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Abstract—TSP is a well-known combinatorial optimization 

problem with several practical applications. It is an NP-hard 

problem, which means that the optimal solution for huge 

numbers of examples is computationally impractical. As a result, 

researchers have focused their efforts on devising efficient 

algorithms for obtaining approximate solutions to the TSP. This 

paper proposes Iterative Approximate Methods for Solving TSP 

(IAM-TSP), as a new method that provides an approximate 

solution to TSP in polynomial time. This proposed method begins 

by adding four extreme cities to the route, a loop, and then adds 

each city to the route using a greedy technique that evaluates the 

cost of adding each city to different positions along the route. 

This method determines the best position to add the city and the 

also the best city to be added. The resultant route is further 

improved by employing local constant permutations. When 

compared to existing state-of-the-art methods, our experimental 

results show that the proposed method is more capable of 

producing high-quality solutions. The proposed approach, with 

an average approximation of 1.09, can be recommended for 

practical usage in its current form or as a pre-processing step for 

another optimizer. 

Keywords—Greedy algorithms; TSP; NP-Hard problems; 

polynomial time algorithms; combinatorial problems, optimization 

methods 

I. INTRODUCTION  

At the beginning of the seventeenth century, Thomas 
Penynington and William Hamilton modeled the first 
mathematical problem corresponding to the Traveling 
Salesman Problem (TSP). This problem represents a game in 
which the winner connects twenty points by moving from one 
point to another, following some precise paths. This 
game/problem is called Hamilton Circuit Theory [1]. 
Afterward, in graph theory, TSP becomes a problem of 
identifying the optimal (shortest) Hamiltonian cycle visiting a 
set of cities (points) using a matrix of distances between the 
cities. TSP is one of the classic problems of combinatorial 
optimization, and it is widely investigated and considered a 
standard for assessing the performance of computational 
methodologies and algorithms. 

The principal objective of TSP is that the salesman visits all 
the cities in the minimal tour and then returns to the starting 
point with the assumption that the distances between the cities 
are known and the necessity of visiting each city is only once. 
Despite high-size instances of TSP being resolved in the 

literature, TSP is proven to be NP-hard even for small-size 
instances [2]. 

The theoretical and practical relevance of the TSP problem 
comes from the fact that numerous applicable real-world and 
engineering problems can be solved by adapting the TSP 
solutions, such as circuit design [3], scheduling [4], and DNA 
[5, 6], in addition to logistics and transportation and even space 
exploration missions [7]. Therefore, the study of TSP has 
significant theoretical and practical value, leading to cost 
savings and other benefits. 

Moreover, the application fields of TSP include any 
problem involving the search for the shortest paths. These 
fields vary in domains from big data classification [8, 9, 10], 
deployment and routing of IoT networks [11, 12, 13, 14, 15, 
16], financial prediction [17, 18], image processing [19], and 
[20], computer vision [21], [22], and [23]. TSP can be defined 
by finding a Hamiltonian cycle that visits each vertex precisely 
once, with the least amount of total weight feasible, given a full 
undirected weighted graph G = (V, E) with vertex set V and 
edge set E. The total weight of a cycle is equal to the weights 
of each of its individual edges. The book in [24] presents a 
comprehensive mathematical and theoretical analysis of the 
calculability and complexity of the TSP. One of the critical 
issues of methods of resolution of TSP is the enhancement of 
the accuracy of the algorithm to rapidly find the optimal or 
near-optimal solutions. 

