, and pcb442. We chose
these specific instances to facilitate comparison to other
methods that have been repeatedly used in many studies.

We compare the performance of the proposed methods to
other related methods that proposed in the recent years; these
include:

 NN: Nearest Neighbor algorithm

 FI: Farthest Insertion algorithm

 CH: Concave hull with Heuristic.

 CNH: Concave hull No Heuristic

 NI: Nearest Insertion algorithm.

 CI: Cheapest Insertion algorithm

 AI: Arbitrary Insertion algorithm

 RNN: Repetitive Nearest Neighbor algorithm

 2-Opt: 2-Opt algorithm

It deserves to be noted that the aforementioned methods
were not developed for this work; rather, we directly reference
their results on each standard TSP as stated by [33], where all
parameters used for each method can be obtained. It is also
worth noting that the majority of these methods’ results were
obtained by repeating each method a number of times and
reporting the average performance. However, we do not need
to do the same for the proposed methods because each
produces the same result on a specific TSP regardless of how
many times the method is run.

We performed simulation experiments using C# of
Microsoft visual studio 2022. The hardware and software
specifications of the system are as follows:

11th Gen Intel(R) Core (TM) i7-1165G7 @ 2.80GHz, 8.00
GB RAM, and Windows 11 Pro, 64-bit operating system.

The results of the proposed methods to the other compared

methods are shown in Table I, in which the optimal tour length

(cost) is recorded as reported in the TSPLIB standard library.

As it can be seen from Table I, The proposed IAM-TSP+

outperforms the IAM-TSP on all TSPs, which is to be expected

given that the latter is an input to the former and the former

employs nine local permutations along the resultant route,

giving it more chances to identify better solutions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

425 | P a g e

www.ijacsa.thesai.org

TABLE I. PERFORMANCE COMPARISON OF THE PROPOSED METHODS TO NINE RELATED METHODS ON DIFFERENT TSP INSTANCES

Instance Optimal IAM-TSP IAM-TSP+ CH CNH FI NI CI AI NN RNN 2OPT

a280 2579 3051.0804 2978.079155 3335.9 3448 2953 3072.7 3110.7 2995.7 3369.7 3037.7 3018.1

att48 33523 35595.13404 34877.093 35618 35811.2 35267 37893.3 36391.9 35723.1 42112.7 39237 37458.4

berlin52 7542 8497.33404 8031.31761 9013.7 9013.7 8175 9097.7 9007.3 8346.4 9265.4 8182.2 8368.6

ch150 6528 7367.615815 7167.696739 7176.5 7309.6 7148 8066.9 7988.7 7228.8 7734.2 7078.4 7379.4

ch130 6110 6664.37646 6584.106521 7038 7038.8 6855 7381.6 7164.9 6625.8 7747.4 7198.7 6755.5

kroA100 21282 23375.94197 22212.77837 22899.1 23310.1 22874 25957 25073.5 23270.7 27084.2 24699 24401.9

pr76 108159 115547.4825 113155.4313 115790 118877 117173 130029 126837 116098 145227 130921 118838.3

lin105 14379 16285.06763 15948.15549 15596.1 15730.7 15331 18287.9 17327.6 15802.6 18646 16939 16322.2

pcb442 50778 57860.0934 57458.28 66961.6 72425 57537.9 60667.9 59493.1 58001.5 64819.2 59975 57354.4

Furthermore, the proposed IAM-TSP+ outperforms not
only IAM-TSP, but also, all methods compared on 5 TSPs,
namely att48, berlin52, ch130, KroA100, pr76, followed by the
FI method, which also performs well.

Aside from the FI, the proposed IAM-TSP outperforms many

other methods without the need for additional improvement

and achieves solutions closer to optimal in two instances:

att48 and pr76. It is interesting to note that both of the

proposed methods achieve performance that is very close to

the optimal solution in some instances. In order to illustrate

the different performances of both of the best performers,

IAM-TSP+ and FI, Fig. 3 compares the resultant routes’ costs

of both methods on several TSPs while Fig. 4, 5, and 6

provide comparisons of the proposed methods to the other

nine related methods on small-scale TSP instances. As it can

be seen from these figures, the proposed methods achieve

better or comparable performance when compared to the other

approximation methods that attempt to find the best possible

TSP solution.

Fig. 3. The routes’ cost results of the proposed IAM-TSP+ compared to that

of the FI method.

Fig. 4. The routes’ cost results of the proposed methods compared to that of

the other methods on Att48 TSP.

