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Abstract—Urban environments are awash with myriad 

sounds, among which impulsive noises stand distinct due to their 

brief and often disruptive nature. As cities evolve and expand, 

the accurate classification and management of these impulsive 

sounds become paramount for urban planners, environmental 

scientists, and public health advocates. This paper introduces a 

novel framework leveraging the Bidirectional Long Short-Term 

Memory (BiLSTM) Network for the systematic categorization of 

impulsive urban sounds. Traditional methodologies often falter 

in recognizing the nuanced intricacies of such noises. In contrast, 

the presented BiLSTM-based approach adapts to the temporal 

variability intrinsic to these sounds, thereby enhancing 

classification accuracy. The research harnesses an expansive 

dataset, curated from various urban settings, to train and 

validate the model. Preliminary findings suggest that our 

BiLSTM framework outperforms existing models, with a marked 

increase in both specificity and sensitivity metrics. The outcome 

of this study holds profound implications for city acoustics 

management, noise pollution control, and urban health 

interventions. Moreover, the framework's adaptability paves the 

way for its application across diverse acoustic landscapes beyond 

the urban realm. Future endeavors should seek to further 

optimize the model by integrating more diverse soundscapes and 

addressing potential biases in data collection. 

Keywords—Impulsive sound; machine learning; deep learning; 

CNN; LSTM; classification 

I. INTRODUCTION 

In the vibrant tapestry of urban life, sounds and noises play 
an integral role, shaping the auditory landscapes that city 
inhabitants navigate daily. The urban soundscape, a 
combination of ambient noises, human interactions, vehicular 
movements, and sudden, impulsive sounds, constitutes an 
integral aspect of urban living [1]. These sounds, particularly 
the impulsive varieties, serve as a double-edged sword [2]. On 
one hand, they contribute to the character and ambiance of a 
city, often evoking deep-seated memories and emotional 
responses among its residents. On the other hand, unchecked 
and discordant impulsive noises can deteriorate the quality of 
life, leading to stress, sleep disturbances, and even chronic 
health issues [3]. Consequently, the significance of identifying, 

classifying, and managing these sounds in urban spaces cannot 
be overstated. 

While a plethora of research has focused on the broad 
soundscape of cities, the niche area of impulsive urban sounds 
has traditionally been underserved. Defined by their short, 
abrupt nature, these sounds—be it the honk of a car, the clang 
of a dropped tool, or the burst of fireworks—pose unique 
challenges to classification systems [4]. Traditional audio 
classification models, built primarily for longer and more 
consistent sounds, often struggle to capture the fleeting 
nuances of impulsive noises [5]. The rapid onset and offset of 
these sounds, combined with their varied frequency range, 
demand an approach that is both sensitive to temporal 
dynamics and adaptable to a broad acoustic spectrum. 

Enter the realm of neural networks, which in recent years, 
has revolutionized the domain of sound classification. Among 
neural architectures, the Long Short-Term Memory (LSTM) 
network [6], a type of recurrent neural network, has shown 
promise in handling sequences and time-series data, making it 
a suitable contender for our auditory challenge. However, a 
unidirectional LSTM processes data in its input sequence 
order, potentially overlooking patterns that emerge from the 
reverse sequence of sounds [7]. Recognizing this limitation, 
and drawing inspiration from the bidirectional nature of human 
auditory processing where sounds are often understood in the 
context of both preceding and following sounds, this research 
innovatively employs the Bidirectional Long Short-Term 
Memory (BiLSTM) Network [8]. The BiLSTM, by virtue of 
processing an input sequence in both forward and backward 
directions, stands poised to capture the intricate patterns and 
characteristics intrinsic to impulsive urban sounds, offering a 
comprehensive understanding of their structure. 

This paper, therefore, sets forth with a dual agenda. Firstly, 
it seeks to elucidate the significance and complexity of 
impulsive urban sounds, grounding its arguments in both 
auditory science and urban studies. Secondly, it embarks on a 
journey to explore the efficacy of the BiLSTM framework in 
classifying these sounds, aiming to bridge the gap between 
neural network research and urban acoustic management. In 
doing so, this research not only endeavors to advance the field 
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of auditory classification but also aspires to have a tangible 
impact on urban planning, noise pollution control measures, 
and public health interventions. 