Indeed, heuristics and meta-heuristics are the most 
successful methods used to resolve the TSP [25, 26, 27]. In this 
regard, Genetic Algorithms (GA), Ant Colony Optimization 
(ACO), Simulated Annealing (SA), and Particle Swarm 
Optimization (PSO) are among the most commonly used 
algorithms to resolve TSP. GA was successfully used for 
problems involving global search due to its rapid convergence 
and fast search process. However, it has some issues and has 
poor performance when achieving the local search. ACO is 
another robust optimizer with a high-resolution capacity. 
However, its convergence performance highly depends on the 
initial parameters, mainly the appropriate initial quality of the 
pheromone. PSO is characterized by its ease of use since it has 
a few numbers of initial parameters to set. However, other 
optimizers give better results for many TSP test problems. SA 
is another optimizer known for its capacity to avoid local 
optima and is often hybridized with other algorithms for this 
capacity. 
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However, like with ACO, the initial parameter values have 
a significant impact on the search process. Despite substantial 
research on TSP, its combinatorial nature suggests that there is 
still opportunity for development in this field, motivating the 
work of this paper. TSP is inextricably tied to handling other 
combinatorial problems with comparable characteristics, such 
as the Traveling Salesman Problem with Time Windows 
(TSPTW), Vehicle Routing Problem (VRP), and Capacitated 
Vehicle Routing Problem (CVRP). TSP approaches and 
algorithms are frequently used as a foundation for addressing 
these related optimization challenges. As a result, progress in 
TSP solving may provide useful insights and tactics relevant to 
a broader class of combinatorial problems in logistics, 
transportation, and network optimization. Because these 
challenges are interdisciplinary, knowledge and approaches can 
be transferred across fields, creating a more thorough grasp of 
combinatorial optimization. 

The major contribution of this paper lies in presenting an 
Iterative Approximate Method for Solving TSP (IAM-TSP), 
which provides a polynomial-time approximate solution to the 
TSP. The proposed method begins by including four extreme 
cities along the path. Following that, a loop successively adds 
each city to the route by calculating the cost at various points 
along the route. The approach considers each city to add and 
finds the most suitable location to put it, the one that minimizes 
the total cost. This method is improved further by using local 
constant permutations on the output of IAM-TSP, which 
considerably improves the final route, referred to as IAM-
TSP+. 

We evaluated the proposed algorithms against standard 
TSP datasets to determine how they performed in terms of key 
performance measures. The proposed IAM-TSP performed 
nearly identically to some of the typical TSP approximation 
algorithms given in the results section, but the proposed IAM-
TSP+ surpassed all approximation methods compared on the 
majority of TSP instances. 

The rest of the paper is organized as follows. Section II 
illustrates and discusses the advantages and drawbacks of the 
recent most relevant studies resolving the TSP. Section III 
identifies and investigates the proposed methodology for 
resolving the TSP. Section IV presents the experimental setup 
and the results, Section V concludes the study. 

II. RELATED WORK 

Given TSP's extensive history, its cutting-edge landscape is 
extremely diverse. To solve the TSP, several techniques, 
paradigms, and approximations algorithms have been used. 
Heuristics, for example, are a type of approximation method 
aimed to finding near-optimal solutions to NP-hard problems 
in polynomials time. One popular and simple method for 
building a TSP tour involves starting the tour at any node, 
traversing minimum-cost arcs to each successive node until all 
nodes are visited, and then returning to the starting node to 
finish the tour. This method is known as the Nearest Neighbor 
heuristic [28].  

There are also many popular methods, such as: the 2-Opt 
heuristic [29], Farthest Insertion algorithm [30], Nearest 
Insertion algorithm [30], Cheapest Insertion algorithm [30], 

Arbitrary Insertion algorithm [31], Repetitive Nearest 
Neighbor algorithm [32], Concave hull with heuristics, and 
Concave Hull No Heuristic [33]. In what follows, the main 
recent studies proposing TSP resolution methodologies are 
investigated: The study in [33] introduces a concave hull-based 
algorithm to resolve the Euclidean symmetric TSP by 
establishing concentric hulls and then merging them in one 
tour. Two novel metrics are suggested: the ―Average Waiting 
Distance‖ and the ―min AWD‖ of a tour. The results show that 
an optimal AWD does not guarantee the optimal tour. 

In study [34], the authors enhanced the accuracy of TSP 
solutions for numerous sizes of the problem. The used 
algorithm is a modified ACO with a better convergence during 
the TSP search process. To prevent trapping into local optima, 
this algorithm decreases the high concentration of pheromone 
during the route selection. The diversity in the algorithm is 
ensured using entropy weighted learning. According to the 
results, this work improved ACO and solved TSP better than 
the standard ACO.  