Fig. 5. The routes' cost results of the proposed methods compared to that of

the other methods on pcb442 TSP.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

426 | P a g e

www.ijacsa.thesai.org

Fig. 6. The routes' cost results of the proposed methods compared to that of

the other methods on pr76 TSP.

The approximation ratio, which is the ratio of the method’s
output to the optimal tour cost, quantifies how much the
approximate solution differs from the optimal solution. The
approximation ratios of all methods compared are presented in

Table II. As it can be seen in the table, the proposed IAM-
TSP+ delivers the best overall approximation, with an average
of 1.09 overall TSPs, compared to the next competitor (FI),
which has an average approximation of 1.10.

The proposed AIM-TSP also performs well, with an
average approximation of 1.11, surpassing seven comparable
methods. In addition to the approximation ratio, the error rate
represents the percentage difference between the solution’s
fitness value and the known optimal solution, and it is
determined as follows [51]:

 (1)

The comparison results for the error rates are presented in
Table III. As it can be seen in Table III, the proposed IAM-
TSP+ delivers the minimum overall error rate, with an average
of 8.51% overall TSPs, compared to the next competitor (FI),
which has an average error rate of 9.50%. The proposed AIM-
TSP also performs well, with an average error rate of 11.44%,
surpassing seven comparable methods. Considering the costs,
approximation ratios, and error rates of the resulting Routes,
the proposed methods, specifically the IAM-TSP+, outperform
all related methods aimed at solving the TSP in general.

TABLE II. COMPARISONS OF THE APPROXIMATION RATIOS OF THE PROPOSED METHODS TO THE OTHER RELATED METHODS

Instance Optimal IAM-TSP IAM-TSP+ CH CNH FI NI CI AI NN RNN 2OPT

a280 2579 1.183047848 1.15474182 1.2934858 1.33695 1.14502 1.19143 1.20617 1.16157 1.30659 1.1779 1.17026

att48 33523 1.061812309 1.040392954 1.0624944 1.06826 1.05202 1.13037 1.08558 1.06563 1.25623 1.1704 1.117394

berlin52 7542 1.126668528 1.064879025 1.1951339 1.19513 1.08393 1.20627 1.19429 1.10666 1.22851 1.0849 1.1096

ch150 6528 1.128617619 1.09799276 1.0993413 1.11973 1.09498 1.23574 1.22376 1.10735 1.18477 1.0843 1.130423

ch130 6110 1.090732645 1.077595175 1.1518822 1.15201 1.12193 1.20812 1.17265 1.08442 1.26799 1.1782 1.105646

kroA100 21282 1.098390281 1.043735475 1.0759844 1.0953 1.0748 1.21967 1.17816 1.09345 1.27263 1.1605 1.146598

pr76 108159 1.068311306 1.046195243 1.0705535 1.09909 1.08334 1.2022 1.17269 1.0734 1.34271 1.2104 1.098737

lin105 14379 1.132559123 1.109128277 1.0846443 1.09401 1.06621 1.27185 1.20506 1.09901 1.29675 1.1781 1.135142

pcb442 50778 1.139471689 1.131558549 1.3187128 1.42631 1.13313 1.19477 1.17163 1.14226 1.27652 1.1811 1.129513

TABLE III. ERROR RATE COMPARISONS

Instance Optimal IAM-TSP IAM-TSP+ CH CNH FI NI CI AI NN RNN 2OPT

a280 2579 18.3047848 15.47418203 29.348585 33.6952 14.5017 19.1431 20.6165 16.1574 30.6592 17.786 17.02598

att48 33523 6.181230913 4.039295424 6.2494407 6.82576 5.2024 13.0367 8.558 6.56296 25.6233 17.045 11.7394

berlin52 7542 12.66685282 6.487902542 19.513392 19.5134 8.393 20.6272 19.4285 10.6656 22.8507 8.4885 10.95996

ch150 6528 12.86176188 9.799276026 9.9341299 11.973 9.49755 23.5738 22.3759 10.7353 18.4773 8.4314 13.04228

ch130 6110 9.073264485 7.759517522 15.188216 15.2013 12.1931 20.8118 17.2651 8.4419 26.7987 17.818 10.56465

kroA100 21282 9.839028145 4.37354747 7.59844 9.52965 7.4805 21.9669 17.8155 9.34452 27.2634 16.053 14.65981

pr76 108159 6.831130592 4.619524286 7.0553537 9.90921 8.33403 20.2198 17.2686 7.3404 34.2715 21.045 9.873704

lin105 14379 13.2559123 10.9128277 8.4644273 9.40051 6.62077 27.1848 20.5063 9.90055 29.6752 17.807 13.51415

pcb442 50778 13.94716885 13.1558549 31.871283 42.6307 13.3127 19.4767 17.1631 14.2256 27.6521 18.111 12.95128

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

427 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION

In this paper, we presented two geometric-based
approximation greedy algorithms for solving the classical TSP,
one of which we call IAM-TSP which is proposed based on
locating four extreme nodes/cities and then iterating to
determine the best potential positions of each node/city. The
other method is known as IAM-TSP+, and it is simply an
improved version of the first one, with employing local
constant permutations to improve the first method's result.

