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Abstract—All human beings experience different levels of 

psychological stress during their daily activities, and stress is an 

integral part of human life. So far, few studies have attempted to 

identify different levels of stress by analyzing physiological 

signals. However, it should be noted that developing a practical 

system for detecting multiple stress levels is a challenging task, 

and no standard system has been developed for this purpose. 

Therefore, in the current study, we propose a new detection 

system based on linear and nonlinear analysis of 

photoplethysmogram (PPG) and electrodermal activity (EDA) 

signals to classify three levels of stress (low, medium and high). 

In the current study, we recorded the physiological signals of 

EDA and PPG during three trials of a Stroop color word test that 

induced three levels of stress in 42 healthy male volunteers. 

Mean, median, standard deviation, variance, skewness, kurtosis, 

minimum, maximum, and RMS features in the time domain were 

calculated from physiological signals as linear features. Also, 

approximate entropy, sample entropy, permutation entropy, 

Hurst exponent, Katz fractal dimension, Higuchi fractal 

dimension, Petrosian fractal dimension, detrended fluctuation 

analysis (DFA), and embedding dimension and time delay 

parameters from phase space reconstruction of the signals were 

calculated as nonlinear features. The combination of nonlinear 

and linear features extracted from both PPG and EDA signals 

resulted in the highest mean accuracy (88.36%), intraclass 

correlation (ICC) (98.82%) and F1 (89.24%) values in the 

classification of three levels of mental stress through multilayer 

perceptron neural network. Our findings showed that the 

combination of nonlinear and linear approaches for biological 

data analysis (PPG and EDA) could help to develop a stress 

detection system. 

Keywords—Stress detection; biological signal; linear analysis; 

nonlinear analysis; classification 

I. INTRODUCTION 

All human beings experience different levels of 
psychological stress during their daily life activities, and stress 
is an integral part of human life. Stress refers to situations and 
feelings in which people perceive expectations to be beyond 
their capabilities [1]. In fact, stress can be defined as the mind 
or body's response to any need for change [2]. Human stress is 
controlled by the activation of the limbic system and the 

hypothalamus-pituitary-adrenal axis, which control the release 
of adrenaline and cortisol (stress hormones) in the bloodstream 
[3]. The circulation of these hormones in the human body 
through the bloodstream leads to different physiological 
variations. As a result, the heart rate begins to increase relative 
to the normal condition, increasing blood pumping to the 
muscles and various organs. Therefore, blood pressure and 
breathing rate increases [4]–[6]. In addition, adrenaline causes 
the release of stored fat and glucose into the bloodstream, 
preparing the body to respond to stress [7]. Furthermore, it has 
been shown that different areas of the human brain, such as the 
prefrontal cortex, play an important role in regulating various 
signs of the body during stress [8]. All this cumulative 
evidence shows that physiological systems and signals undergo 
changes during psychological stress. 

On the other hand, it should be noted that excessive stress 
affects people's health. It has been introduced as a risk factor 
involved in the occurrence of major psychiatric diseases such 
as schizophrenia, depression and anxiety disorders [9]– [11]. 
Mental stress affects the ability for problem-solving, creativity, 
work memory and decision-making in humans. In addition, it 
can be a risk factor for various physical illnesses such as 
strokes, diabetes, and cardiovascular diseases [12], [13]. 
Therefore, determining the level of stress in different situations 
can help people to control it using stress reduction techniques 
and avoid the unpleasant consequences of excessive stress on 
health. Accordingly, in recent years, many pattern recognition 
methods have been developed to detect different emotions and 
their levels from biological signals [14]–[16]. 
Electroencephalogram (EEG), electrocardiogram (ECG), 
electromyogram (EMG), electrodermal activity (EDA), 
respiratory signal (RSP), blood volume pulse (BVP) and 
photoplethysmogram (PPG) are among the biological and 
physiological signals that have been computationally analyzed 
for this purpose. However, the main challenge in stress 
detection systems is the fact that each person is unique and 
shows emotions in different ways. This makes the topic of 
research hot. Although most studies on emotion recognition 
used ECG and EEG signals, we attempted to record and 
analyze PPG and EDA signals in the current study because 
they can be recorded via two-finger electrodes on the non-
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dominant hand without compromising privacy and comfort. 
Moreover, some early studies demonstrated that PPG and EDA 
are good indicative tools to assess emotions. 