A new variant of TSP, called TSPJ, which includes the 
schedule of jobs in a set of positions, was introduced in study 
[35]. Since in TSP, the transport time is longer than the 
operation time, the considered objective in TSPJ is to minimize 
the make-span, equal to the needed time to achieve the longest 
job. The resolution of the TSPJ involves four local search 
methods. Using the CPLEX system, the results indicated that 
the solutions given by the four used heuristics are too close to 
the optimal (a gap less than 6%). In the same regard, the study 
in [36] aims to resolve the TSPJ. Applicative and practical 
contexts of TSPJ had been discussed, as well as the parameters 
specific to TSPJ such as the completion time, configuration 
time, and resource variation. 

In study [37], the authors used the aim was to resolve a TSP 
variant called the multiple TSP (mTSP) problems using a 
hybrid algorithm. The latter relies on an EAX heuristic to 
optimize the intra-tour and a tabu search neighborhood search 
to optimize the inter-tour. The objectives of the problem were 
the minimization of both the longest path and the total traveled 
distance. To reduce the neighborhood search time, a reduction 
approach is proposed to avoid computing the nonpromising 
possible solutions. The experiments involve a comparison with 
five approaches tested on 41 known TSP test problems and 36 
new large-size ones. However, the other variants of TSP were 
not assessed, and comparisons with other classes of heuristics 
were not achieved. 

The study in [38] suggests a new seriation strategy named 
―tree-penalized Path Length‖ (tpPL). Data seriation is a famous 
problem in data analysis. Itis the process of sequencing and 
ordering data according to their similarity. TSP in this study is 
considered a seriation method. The goal is to linearly order the 
data using simultaneously the TSP, tpPL, and optimal leaf 
order (OLO) methods. Optimal paths are transferred from TSP 
to OLO. In terms of computational complexity, TSP and tpPL 
have the same order of complexity. Hence, TSP heuristics may 
be used to resolve the tpPL. Tested on more than forty datasets, 
the tpPL has a better performance than TSP and OLO with the 
same computational complexity. The study in [39] introduces a 
compression-based TSP heuristic for data micro-aggregation. 
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Micro-aggregation is a method for disrupting and aggregating 
personal data using the concept of k-anonymity. By 
simultaneously considering the respect for privacy and the 
usefulness of data, the introduced TSP heuristic was the most 
efficient in solving the problem of micro-aggregation. In 
contrast, heuristics relying on TSP encrust scalability issues. 
Unlike other heuristics, the algorithm proposed in this study 
can reduce the execution time of the TSP. The tests carried out 
on small and medium-sized data affirm the trade-off between 
computation time and the rate of loss of micro-aggregation 
information. 

In study [40], a new problem, named the traveling thief 
problem (TTP), is proposed by combining the knapsack 
problem (KP) and the TSP. The PTT resolution method relies 
on sequences selection heuristics. A set of selection 
operators/thieves are involved to select the cities/objects to 
progressively create the tour. 

The study in [41] introduces two new TSP versions. Named 
pollution TSP(PTSP) and energy minimization TSP (EMTSP), 
the new versions add environmental constraints to the TSP. 
The aim of PTSP is to reduce fuel consumption, and carbon 
emissions. The aim of EMTSP is to reduce the cost of a trip 
according to the distance and the carried load. The method of 
resolution of the two TSP variants, MILP-GA-LS, relies on a 
mixed integer linear programming model to identify initial 
possible solutions, then multi-operator GA to enhance the 
found solutions. Afterward, an iterative local search algorithm 
was used to enhance the solutions. However, numerous 
constraints were not considered such as the time-window of 
customers. Moreover, an issue arises concerning the 
complexity of the introduced approach, since it was proven 
that, for small-size instances of PTSP and EMTSP, exact 
methods give better results than the MILP-GA-LS.  

In study [42], a new ACO variant is proposed to solve the 
TSP. Named DAACO; this algorithm dynamically changes the 
number of ants to avoid falling into local optima and to prevent 
long time of convergence. Besides, DAACO uses a local 
selection process to enhance the quality of ants and the needed 
time for the search process. Among the used twenty TSPLIB 
test problems, all the DAACO solutions were optimal except 
one. These results confirm the advantageous quality of 
solutions and time of convergence of DAACO compared to 
other optimizers.  