The experimental results of the proposed methods on nine
TSP instances show that, when compared to nine recent related
methods, the proposed methods (particularly the IAM-TSP+)
provide promising solutions for the classical TSP. This is seen
in the resulting routes' cost effectiveness, approximation ratios,
and error rates. The enhanced performance (of the IAM-TSP+)
is due to the selection of the best local solution, which was
accomplished by exploring all k-permutations and considering
the best local solution after obtaining the initial solution from
the pure IAM-TSP, where k = 5 in all experiments.

The proposed method's limitations include the time and
space complexity, which is rather high for the proposed IAM-
TSP+, making the evaluation of the proposed methods on large
TSP instances particularly difficult on restricted resource
machines. As a result, parallel or distributed computation may
facilitate the evaluation of proposed methods. In addition to
employing the output route as an initial seed for the genetic
algorithm [52, 53]. Our future research will focus on such
issues.

REFERENCES

[1] M. D. A. C. Hasibuan, et al., Pencarian rute terbaik pada travelling
salesman problem (tsp) menggunakan algoritma genetika pada dinas
kebersihandan pertamanan kota pekanbaru, SATIN-Sains dan Teknologi
Informasi1 (1) (2015) 35–46.

[2] S. Arora, The approximability of np-hard problems, in: Proceedings of
the thirtieth annual ACM symposium on Theory of computing, 1998,
pp.337–348.

[3] E. Duman, I. Or, Precedence constrained tsp arising in printed circuit
board assembly, International Journal of Production Research 42 (1)
(2004) 67–78.

[4] F. Su, L. Kong, H. Wang, Z. Wen, Modeling and application for rolling
scheduling problem based on tsp, Applied Mathematics and
Computation 407 (2021) 126333.

[5] S. Hannenhalli, E. Hubbell, R. Lipshutz, P. A. Pevzner,
Combinatorial383 algorithms for design of dna arrays, Chip Technology
(2002) 1–19.

[6] S.-Y. Shin, I.-H. Lee, D. Kim, B.-T. Zhang, Multiobjective evolutionary
optimization of dna sequences for reliable dna computing, IEEE
transactions on evolutionary computation 9 (2) (2005) 143–158.

[7] J. Ahn, E. Choi, D. Lee, Application of routing problems to space
exploration missions, in: AIAA SCITECH 2023 Forum, 2023, p. 1966.

[8] D. Ying, Competition decision for bottleneck traveling salesman
problem based on big data mining algorithm with multi-segment
support, in: 2018 3rd International Conference on Smart City and
Systems Engineering (IC-SCSE), IEEE, 2018, pp. 725–729.

[9] B. Jose, T. R. Ramanan, S. M. Kumar, Big data provenance and analytics
in telecom contact centers, in: TENCON 2017-2017 IEEE Region 10
Conference, IEEE, 2017, pp. 1573–1578.

[10] A. B. Hassanat, Furthest-pair-based decision trees: Experimental results
on big data classification, Information 9 (11) (2018) 284.

[11] S. Mnasri, N. Nasri, T. Val, An overview of the deployment paradigms in
the wireless sensor networks, Performance Evaluation and Modeling in
Wireless Networks (PEMWN 2014)

[12] A. Abadleh, E. Al-Hawari, E. Alkafaween, H. Al-Sawalqah, Step
detection algorithm for accurate distance estimation using dynamic step
length, in:2017 18th IEEE International Conference on Mobile Data
Management (MDM), IEEE, 2017, pp. 324–327.

[13] S. Tlili, S. Mnasri, T. Val, A multi-objective gray wolf algorithm for
routing in iot collection networks with real experiments, in: 2021
National Com-407 puting Colleges Conference (NCCC), IEEE, 2021,
pp. 1–5.