II. RELATED WORKS 

Paul Ekman was the first researcher who tried to recognize 
different emotions through physiological signal analysis [17]. 
Later, several researchers tried to continue his interesting path 
by analyzing different physiological signals. However, most 
studies focused on emotions like joy, fear, sadness, disgust, 
anger and surprise, and very few studies attempted to detect 
different levels of mental stress. Healey and Pickard induced 
three levels of stress (low, moderate, and high) during a driving 
task and analyzed ECG, EMG, RSP, and EDA signals recorded 
from healthy participants. They used linear frequency analysis 
and a linear discriminant analysis (LDA) classifier and 
reported a good accuracy of 97% for distinguishing three levels 
of human stress [18]. Shirvan et al. proposed a computational 
technique based on different linear and nonlinear analyses 
(including statistical analysis, fractal dimension analysis and 
detrended fluctuation analysis) of functional near-infrared 
spectroscopy (fNIRS) signals to detect low and high levels of 
stress. They used a feature selection method and support vector 
machine (SVM) classifier at both individual and group settings 
for stress levels classification and reported an accuracy of 
88.72% in this regard [19]. Yannakakis and Hallam induced 
two levels of fun (low and high) in healthy participants through 
an interactive game and analyzed the recorded ECG, EDA and 
BVP signals by linear statistical analysis. They used SVM and 
Artificial Neural Networks (ANN) in the classification stage 
and reported 70% accuracy in recognizing two levels of fun 
[20]. Katsis et al. induced low stress, high stress, euphoria and 
disappointment in subjects through a driving task and analyzed 
the linear dynamics of the recorded ECG, EMG, EDA and RSP 
signals. In the classification stage, they used SVM and a neuro-
fuzzy inference system and achieved 79.3% accuracy for the 
classification of the four states [21]. Valenza et al. induced 
multiple levels and valence and arousal in healthy volunteers 
through an international affective picture system and analyzed 
the nonlinear dynamics of the recorded ECG, EDA and RSP 
signals. In the classification stage, they used a quadratic 
discriminant classifier and achieved more than 90% accuracy 
in affective arousal and valence recognition [14]. 

As mentioned, few studies have attempted to identify 
different levels of stress by analyzing physiological signals. 
However, it should be noted that developing a practical system 
for detecting multiple stress levels is challenging, and no 
standard system has been developed for this purpose. 
Therefore, in the current study, we propose a new detection 
system based on linear and nonlinear analysis of PPG and EDA 
signals to classify three levels of stress (low, medium and 
high). 

III. MATERIALS AND METHODS 

A total of 42 healthy male volunteers participated in the 
research with an average age of 26.31 ± 5.12 years. The 
research method was first explained to all participants, and 

informed consent was obtained from them before beginning the 
experiment. All subjects had a normal or normalized vision. A 
psychiatric interview was conducted by a psychiatrist to ensure 
the mental health of all participants to have no symptoms of 
major psychiatric disorders, cognitive problems, insomnia, 
anxiety, or social dysfunction. In addition, participants had no 
history of major physical illnesses, drug or alcohol abuse, and 
neurological disorders. 

A. Stress Induction 

In the current study, we utilized the Stroop color word test 
in a visual basic windows environment to induce three levels of 
stress in the participants. This test comprises three different 
experiments: preliminary experiment, congruent or non-
conflict experiment, and non-congruent or conflict experiment. 
In the preliminary experiment, the color of the word appeared 
black. In the congruent experiment, the color of the work that 
appeared is similar relative to the color in the written word. In 
the non-congruent experiment, the color of the word appeared 
in different colors relative to the written word. Fig. 1 shows the 
Stroop color word test used in the current study for inducing 
stress. In each task and experiment, participants should indicate 
the color of the word. Each experiment lasted three minutes. In 
all experiments, each trial was displayed for three seconds, and 
participants were asked to respond to each trial using a mouse. 
Previous studies have shown that this test can reliably elicit 
three levels of stress in human subjects. Indeed, the preliminary 
experiment induces a low-stress level, the congruent 
experiment induces a medium stress level, and the non-
congruent experiment induces a high-stress level [22], [23]. A 
16-inch monitor was placed in front of participants at a 70-cm 
distance from them to perform the Stroop test. 

B. Physiological Signal Acquisition 

As mentioned, in the current study, we captured the EDA 
and PPG physiological signals during three experiments of the 
Stroop color word test. EDA indicates the variations in the 
electrical properties of the skin because of mentally induced 
sweat gland activities upon external stimuli. Skin resistance 
varies with the status of sweat glands in the skin. Sweating is 
controlled by the sympathetic nervous system, and thus, skin 
resistance is an indication of psychological arousal [24]. On the 
other hand, PPG is a simple optical non-invasive method to 
determine volumetric changes in blood in peripheral circulation 
that has been shown to be related to affective states [25]. 