In study [43], a hybrid Ant Colony (AC)-Tabu Search (TS)-
Firefly Algorithm (FA) called ACTS-FATS is proposed. The 
hybridization avoids the probability of premature convergence, 
then, reduces the chance of trapped in local optima. Tested 
with the TSPLIB95, the hybridization does not generate 
additional execution time compared to AC, TS and FA.  

In study [44], Dhouib-Matrix, a column-row method, is 
proposed to resolve polynomial time TSP. The process of this 
method is as follows: after defining the distance matrix, a start 
position is selected to choose rows. Then, columns are 
discarded, and the route is transformed to a tour. The 
advantage of the introduced Dhouib Matrix is that it needs only 
n iterations to find the route between n cities. 

In study [45], a comparative study is proposed to discuss 
the recent algorithms and methodologies used to resolve the 
TSP using metaheuristics. The focus is set on the numerous 
versions of the BA, FA and PSO optimizers. 

In study [46], a new version of the TSP, called TSP-D is 
proposed. The latter is a classic TSP that involves a truck and a 
drone (Unmanned Aerial Vehicles (UAV)). In TSP-D, it is 
assumed that UAV has low battery capacities and can transport 
cargo per flight. The issue is to determine which UAV and 
which truck should serve which client. The tests demonstrate 
that the time of service can be reduced by using the UAVs with 
distinct speeds according to the cargo weight. However, the 
used samples (number of clients) are between 30 and 60, which 
makes the method valid only for small-size TDP-D instances.  

The authors in [47] propose an algorithm to minimize 
travel costs and maximize the overall profit. Simulated 
annealing (SA) and genetic algorithm (GA) with dedicated 
mutation operators were used. A concept of tour plots is used 
to generate the final solutions. In terms of computation time, 
the SA is better than the GA. 

In study [48], Qi-ACO, an ACO based on quantum 
computing, is developed to resolve the four-dimensional TSP 
(4DTSP). Fuzzy type-2 variables are used due to the uncertain 
aspect of the investigated problem of travel emissions and 
costs. The 4DTSP is characterized by the existence of 
numerous paths and conveyances between the cities. A process 
is implemented in Qi-ACO for generating qubits considering 
the constraints of carbon emission, cost, and time. The 
initialization and update of pheromone is based on qubit. A 
faster computation is achieved in Qi-ACO due to the quantum 
calculations. Performed statistical tests to confirm the 
performance of the introduced approach. However, numerous 
constraints are not considered such as vehicle speed and route 
selection. The readers are referred to [49] for more 
comprehensive methodologies on modeling and designing 
greedy heuristic methods to resolve the TSP. 

III. THE PROPOSED ITERATIVE APPROXIMATE METHODS 

FOR SOLVING TSP (IAM-TSP) 

The IAM-TSP is proposed in this paper as an 
approximation to the TSP, which has a greedy algorithmic 
nature. It begins by selecting four cities from the input set to 
represent the east, north, west, and south most positions. These 
cities are added to the route list in the following order: east, 
north, west and south, followed by a return to the beginning 
point (east). The algorithm then enters a loop, adding each 
remaining city to the path one by one. The method calculates 
the cost of adding a city to various points along the route 
throughout each iteration. It carefully investigates all feasible 
positions for each city, picking the best position and city at the 
lowest cost. Finally, this approach computes the route's total 
cost and outputs the final result.  

The cost is calculated using the Euclidean distance between 
the consecutive cities on the route. Algorithm 1 shows the 
pseudocode processes of the proposed IAM-TSP. Fig. 1 
illustrates the progress of the IAM-TSP solution of the Rat195 
LIBTSP real-world problem [50]. Because the TSP is a 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

423 | P a g e  

www.ijacsa.thesai.org 

minimization problem, the term ―best‖ refers to the smallest 
value throughout this paper, i.e., minimum route.  

 
Fig. 1. The progress of the IAM-TSP solution of the Rat195 LIBTSP real-

world problem, the progress is made from left to right and from top to bottom, 
and the results are displayed after ten iterations from the previous state. 