[14] A. Mars, A. Abadleh, W. Adi, Operator and manufacturer independent
d2d private link for future 5g networks, in: IEEE INFOCOM 2019-IEEE
Conference on Computer Communications Workshops (INFOCOM
WKSHPS), IEEE, 2019, pp. 1–6.

[15] A. Aljaafreh, K. Alawasa, S. Alja’afreh, A. Abadleh, Fuzzy inference
system for speed bumps detection using smart phone accelerometer
sensor, Journal of Telecommunication, Electronic and Computer
Engineering 9.

[16] A. Abadleh, B. M. Al-Mahadeen, R. M. AlNaimat, O. Lasassmeh, Noise
segmentation for step detection and distance estimation using
smartphone sensor data, Wireless Networks 27. doi:10.1007/s11276-
021-02588-0.

[17] N. Ghatasheh, H. Faris, R. Abukhurma, P. A. Castillo, N. Al-Madi, A. M.
Mora, A. M. Al-Zoubi, A. Hassanat, Cost-sensitive ensemble methods
for bankruptcy prediction in a highly imbalanced data distribution: A
real case from the spanish market, Progress in Artificial Intelligence 9
(2020) 361–375.

[18] G. A. Altarawneh, A. B. Hassanat, A. S. Tarawneh, A. Abadleh, M.
Alrashidi, M. Alghamdi, Stock price forecasting for jordan insurance
companies amid the covid-19 pandemic utilizing off-the-shelf technical
analysis methods, Economies 10 (2) (2022) 43.

[19] A. B. Hassanat, V. S. Prasath, M. Al-kasassbeh, A. S. Tarawneh, A. J.Al-
shamailh, Magnetic energy-based feature extraction for low-quality fin-
429 gerprint images, Signal, Image and Video Processing 12 (2018)
1471–1478.

[20] A. S. Tarawneh, C. Celik, A. B. Hassanat, D. Chetverikov, Detailed
investigation of deep features with sparse representation and
dimensionality reduction in cbir: A comparative study, Intelligent Data
Analysis 24 (1) (2020) 47–68.

[21] E. Hamadaqa, A. Abadleh, A. Mars, W. Adi, Highly secured implantable
medical devices, in: 2018 International Conference on Innovations in
Information Technology (IIT), IEEE, 2018, pp. 7–12.

[22] A. S. Tarawneh, A. B. Hassanat, D. Chetverikov, I. Lendak, C. Verma,
Invoice classification using deep features and machine learning
techniques, in:2019 IEEE Jordan International Joint Conference on
Electrical Engineering and Information Technology (JEEIT), IEEE,
2019, pp. 855–859.

[23] A. B. Hassanat, On identifying terrorists using their victory signs, Data
Science Journal 17.

[24] W. J. Cook, In pursuit of the traveling salesman, in: In Pursuit of the
Traveling Salesman, Princeton University Press, 2011.

[25] A. B. Hassanat, E. Alkafaween, On enhancing genetic algorithms using
new446 crossovers, International Journal of Computer Applications in
Technology 55 (3) (2017) 202–212.

[26] A. Hassanat, K. Almohammadi, E. Alkafaween, E. Abunawas, A.
Hammouri, V. S. Prasath, Choosing mutation and crossover ratios for
genetic algorithms—a review with a new dynamic approach,
Information 10 (12) (2019) 390.

[27] E. Alkafaween, A. B. Hassanat, Improving tsp solutions using ga with a
new hybrid mutation based on knowledge and randomness,
Communications Scientific letters of the University of Zilina 22 (3)
(2020) 128–139.

[28] P. Hart, The condensed nearest neighbor rule (corresp.), IEEE
transactions on information theory 14 (3) (1968) 515–516. [29] G. A.
Croes, A method for solving traveling-salesman problems, Operations
research 6 (6) (1958) 791–812.

[29] G. A. Croes, A method for solving traveling-salesman problems,
Operations research 6 (6) (1958) 791–812.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

428 | P a g e

www.ijacsa.thesai.org

[30] D. J. Rosenkrantz, R. E. Stearns, P. M. Lewis, Approximate algorithms
for the traveling salesperson problem, in: 15th Annual Symposium on
Switching and Automata Theory (swat 1974), IEEE, 1974, pp. 33–42.

[31] J. Brest, J. Zerovnik, An approximation algorithm for the asymmetric
traveling salesman problem, Ricerca operativa 28 (1999) 59–67.

[32] T. Wainwright, Solving problems involving hamilton circuits, Journal of
Mathematics and Science: Collaborative Explorations 1 (1) (1997) 83–
90.