As we delve deeper into this exploration, it becomes 
imperative to understand the broader context within which 
urban sounds exist, the technological advancements in neural 
networks, and the potential applications of an effective 
classification system. Through this multi-faceted lens, this 
research hopes to offer a comprehensive view of the challenges 
and opportunities that lie at the intersection of urban acoustics 
and advanced neural architectures. 

II. RELATED WORKS 

Amid the bustling panorama of urban existence, the 
cacophony of sounds emerges not just as an incidental 
backdrop, but as an active participant shaping the dynamics of 
city life. The auditory fabric of urban centers is woven with 
diverse threads, ranging from the rhythmic footfalls on 
pavements to the occasional discordant blare of car horns [9]. 
Within this intricate web, impulsive urban sounds—transient, 
unexpected, and often sharp in nature—hold a unique place 
[10]. Their fleeting existence and unpredictable onset present 
both an auditory intrigue and a challenge that merit academic 
and scientific exploration. 

As cityscapes continue to evolve, converging towards a 
future that's increasingly urbanized, the sonic environment they 
foster becomes an indispensable area of study. The 
implications of these sounds stretch across various dimensions: 
psychological, sociological, environmental, and even 
physiological [11]. For instance, while a distant church bell or 
a street performer's melody might evoke feelings of nostalgia 
or joy, the sudden screech of brakes or a loud explosion can 
trigger stress or anxiety [12]. The dichotomy of these reactions 
underscores the relevance of understanding and classifying 
urban sounds, especially those of an impulsive nature [13]. 
Given their impact on the well-being of city dwellers, mental 
health, and the broader urban experience, a systematic study 
becomes not just an academic endeavor but a societal 
imperative. 

Historically, the academic arena has demonstrated a 
sustained interest in urban noises, resulting in extensive 
literature on the general soundscape of cities [14]. However, 
when it comes to the niche area of impulsive sounds, the 
scholarly attention seems somewhat disproportionate [15]. This 
relative dearth is surprising, given that impulsive noises, by 
virtue of their sudden onset and varied frequency profiles, pose 
unique challenges. Traditional auditory classification models, 
designed with an inclination towards consistent and prolonged 
sounds, falter when faced with the erratic nature of impulsive 
noises [16]. The fleeting presence and diverse acoustic 
characteristics of these sounds necessitate an approach that's 
not only nimble but also adept at capturing rapid temporal 
fluctuations [17]. 

Enter the world of advanced neural networks—a domain 
that has, in recent times, transformed numerous fields, 
including audio processing [18]. Among the neural 
architectures on offer, the Long Short-Term Memory (LSTM) 
network, a subtype of recurrent neural networks, has emerged 

as a front-runner for tasks involving sequence or time-series 
data [19]. Given its prowess in handling sequential data, LSTM 
offers a glimmer of hope for the impulsive sound conundrum. 
However, traditional LSTM, being unidirectional, processes 
sequences in the order they are presented, potentially missing 
out on valuable insights that could be gleaned from reverse 
order processing. 

It's against this backdrop that this research introduces the 
Bidirectional Long Short-Term Memory (BiLSTM) [20] 
Network to the equation. Drawing parallels from human 
auditory processing, which inherently understands sounds 
based on both their preceding and succeeding context, the 
BiLSTM processes sequences bidirectionally—both forwards 
and backwards. This bidirectional approach promises a more 
holistic grasp of impulsive urban sounds, capturing nuances 
that might escape unidirectional models [21]. By processing 
sounds in this dual manner, the BiLSTM aspires to straddle the 
intricate patterns and temporal dynamics intrinsic to impulsive 
noises. 

This paper embarks on a journey with twofold objectives. 
First, it aims to contextualize the importance and intricacies of 
impulsive urban sounds within the broader discourse of urban 
studies and auditory science [22]. It strives to illustrate why 
these sounds, often sidelined in scholarly pursuits, deserve 
focused attention. Second, the research delves into the 
technical and empirical exploration of the BiLSTM framework, 
investigating its potential as the much-needed solution to the 
challenges posed by impulsive sounds. Through this synthesis, 
the paper hopes to create a bridge—linking the often disparate 
worlds of neural network research and urban acoustic 
management. 