In the current study, the Shimmer3 EDA+ module, along 
with an optical pulse sensor, was used for recording the EDA 
and PPG signals. This device is an extensible wireless sensor 
platform for recording sampled EDA data in real-time. The 
optical pulse sensor attached to this module also can record a 
PPG signal from a finger. This module digitized data at a 250 
Hz sampling rate and streamed the data to a host PC in real-
time. Two dry electrodes, along with the optical pulse probe, 
were attached to the fingers of subjects' non-dominant hands to 
record the EDA and PPG signals. The Shimmer3 module has 
shown to be an accurate and reliable wearable sensor platform 
for capturing physiological signals, which can be utilized for 
biomedical research applications [26]. 
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Fig. 1. The Stroop color word test was used in the current study to induce three levels of stress. 

C. Linear and Nonlinear Analysis for Feature Extraction 

The linear features extracted from EDA and PPG signals 
include mean, median, standard deviation, variance, skewness, 
kurtosis, minimum, maximum, and RMS in the time domain. 
These linear statistical features have a low computational cost 
which has been shown to be effective in various biomedical 
research applications. Mathematical definitions of these 
features and their details can be found in [27], [28]. On the 
other hand, the nonlinear features extracted from EDA and 
PPG signals include approximate entropy, sample entropy, 
permutation entropy, Hurst exponent, Katz fractal dimension, 
Higuchi fractal dimension, Petrosian fractal dimension, 
detrended fluctuation analysis (DFA), and embedding 
dimension and time delay parameters from phase space 
reconstruction of the signals (see Table I). Mathematical 
definitions of these features and their details can be found in 
[29], [30]. 

TABLE I.  LIST OF LINEAR AND NONLINEAR FEATURES EXTRACTED 

FROM PPG AND EDA SIGNALS 

Analysis Extracted features from PPG and EDA signals 

Linear 
Mean, median, standard deviation, variance, skewness, 
kurtosis, minimum, maximum, RMS 

Nonlinear 

Approximate entropy, sample entropy, permutation 

entropy, Hurst exponent, Katz fractal dimension, Higuchi 
fractal dimension, Petrosian fractal dimension, detrended 

fluctuation analysis, embedding dimension, time delay 

IV. RESULTS 

Before feature extraction, we first applied a simple 
segmentation method to the recorded signals through a 
rectangular window with a length of 45 seconds. Considering 
the sampling frequency of 250 Hz, each segment contained 
11250 data points. Also, each segment had a label to show the 
individual’s stress level. All the above features were extracted 
from each segment, and the average values extracted for all 

segments with the same label were defined as the main feature 
in the classification step. Linear features were first extracted 
from PPG and EDA time series, and then, nonlinear features 
were estimated from the signals through the described 
nonlinear dynamic algorithms. Fig. 2 and Fig. 3 show 
examples of PPG and EDA signals recorded at three stress 
levels, respectively. Also, Fig. 4 depicts the histogram of time 
delays obtained from PPG and EDA signals. 

In the classification stage, 70% of features were utilized to 
train a multilayer perceptron (MLP) neural network, 10% was 
utilized for model validation, and the remaining 20% was used 
to test the MLP. In the validation stage, the leave-one-subject-
out approach was utilized to estimate the performance of MLP. 
We investigated different combinations of features and signals 
(i.e., EDA and PPG) to arrive at the optimal way to detect the 
stress level. In other words, we utilized various feature 
combinations for MLP modeling and assessed the classification 
results of each combination to obtain the best solution for this 
three-class classification problem. Assessment metrics utilized 
in the current study for evaluating different strategies were 
accuracy, intra-class correlation coefficient (ICC) and F1-
measure. 

Fig. 5 to Fig. 7 show mean classification accuracies, F1-
measures and ICC values obtained for each feature 
combination by MLP classifier. As shown, the best accuracy of 
79.5% was obtained by nonlinear features extracted from PPG 
signals. The best accuracy of 80.42% was obtained by 
combined features (i.e., linear and nonlinear features) extracted 
from EDA signals. In addition, the best accuracy of 88.36% 
was obtained by combining features extracted from PPG and 
EDA signals. Indeed, the combination of nonlinear and linear 
features extracted from both PPG and EDA signals resulted in 
the highest mean accuracy (88.36%), ICC (98.82%) and F1 
(89.24%) values in the classification of three levels of mental 
stress.
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Fig. 2. Example of recorded PPG signals for (A) low-stress level, (B) medium stress level, and (C) high-stress level. 