According to Algorithm 1, the proposed IAM-TSP has a 
time complexity of O(n

2
), where n is the number of cities in the 

Cities x y list. This is because, in the while loop, the algorithm 
finds the best position to put each city from the Open list into 
rout and checks every feasible solution, which takes O(n) time. 
This operation is repeated until Open is empty, which means 
that in the worst scenario, the while loop runs n times, giving a 
total time complexity of O(n

2
). 

The space complexity of the solution is O(2n + n
2
), where n 

is the number of cities in the Cities xy list. This is because we 
use two lists rout and open of size n, which take O(2n) space, 
and the quadratic space comes from the space reserved by the 
Possible Solutions matrix, whose size is n rows, each hosting n 
cities. The rest of the data structures used in the solution take 

O(1) or O(n) space, so the overall space complexity can be 
asymptotically approximated to O(n

2
). However, if we 

establish a square matrix storing the distances between each 
city and the others, space complexity stays asymptotically 
quadratic too; this is not done in this study, but it is a typical 
approach to removing the burden of distance computation. It 
should be emphasized that IAM-TSP provides an 
approximation solution for the TSP, and it does not ensure 
finding the optimal solution, because finding the best position 
for each city alone does not guarantee finding the optimal 
solution, which necessitates the involvement of all cities at the 
same time.  

In order to improve the IAM-TSP performance, and 
because involving all  cities makes the problem NP-hard, we 
opt for involving a constant number of local cities (k), and 
calculate all the permutation sequences starting from the first 
city in the output Route until the k city, finding the best 
solution and updating the Rout during this process, after which 
the algorithm goes into a loop moving by one city to find the 
next k permutations until n − k, this enhanced version is called 
IAM-TSP+. Algorithm 2 shows the pseudocode processes of 
the proposed IAM-TSP+, and Fig. 2 depicts the IAM-TSP+ 
resultant Route of the ATT48 TSPLIB real-world problem [50] 
in comparison to its optimal route. 

Algorithm 1: The proposed IAM-TSP algorithm 

Require: Cities xy (List of cities with x and y coordinates) of 

size n (number of cities) 

Ensure: Cost (Total cost of the route using Euclidean distance), 

and Route (the best possible sequence of cities) 

1: Create an empty list Route to store the order of visited cities. 

2: Get the East, North, West, and South cities and add them to 

the Route list. This is done using the minimum/maximum of x 

and y coordinates. 

3: Initialize a Boolean list Visited of size n (number of cities) 

and set all elements to false. 

4: Set the Visited status of the cities in Route to true (East, 

North, West, and South). 

5: Create an empty list Open to store the cities that have not 

been visited. 

6: Add all cities in Cities xy to Open if their Visited status is 

false. 

7: while Open is not empty do 

8: Create an empty list of list Possible Solutions to store the 

possible solutions (routs). 

9: for each city i in Open do 

10: Find the best location to insert it into Route and add the 

new route to possible Solutions. 

11: end for 

12: Find the best solution Best in Possible Solutions and keep 

track of the city ID. 

13: Update Route by Best. 

14: Remove the city ID from Open that satisfies Best. 

15: end while 

16: Calculate the cost of the Route using the Euclidean 

distance and store it in 

Cost. 

17: return Cost, Route 
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Algorithm 2: The proposed IAM-TSP+ algorithm 

Require: Cities xy of size n and k=5 (local permutations) 

Ensure: Cost, Route 

1: Route=IAM-TSP(Cities xy) 

2: for i = 1 to n − k do 

3: Create an empty list of list Possible Solutions 

4: Possible Solutions= all k local permutations of Route(from i 

to i + k) 

5: Update Cost(Possible Solutions) 

6: index = argmin(Cost) 

7: Route = Possible Solutions[index] 

8: end for 

9: return Cost(Route), Route 

 
Fig. 2. The IAM-TSP+ resultant route of the ATT48 TSPLIB real-world 

problem (in blue) n comparison to its optimal route (in red), k = 5, IAM-TSP+ 
cost = 34877, and the optimal cost = 33523. The optimal route is a little 

shifted right and down to avoid edge overdrawing. 