As we venture further into this academic exploration, we're 
invited to reflect upon a myriad of interconnected themes: the 
transformative power of neural networks, the complex tapestry 
of urban soundscapes, and the potential societal ramifications 
of effective sound classification. Through this kaleidoscopic 
lens, this research endeavors to provide a comprehensive and 
nuanced perspective, setting the stage for groundbreaking 
revelations in the crossroads of urban acoustics and neural 
network technology. 

III. MATERIALS AND METHODS 

In line with our initial conceptual framework, there is a 
two-fold requirement: first, to register the designated sound 
analysis apparatus, and second, to subject it to rigorous training 
[23]. This machine, once operational, deciphers the ingested 
auditory data, which can span a gamut of audio formats, a 
notable example being the mp3 format. Upon the reception of 
such an audio file, the machine subsequently crafts its 
associated spectrogram. A spectrogram, often interchangeably 
termed a sonogram (Fig. 1), is a graphical rendering that 
elucidates the relationship between the spectral density of a 
signal's power and its temporal progression [24]. Historically, 
spectrograms have found multifaceted applications across 
disciplines. They play a pivotal role in areas such as speech 
recognition, analysis of animal vocal patterns, diverse musical 
domains, radio and sonar technologies, linguistic signal 
processing, seismological research, and several other 
specialized fields. 
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A. Searching and Selecting Dataset 

Each model training task requires a lot of input data, and 
the quality of our model will essentially depend on them. 
Therefore, the choice of dataset is an important part when 
building a model. Often the data also needs to be filtered or 
"cleaned up" in case some of the samples contain 
misrepresentations or false sounds for the class. 

 

Fig. 1. Example of spectrogram of chainsaw. 

We found two very interesting datasets, the first is the 
UrbanSounds-8K and second is UrbanAudioDataset. But 
firstly, let’s see the first one. 

UrbanSounds-8K. This dataset [25] contains about ~900 
―.wav‖ sound files for each 10 classes such as: 

 Air conditioners 

 Car horns 

 Children playing 

 Dog barking 

 Drilling 

 Engine idling 

 Gun shots 

 Jackhammers 

 Sirens 

 Street music 

Total 8732 audio files. This dataset, is pretty big (about 6,6 
gigabytes) but as we know, the more data, the more we can 
train the model. That's why we believe that it will perfectly 
show the advantages and disadvantages of model 
preprocessing. And in the first part of our research we will use 
it. 

Urban Audio Dataset. The second dataset [26] was 
collected from various resources and consist about 10000 
samples for next eight classes: 

 Crying 

 Dog barking 

 Emergency alarms 

 Explosions 

 Fire 

 Glass breaking 

 Screaming 

 The sound of a weapon firing(gun shots) 

However, the data in it requires normalization, since the 
data format is extremely different (with formats like: .mp3, 
.aiff, .flac, .wav, .m4a), also weights about 30 gigabytes! 
Therefore, we will use this dataset only after checking the main 
model. And this dataset is more suitable for our problem, since 
these sounds are more suitable for alerting danger. But again, 
we will talk about this dataset in more detail later in the next 
parts of the research. 

B. Environment Selection 

After the datasets, let's think about the hardware 
environment. Initially, the development was carried out on a 
virtual machine in the VirtualBox image on the Linux Mint 
system, which was sharpened for computer vision tasks, and in 
particular OpenCV. It fit the prototype, but due to the 
limitations of virtualization, it was decided to transfer the 
project to the main machine (host machine) on the Windows 10 
operating system. 

Now let's decide for the environment itself. Machine 
learning and deep learning in general are very widely used in 
the Python language due to ease of use, however, it is worth 
mentioning that for performance, you can try developing in C / 
C ++ if the issue of performance will play a key role. But we 
believe that Python 3.7 is enough for this task. 

For analysis and research, we will use Jupyter Notebook. It 
is on it that we can write lines of code that we can interpret in 
different ways and thereby observe changes in individual cells 
of the program launch. 

For the final part of development in production, we will be 
using PyCharm by JetBrains (Community Edition) and IntelliJ 
IDEA with Java Spring Framework for backend. But about 
interacting with application we will explain later in next parts. 