[33] K. Ihsan Kilic, L. Mostarda, Novel concave hull-based heuristic
algorithm for tsp, in: Operations Research Forum, Vol. 3, Springer, 2022,
p. 25.

[34] K. Yang, X. You, S. Liu, H. Pan, A novel ant colony optimization based
on game for traveling salesman problem, Applied Intelligence 50 (2020)
4529–4542.

[35] M. Mosayebi, M. Sodhi, T. A. Wettergren, The traveling salesman
problem with job-times (tspj), Computers & Operations Research 129
(2021) 105226.

[36] M. Mosayebi, The variants of traveling salesman problem with job-times
(tspj).

[37] P. He, J.-K. Hao, Hybrid search with neighborhood reduction for the
multiple traveling salesman problem, Computers & Operations Research
142 (2022) 105726.

[38] D. A. Aliyev, C. L. Zirbel, Seriation using tree-penalized path length,
European Journal of Operational Research 305 (2) (2023) 617–629.

[39] A. Maya-L ́opez, A. Mart ı́nez-Ballest ́e, F. Casino, A compression
strategy for an efficient tsp-based microaggregation, Expert Systems
with Applications 213 (2023) 118980.

[40] D. Rodr ́ıguez, J. M. Cruz-Duarte, J. C. Ortiz-Bayliss, I. Amaya,
Asequence-based hyper-heuristic for traveling thieves, Applied Sciences
13 (1) (2023) 56.

[41] V. Cacchiani, C. Contreras-Bolton, L. M. Escobar-Falc ́on, P. Toth,
Amatheuristic algorithm for the pollution and energy minimization
traveling salesman problems, International Transactions in Operational
Research 30 (2) (2023) 655–687.

[42] H. Liu, A. Lee, W. Lee, P. Guo, Daaco: adaptive dynamic quantity of ant
aco algorithm to solve the traveling salesman problem, Complex &
Intelligent Systems (2023) 1–14.

[43] S. S. Harahap, P. Sihombing, M. Zarlis, Combination of ant colony tabu
search algorithm with firefly tabu search algorithm (acts-fats) in solving
the traveling salesman problem (tsp), Sinkron: jurnal dan penelitian
Teknik informatika 8 (1) (2023) 212–221.

[44] S. Dhouib, A new column-row method for traveling salesman problem:
the dhouib-matrix-tsp1, International Journal of Recent Engineering
Science 8 (1) (2021) 6–10.

[45] E. Osaba, X.-S. Yang, J. Del Ser, Traveling salesman problem: a
perspective review of recent research and new results with bio-inspired
metaheuristics, Nature-Inspired Computation and Swarm Intelligence
(2020) 135–164.

[46] Cengiz, C. Yilmaz, H. T. Kahraman, C ̧ . Sui çmez, Effects of variable
uav speed on optimization of travelling salesman problem with drone
(tsp-d), in: Smart Applications with Advanced Machine Learning and
Human-Centred Problem Design, Springer, 2023, pp. 295–305.

[47] N. Garg, M. K. Kakkar, G. Gupta, J. Singla, A performance evaluation of
genetic algorithm and simulated annealing for the solution of tsp with
profit using python, in: Emerging Technologies in Data Mining and
Information Security: Proceedings of IEMIS 2022, Volume 3, Springer,
2022, pp. 13–26.

[48] M. Das, A. Roy, S. Maity, S. Kar, A quantum-inspired ant colony
optimization for solving a sustainable four-dimensional traveling
salesman problem under type-2 fuzzy variable, Advanced Engineering
Informatics 55 (2023) 101816.

[49] ́E. D. Taillard, Design of Heuristic Algorithms for Hard Optimization:
With Python Codes for the Travelling Salesman Problem, Springer
Nature, 2023.

[50] G. Reinelt, Tsplib—a traveling salesman problem library, ORSA journal
on computing 3 (4) (1991) 376–384.

[51] S. S. Ray, S. Bandyopadhyay, S. K. Pal, Genetic operators for
combinatorial optimization in tsp and microarray gene ordering, Applied
intelligence 26 (2007) 183–195.

[52] E. Alkafaween, A. B. Hassanat, S. Tarawneh, Improving initial
population for genetic algorithm using the multi linear regression based
technique (mlrbt), Communications-Scientific letters of the University
of Zilina 23 (1) (2021) E1–E10.

[53] A. B. Hassanat, V. S. Prasath, M. A. Abbadi, S. A. Abu-Qdari, H. Faris,
An improved genetic algorithm with a new initialization mechanism
based on regression techniques, Information 9 (7) (2018) 167.