According to Algorithm 2, the proposed IAM-TSP+ has a 
time complexity of O(n

2
 + n.k!), where n is the number of 

cities in the Cities xy list. This is because the improved version 
uses the proposed IAM-TSP as an initial solution, this time is 
added to the time consumed by sliding the k permutations 
along the Route, which consumes O(n.k!) in the worst 
scenario, giving a total time complexity of O(n

2
 + n.k!). Since 

k is a constant number, the time complexity of O(n.k!) is often 
greater than that of O(n

2
). O(n.k!) may still be more efficient 

than O(n
2
) for small values of k, but as (k) grows higher, the 

growth rate of O(n.k!) quickly exceeds that of O(n
2
). 

Therefore, the time complexity of IAM-TSP+ can be 
asymptotically approximated to O(n.k!). The space complexity 
of the IAM-TSP+ is similar to that of the proposed IAM-TSP, 
with the exception of the space required by the possible 
Solutions matrix, which contains k! rows of routes, each of 

which hosts n cities, resulting in a total space complexity of 
O(n

2
 +n.k!), which can be asymptotically approximated to 

O(n.k!). This is a problem for machines that have limited 
memory resources, particularly when k is large, and therefore, 
k needs to be decided based on the available memory 
resources. 

IV. EXPERIMENTAL SETUP AND RESULTS 

To verify the quality and effectiveness of the proposed 
methods for solving TSP, IAM-TSP and IAM-TSP+ were 
applied to nine TSP instances, each with a known optimal 
solution. Those TSPs are from the TSPLIB [50], which has 
vertices between 40 and 500, namely: a280, att48, berlin52, 
KroA100, ch150, ch130, pr76, lin105, and pcb442. We chose 
these specific instances to facilitate comparison to other 
methods that have been repeatedly used in many studies. 

We compare the performance of the proposed methods to 
other related methods that proposed in the recent years; these 
include:  

 NN: Nearest Neighbor algorithm 

 FI: Farthest Insertion algorithm 

 CH: Concave hull with Heuristic. 

 CNH: Concave hull No Heuristic 

  NI: Nearest Insertion algorithm. 

 CI: Cheapest Insertion algorithm 

  AI: Arbitrary Insertion algorithm 

 RNN: Repetitive Nearest Neighbor algorithm 

  2-Opt: 2-Opt algorithm 

It deserves to be noted that the aforementioned methods 
were not developed for this work; rather, we directly reference 
their results on each standard TSP as stated by [33], where all 
parameters used for each method can be obtained. It is also 
worth noting that the majority of these methods’ results were 
obtained by repeating each method a number of times and 
reporting the average performance. However, we do not need 
to do the same for the proposed methods because each 
produces the same result on a specific TSP regardless of how 
many times the method is run.  

We performed simulation experiments using C# of 
Microsoft visual studio 2022.  The hardware and software 
specifications of the system are as follows:  

11th Gen Intel(R) Core (TM) i7-1165G7 @ 2.80GHz, 8.00 
GB RAM, and Windows 11 Pro, 64-bit operating system. 

The results of the proposed methods to the other compared 

methods are shown in Table I, in which the optimal tour length 

(cost) is recorded as reported in the TSPLIB standard library. 

As it can be seen from Table I, The proposed IAM-TSP+ 

outperforms the IAM-TSP on all TSPs, which is to be expected 

given that the latter is an input to the former and the former 

employs nine local permutations along the resultant route, 

giving it more chances to identify better solutions. 
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TABLE I. PERFORMANCE COMPARISON OF THE PROPOSED METHODS TO  NINE RELATED METHODS ON DIFFERENT TSP INSTANCES 

Instance Optimal IAM-TSP IAM-TSP+ CH CNH FI NI CI AI NN RNN 2OPT 

a280 2579 3051.0804 2978.079155 3335.9 3448 2953 3072.7 3110.7 2995.7 3369.7 3037.7 3018.1 

att48 33523 35595.13404 34877.093 35618 35811.2 35267 37893.3 36391.9 35723.1 42112.7 39237 37458.4 

berlin52 7542 8497.33404 8031.31761 9013.7 9013.7 8175 9097.7 9007.3 8346.4 9265.4 8182.2 8368.6 