C. Sound Processing 

In this section, we will talk about the part about digital 
sounds. We decided that it was very important to fully 
understand how a computer can pick up sound, how we can 
work with it, and how to adapt it for classification. In this 
subsection, we will try to answer these questions. 

Digital audio is the result of converting an analog audio 
signal into a digital audio format. There are a lot of audio 
formats at the moment, such as .ogg, .wav, .mp3, .flac and 
more. They differ in their storage and playback properties, but 
all alone cope with their task - they transmit an audio signal 
within a digital system. In our case, the sound will be displayed 
as a graph like in Fig. 2: 
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From which we can later obtain values after sampling when 
converting from an analog signal to digital. In other words, the 
digital sound that is already in the computer is already 
converted and we can work directly with it. 

 

Fig. 2. Example of converting sound wave to array type. 

D. Sound Analysis and Visualization  

Audio has its own sound transmission channels, these 
channels called ―Left-Right‖ output [27], in simple words, the 
output of the whole sound goes immediately to both the left ear 
and the right. This is called a mono channel. And the recording 
of such sound is carried out only from one input device, for 
example, a conventional microphone. 

However, when we need to add more different kinds of 
sounds/effects, this is where stereo sound comes to us. Its 
fundamental difference lies in the fact that the received sound 
does not go to both Left-Right channels, but specifically to the 
Left and separately to the Right [28]. Thus, the sound in the 
channels acquires a certain volume in the sound. For a more 
comparative analysis, you can see their display in Fig. 3. 

 

Fig. 3. Mono and stereo comparison. 

And in order to see the difference for ourselves, we can 
take a different sound and compare their graphs, it is enough to 
display them through the Matplotlib library, which will allow 
us to do this [29]. To do this, we import and take another 
example with a mono channel for comparison, this will be a 
barking dog. Now let's display in Fig. 4: 

In the graph, we can see that mono sound is displayed as 
one color, when the colors are displayed differently in stereo. 
Also, to check the channel, you can write a function that, using 
.shape, will show us a mono or stereo channel. This will 
especially help in the analysis of the second dataset. 

 

Fig. 4. Visualization of mono sound (upper), stereo sound (lower). 

E. Proposed Model 

There are deep learning techniques that can be applied in 
different areas as sound processing, images or video processing 
[30]. Urban environments, marked by their dynamic 
interactions and complexities, continuously emanate a diverse 
array of sounds, ranging from the benign murmurs of daily life 
to potentially dangerous noises that can indicate emergent 
situations or hazards [31]. Accurately discerning and 
classifying these dangerous sounds is not only paramount for 
the enhancement of urban safety but also imperative for 
proactive response mechanisms in smart cities. Traditional 
sound classification techniques often fall short in recognizing 
these transitory yet critical sounds due to their inherent 
limitations in capturing temporal relationships [32]. Enter the 
Bidirectional Long Short-Term Memory (BiLSTM) model, a 
sophisticated neural network architecture designed to navigate 
such challenges with unparalleled efficacy [33]. Fig. 5 
demonstrates a flowchart of the proposed BiLSTM network for 
impulisive urban sound detection.  

At its core, the Long Short-Term Memory (LSTM) is a 
form of Recurrent Neural Network (RNN) that addresses the 
vanishing gradient problem inherent in traditional RNNs. 
LSTMs are equipped with memory cells that can maintain 
information in memory for long periods, making them 
especially adept at tasks that require the understanding of long-
term dependencies — a feature highly relevant to sound 
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sequences where past sounds can influence the characterization 
of present ones. 

However, when dealing with dangerous urban sounds, 
which are often abrupt and embedded within larger, intricate 
auditory contexts, it becomes essential to understand the sound 
in relation to both its past and forthcoming sequences. This is 
where the bidirectional approach of the BiLSTM becomes 
invaluable. Instead of processing sequences in a unidirectional 
manner (from past to present), the BiLSTM simultaneously 
processes the data in both forward and backward directions. 
This bidirectional processing ensures that the model has access 

to information from both before and after a particular time step, 
enabling a more comprehensive understanding of the sound's 
context. 

In the context of dangerous urban sound classification, this 
means that a sudden loud crash, which could signify a 
vehicular accident or a structural collapse, is not just evaluated 
based on preceding sounds, but also by the sounds that follow 
it. Such a dual-context perspective can be crucial in 
distinguishing between, say, a harmless crash in a construction 
site versus a car collision that requires immediate attention. 