 

 

Fig. 3. Example of recorded EDA signals for (A) low-stress level, (B) medium stress level, and (C) high-stress level. 

 

Fig. 4. Histogram of time delays obtained from (A) PPG and (b) EDA signals. 
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Fig. 5. Averaged classification results were obtained for different features extracted from PPG signals. 

 
Fig. 6. Averaged classification results were obtained for different features extracted from EDA signals. 

 

Fig. 7. Averaged classification results were obtained for different features extracted from PPG and EDA signals. 
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V. DISCUSSION 

In the current study, we explored the possibility of 
detecting and classifying three levels of human stress (low, 
medium and high-stress levels) in 42 healthy people. Our 
findings showed that classification with linear and nonlinear 
features extracted from PPG and EDA signals is a good 
strategy for achieving an artificial intelligence-based automated 
system for detecting closed levels of human stress. Therefore, 
the nonlinear and linear dynamics of biological signals play a 
vital role in recognizing stress levels. This shows that the 
biological signals are not purely stochastic and random and 
follow a deterministic nonlinear behavior in response to 
different conditions. However, it should be noted that these 
results were obtained in laboratory conditions. All participants 
experienced a fixed setup with a noiseless environment, and 
different stress levels were induced through an executive 
cognitive task. However, this situation is totally different from 
real-life situations and the stress of everyday life, and this is the 
main limitation of this work. The use of wearable devices and 
virtual reality environments may alleviate this important 
limitation that future studies should consider. 

Moreover, it should be noted that human stress may be 
unstable and temporary [31]. Therefore, it is very important to 
design a fast real-time system to detect stress levels in such 
situations. In addition, emotions and mental stress may be 
influenced by different physical and mental disorders. 
However, here, we only worked on healthy subjects. 
Consequently, our proposed system should be used with 
caution. On the other hand, our findings can be used in the field 
of psychiatry and psychology, and future studies should 
investigate the ability of our system to detect different levels of 
stress in psychiatric patients. Overall, our proposed automated 
stress detection system can be used in a wide range of settings 
to improve safety, health, and performance, including 
workplace safety, healthcare, education, sports, and 
transportation. For example, our stress detection system can be 
used in sports to monitor athletes' stress levels and provide 
feedback on how to manage stress during competition. This 
can help improve performance and reduce the risk of injury. 
Also, our stress detection system can be used in schools to 
monitor students' stress levels and provide support if necessary. 
This can help improve academic performance and reduce 
absenteeism. 

Our proposed system showed good performance compared 
to previous studies. Healey and Picard proposed an automated 
system to distinguish three stress levels caused by a driving 
task through EMG, ECG, EDA and RSP signals and achieved 
an accuracy of 97% for this purpose [18]. However, the variety 
of biological signals in their work has led to a large increase in 
the cost of computations and the practical limitation of their 
proposed system. Zhai and Barreto reported an accuracy of 
90% in distinguishing two stress levels using different 
biological signals and support vector machines [32]. This is 
despite the fact that we achieved the same accuracy as their 
work in our three-class problem. Furthermore, our proposed 
system outperformed the system introduced by Katsis et al., 
which achieved 79% accuracy in detecting three stress levels 
[21]. However, an important point that should be mentioned 
when comparing different systems is the lack of a 

comprehensive and public database for a more accurate 
evaluation and comparison of the systems proposed by 
researchers in this field. 

VI. CONCLUSION 

To sum up, we dealt with the crucial stages of an automated 
recognition system for three levels of human stress using 
biological signals of EDA and PPG, from signal recording to 
the classification step, and investigated the results from each 
stage of this system. Using the proposed system, we achieved a 
mean detection accuracy of 88%, which provides evidence to 
show autonomic nervous system differences among different 
stress levels. A range of biological features from linear and 
nonlinear analyzes was calculated to obtain the optimum 
stress-related features. Our findings showed that combining 
nonlinear and linear approaches for biological data analysis 
(PPG and EDA) could help develop a stress detection system. 
At the end, we call to action for a comprehensive, publicly 
accessible database of physiological signals to evaluate and 
compare stress detection systems rigorously. 
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