ch150 6528 7367.615815 7167.696739 7176.5 7309.6 7148 8066.9 7988.7 7228.8 7734.2 7078.4 7379.4 

ch130 6110 6664.37646 6584.106521 7038 7038.8 6855 7381.6 7164.9 6625.8 7747.4 7198.7 6755.5 

kroA100 21282 23375.94197 22212.77837 22899.1 23310.1 22874 25957 25073.5 23270.7 27084.2 24699 24401.9 

pr76 108159 115547.4825 113155.4313 115790 118877 117173 130029 126837 116098 145227 130921 118838.3 

lin105 14379 16285.06763 15948.15549 15596.1 15730.7 15331 18287.9 17327.6 15802.6 18646 16939 16322.2 

pcb442 50778 57860.0934 57458.28 66961.6 72425 57537.9 60667.9 59493.1 58001.5 64819.2 59975 57354.4 

 

Furthermore, the proposed IAM-TSP+ outperforms not 
only IAM-TSP, but also, all methods compared on 5 TSPs, 
namely att48, berlin52, ch130, KroA100, pr76, followed by the 
FI method, which also performs well. 

Aside from the FI, the proposed IAM-TSP outperforms many 

other methods without the need for additional improvement 

and achieves solutions closer to optimal in two instances: 

att48 and pr76. It is interesting to note that both of the 

proposed methods achieve performance that is very close to 

the optimal solution in some instances. In order to illustrate 

the different performances of both of the best performers, 

IAM-TSP+ and FI, Fig. 3 compares the resultant routes’ costs 

of both methods on several TSPs while Fig. 4, 5, and 6 

provide comparisons of the proposed methods to the other 

nine related methods on small-scale TSP instances. As it can 

be seen from these figures, the proposed methods achieve 

better or comparable performance when compared to the other 

approximation methods that attempt to find the best possible 

TSP solution. 

 
Fig. 3. The routes’ cost results of the proposed IAM-TSP+ compared to that 

of the FI method. 

 
Fig. 4. The routes’ cost results of the proposed methods compared to that of 

the other methods on Att48 TSP. 

 
Fig. 5. The routes' cost results of the proposed methods compared to that of 

the other methods on pcb442 TSP. 
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Fig. 6. The routes' cost results of the proposed methods compared to that of 

the other methods on pr76 TSP. 

The approximation ratio, which is the ratio of the method’s 
output to the optimal tour cost, quantifies how much the 
approximate solution differs from the optimal solution. The 
approximation ratios of all methods compared are presented in 

Table II. As it can be seen in the table, the proposed IAM-
TSP+ delivers the best overall approximation, with an average 
of 1.09 overall TSPs, compared to the next competitor (FI), 
which has an average approximation of 1.10.  

The proposed AIM-TSP also performs well, with an 
average approximation of 1.11, surpassing seven comparable 
methods. In addition to the approximation ratio, the error rate 
represents the percentage difference between the solution’s 
fitness value and the known optimal solution, and it is 
determined as follows [51]: 

           
                         

                
      (1) 

The comparison results for the error rates are presented in 
Table III. As it can be seen in Table III, the proposed IAM-
TSP+ delivers the minimum overall error rate, with an average 
of 8.51% overall TSPs, compared to the next competitor (FI), 
which has an average error rate of 9.50%. The proposed AIM-
TSP also performs well, with an average error rate of 11.44%, 
surpassing seven comparable methods. Considering the costs, 
approximation ratios, and error rates of the resulting Routes, 
the proposed methods, specifically the IAM-TSP+, outperform 
all related methods aimed at solving the TSP in general. 