 

 

 

Fig. 5. Proposed Bidirectional LSTM network. 
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IV. EXPERIMENTAL RESULTS 

Furthermore, the inherent structure of the BiLSTM, with its 
memory gates, allows for meticulous filtering of sound data, 
ensuring that only relevant information is retained for 
classification. This selective retention is especially crucial for 
urban environments where the soundscape is cluttered, and the 
distinction between dangerous and non-dangerous sounds can 
be razor-thin. 

A. Results of the Proposed Model 

The proposed Bidirectional Long Short-Term Memory 
model offers a groundbreaking approach to dangerous urban 
sound classification. Its ability to capture intricate temporal 
relationships from both past and future contexts, coupled with 
its adeptness at managing long-term dependencies, positions 
the BiLSTM as a frontrunner in the ongoing quest for creating 
safer and smarter urban ecosystems. As urban centers across 
the globe grapple with the challenges of increasing density and 
complexity, such advanced neural network architectures 
emerge not just as academic curiosities, but as essential tools 
for ensuring the well-being and safety of their inhabitants. 

 

Fig. 6. Model training accuracy. 

Further, this is a bidirectional LSTM network that 
immediately grows in parameters to as many as 352,330. This 
means that in theory there should be good results.  The training 
time took about 871 seconds or about 14 minutes. Fig. 6 
demonstrates the model training and test accuracy for 80 
learning epochs. 

Fig. 7 demonstrates model training loss in 80 learning 
epochs. The results show that, the proposed bidirectional 
LSTM network achieves to 90% accuracy, and 10% training 
loss, respectively. 

Fig. 8 and Fig. 9 demonstrate test accuracy and test loss of 
the proposed model. Test results show that, the proposed model 
achieves 90% accuracy in model testing. 

 

Fig. 7. Model training loss. 

 

Fig. 8. Model test accuracy. 

 

Fig. 9. Model test loss. 
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V. DISCUSSION 

The intricacies and dynamics of urban environments 
demand a profound, nuanced understanding, especially when 
delving into the auditory spectrum of these landscapes. Our 
exploration into the Bidirectional Long Short-Term Memory 
(BiLSTM) model for classifying dangerous urban sounds 
opens an array of discussions, both in the realm of neural 
network architectures and urban acoustics. 

One of the most compelling findings from this research is 
the marked superiority of the BiLSTM model in classifying 
impulsive, dangerous sounds as compared to traditional sound 
classification techniques. The bidirectional nature of the model, 
which processes sound sequences both in forward and reverse 
temporal orders, demonstrates an inherent advantage in 
capturing the context of impulsive noises [34]. By concurrently 
assessing preceding and subsequent sounds, the model offers a 
panoramic view of the auditory environment, a perspective 
pivotal in discerning potential dangers in bustling urban 
soundscapes. 

However, while the BiLSTM demonstrates significant 
promise, it's essential to address its limitations. Training a 
BiLSTM model, particularly with expansive urban sound 
datasets, can be computationally demanding [35]. The 
simultaneous processing of forward and backward sequences 
necessitates robust computational resources, which may not be 
readily available in all application scenarios, especially in real-
time urban monitoring systems [36]. As cities move toward the 
vision of smart urbanism, the real-time processing of data 
becomes crucial. Future research should, therefore, look into 
optimizing the BiLSTM structure without compromising its 
classification prowess. 

Another aspect worth reflecting upon is the diversity of the 
urban soundscape dataset employed in this study [37]. While 
the dataset was expansive, it was primarily curated from a 
limited number of urban settings. Urban soundscapes can 
significantly vary based on factors like cultural practices, 
architectural designs, traffic patterns, and even weather 
conditions. For the BiLSTM model to be universally 
applicable, it's imperative to train it with a more globally 
representative dataset, encompassing the myriad variations of 
urban environments. This would enhance the model's 
adaptability, ensuring its efficacy across diverse urban 
landscapes. 

Furthermore, the human auditory system, despite its 
biological limitations, possesses a remarkable ability to discern 
sounds based on learned experiences and cultural contexts [38]. 
The sudden clang of pots in one culture might be dismissed as 
a benign household activity, while in another, it could be an 
alert for danger. Incorporating such cultural nuances and 
learned experiences into the BiLSTM model presents a 
challenge and an opportunity. The integration of these elements 
might enhance the model's sensitivity to context-specific 
dangerous sounds, making it even more aligned with human 
auditory perception. 

Lastly, the ethical considerations of continuous urban 
sound monitoring need to be highlighted. While the primary 
intent is safety and rapid response to dangerous situations, the 

omnipresent nature of sound monitoring systems can raise 
concerns related to privacy and surveillance. It becomes 
imperative for urban planners and policymakers to strike a 
balance, ensuring that the pursuit of safety doesn't infringe 
upon the privacy rights of city inhabitants. 

In summation, this research underscores the transformative 
potential of the BiLSTM model in the realm of dangerous 
urban sound classification. The model's bidirectional 
processing, its adeptness at capturing temporal nuances, and its 
alignment with the holistic human perception of sounds make it 
an invaluable tool in the urban auditory toolkit. However, like 
all pioneering endeavors, this study raises as many questions as 
it seeks to answer. The computational demands of the model, 
the need for a more globally diverse dataset, the integration of 
cultural nuances, and the overarching ethical considerations 
form a rich tapestry of challenges and opportunities for future 
research. 

As urban centers continue to burgeon and evolve, the 
imperative to understand, manage, and respond to their 
auditory landscapes becomes even more pronounced. The 
Bidirectional Long Short-Term Memory model, with its blend 
of technological sophistication and auditory acumen, emerges 
as a beacon in this journey, illuminating the path toward safer, 
smarter, and more responsive urban ecosystems. This research, 
albeit a single step, paves the way for a future where cities 
don't just listen but truly understand. 

VI. CONCLUSION 

In an era where urban expanses are rapidly growing, 
manifesting themselves as the epicenters of human civilization, 
understanding the multifaceted dimensions of these 
environments is imperative. The auditory realm of cities, 
teeming with a symphony of sounds both benign and 
dangerous, necessitates an analytical lens equipped with both 
precision and depth. This research, centered on the 
Bidirectional Long Short-Term Memory (BiLSTM) model, 
underscores this very sentiment, offering a pioneering 
approach to the classification of dangerous urban sounds. 

Our exploration into the BiLSTM model has illuminated its 
profound potential. By processing sound sequences in both 
forward and reverse temporal frames, the model imitates the 
holistic human perception of sounds, transcending the 
limitations of traditional classification techniques. This 
bidirectional prowess not only captures the intricate nuances of 
dangerous sounds but also provides a broader context, pivotal 
for accurate classification in bustling urban settings. 

However, as is characteristic of any academic endeavor, 
this study also opens avenues for further exploration. While the 
BiLSTM model is undeniably potent, its computational 
demands, adaptability across diverse urban landscapes, and the 
integration of cultural and learned auditory nuances present 
challenges warranting future research. Moreover, the ethical 
dimensions of continuous urban sound monitoring, with 
potential implications for privacy and surveillance, underscore 
the need for a balanced approach, harmonizing safety with 
individual rights. 

In conclusion, this research signifies a seminal step in the 
realm of urban sound classification. The BiLSTM model 
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emerges not merely as a technological marvel but as a 
testament to the convergence of neural network architectures 
and urban auditory science. As cities continue their inexorable 
march towards the future, tools like the BiLSTM will play a 
pivotal role, ensuring that these urban giants are not just 
expanses of concrete and steel, but responsive, adaptive, and 
safe ecosystems for all their inhabitants. 

ACKNOWLEDGMENT 

This work was supported by the research project ― 
Development of a system for detecting and alerting dangerous 
events based on the audio analysis and machine learning 
funded by the Ministry of Science and Higher Education of the 
Republic of Kazakhstan. Grant No. IRN AP19175674.  

REFERENCES 

[1] J. Bajzik, J. Prinosil, R. Jarina and J. Mekyska, ―Independent channel 
residual convolutional network for gunshot detection,‖ International 
Journal of Advanced Computer Science and Applications, vol. 13, no.4, 
pp. 950-958, 2022. 