TABLE II. COMPARISONS OF THE APPROXIMATION RATIOS OF THE PROPOSED METHODS TO THE OTHER RELATED METHODS 

Instance Optimal IAM-TSP IAM-TSP+ CH CNH FI NI CI AI NN RNN 2OPT 

a280 2579 1.183047848 1.15474182 1.2934858 1.33695 1.14502 1.19143 1.20617 1.16157 1.30659 1.1779 1.17026 

att48 33523 1.061812309 1.040392954 1.0624944 1.06826 1.05202 1.13037 1.08558 1.06563 1.25623 1.1704 1.117394 

berlin52 7542 1.126668528 1.064879025 1.1951339 1.19513 1.08393 1.20627 1.19429 1.10666 1.22851 1.0849 1.1096 

ch150 6528 1.128617619 1.09799276 1.0993413 1.11973 1.09498 1.23574 1.22376 1.10735 1.18477 1.0843 1.130423 

ch130 6110 1.090732645 1.077595175 1.1518822 1.15201 1.12193 1.20812 1.17265 1.08442 1.26799 1.1782 1.105646 

kroA100 21282 1.098390281 1.043735475 1.0759844 1.0953 1.0748 1.21967 1.17816 1.09345 1.27263 1.1605 1.146598 

pr76 108159 1.068311306 1.046195243 1.0705535 1.09909 1.08334 1.2022 1.17269 1.0734 1.34271 1.2104 1.098737 

lin105 14379 1.132559123 1.109128277 1.0846443 1.09401 1.06621 1.27185 1.20506 1.09901 1.29675 1.1781 1.135142 

pcb442 50778 1.139471689 1.131558549 1.3187128 1.42631 1.13313 1.19477 1.17163 1.14226 1.27652 1.1811 1.129513 

TABLE III. ERROR RATE COMPARISONS 

Instance Optimal IAM-TSP IAM-TSP+ CH CNH FI NI CI AI NN RNN 2OPT 

a280 2579 18.3047848 15.47418203 29.348585 33.6952 14.5017 19.1431 20.6165 16.1574 30.6592 17.786 17.02598 

att48 33523 6.181230913 4.039295424 6.2494407 6.82576 5.2024 13.0367 8.558 6.56296 25.6233 17.045 11.7394 

berlin52 7542 12.66685282 6.487902542 19.513392 19.5134 8.393 20.6272 19.4285 10.6656 22.8507 8.4885 10.95996 

ch150 6528 12.86176188 9.799276026 9.9341299 11.973 9.49755 23.5738 22.3759 10.7353 18.4773 8.4314 13.04228 

ch130 6110 9.073264485 7.759517522 15.188216 15.2013 12.1931 20.8118 17.2651 8.4419 26.7987 17.818 10.56465 

kroA100 21282 9.839028145 4.37354747 7.59844 9.52965 7.4805 21.9669 17.8155 9.34452 27.2634 16.053 14.65981 

pr76 108159 6.831130592 4.619524286 7.0553537 9.90921 8.33403 20.2198 17.2686 7.3404 34.2715 21.045 9.873704 

lin105 14379 13.2559123 10.9128277 8.4644273 9.40051 6.62077 27.1848 20.5063 9.90055 29.6752 17.807 13.51415 

pcb442 50778 13.94716885 13.1558549 31.871283 42.6307 13.3127 19.4767 17.1631 14.2256 27.6521 18.111 12.95128 
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V. CONCLUSION 

In this paper, we presented two geometric-based 
approximation greedy algorithms for solving the classical TSP, 
one of which we call IAM-TSP which is proposed based on 
locating four extreme nodes/cities and then iterating to 
determine the best potential positions of each node/city. The 
other method is known as IAM-TSP+, and it is simply an 
improved version of the first one, with employing local 
constant permutations to improve the first method's result. 

The experimental results of the proposed methods on nine 
TSP instances show that, when compared to nine recent related 
methods, the proposed methods (particularly the IAM-TSP+) 
provide promising solutions for the classical TSP. This is seen 
in the resulting routes' cost effectiveness, approximation ratios, 
and error rates. The enhanced performance (of the IAM-TSP+) 
is due to the selection of the best local solution, which was 
accomplished by exploring all k-permutations and considering 
the best local solution after obtaining the initial solution from 
the pure IAM-TSP, where k = 5 in all experiments. 

The proposed method's limitations include the time and 
space complexity, which is rather high for the proposed IAM-
TSP+, making the evaluation of the proposed methods on large 
TSP instances particularly difficult on restricted resource 
machines. As a result, parallel or distributed computation may 
facilitate the evaluation of proposed methods. In addition to 
employing the output route as an initial seed for the genetic 
algorithm [52, 53]. Our future research will focus on such 
issues. 
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