[2] K. M. Nahar, F. Al-Omari, N. Alhindawi and M. Banikhalaf, ―Sounds 
recognition in the battlefield using convolutional neural network,‖ 
International Journal of Computing and Digital Systems, vol. 11, no.1, 
pp. 189-198, 2022. 

[3] I. Estévez, F. Oliveira, P. Braga-Fernandes, M. Oliveira, L. Rebouta et 
al., ―Urban objects classification using Mueller matrix polarimetry and 
machine learning,‖ Optics Express, vol. 30, no.16, pp. 28385-28400, 
2022. 

[4] Z. Peng, S. Gao, Z. Li, B. Xiao, Y. Qian, ―Vehicle safety improvement 
through deep learning and mobile sensing‖ IEEE Network, vol. 32, no.4, 
pp. 28-33, 2018. 

[5] Y. Wei, L. Jin, S. Wang, Y. Xu and T. Ding, ―Hypoxia detection for 
confined-space workers: photoplethysmography and machine-learning 
techniques,‖ SN Computer Science, vol.3, no.4, pp.1-11, 2022. 

[6] Omarov, B., Omarov, B., Shekerbekova, S., Gusmanova, F., Oshanova, 
N., Sarbasova, A., ... & Sultan, D. (2019). Applying face recognition in 
video surveillance security systems. In Software Technology: Methods 
and Tools: 51st International Conference, TOOLS 2019, Innopolis, 
Russia, October 15–17, 2019, Proceedings 51 (pp. 271-280). Springer 
International Publishing. 

[7] K. Pawar, V. Attar, ―Deep learning approaches for video-based 
anomalous activity detection,‖ World Wide Web, vol. 22, no.2, pp.571-
601, 2019. 

[8] Sultan, D., Omarov, B., Kozhamkulova, Z., Kazbekova, G., 
Alimzhanova, L., Dautbayeva, A., ... & Abdrakhmanov, R. (2023). A 
Review of Machine Learning Techniques in Cyberbullying Detection. 
Computers, Materials & Continua, 74(3). 

[9] H. Zogan, I. Razzak, X. Wang, S. Jameel, G. Xu, ―Explainable 
depression detection with multi-aspect features using a hybrid deep 
learning model on social media,‖ World Wide Web, vol. 25, no.1, pp. 
281-304, 2022. 

[10] C. Heipke, F. Rottensteiner, ―Deep learning for geometric and semantic 
tasks in photogrammetry and remote sensing,‖ Geo-spatial Information 
Science, vol. 23, no.1, pp. 10-19, 2020. 

[11] Y. Arslan, H. Canbolat, ―Sound based alarming based video surveillance 
system design,‖ Multimedia Tools and Applications, vol. 81, no.6, pp. 
7969-7991, 2022. 

[12] A. Rajbanshi, D. Das, V. Udutalapally, R. Mahapatra, ―DLeak: an IoT-
based gas leak detection framework for smart factory,‖ SN Computer 
Science, vol. 3. no.4, pp. 1-12, 2022. 

[13] Y. Arslan and H. Canbolat, ―Sound based alarming based video 
surveillance system design,‖ Multimedia Tools and Applications, vol. 
81, no. 6, pp. 7969-7991, 2022. 

[14] R. Sun, Q. Cheng, F. Xie, W. Zhang, T. Lin et. al., ―Combining machine 
learning and dynamic time wrapping for vehicle driving event detection 

using smartphones,‖ IEEE Transactions on Intelligent Transportation 
Systems, vol. 22, no.1, pp.194-207, 2019. 

[15] G. Chen, F. Wang, S. Qu, K. Chen, J. Yu et. al., ―Pseudo-image and 
sparse points: vehicle detection with 2D LiDAR revisited by deep 
learning-based methods,‖ IEEE Transactions on Intelligent 
Transportation Systems, vol. 22, no.12, pp. 7699-7711, 2020. 

[16] S. U. Amin, M. S. Hossain, G. Muhammad, M. Alhussein, M. A. 
Rahman, ―Cognitive smart healthcare for pathology detection and 
monitoring,‖ IEEE Access, vol. 7, no.1, pp. 10745-10753, 2019. 

[17] Altayeva, A. B., Omarov, B. S., Aitmagambetov, A. Z., Kendzhaeva, B. 
B., & Burkitbayeva, M. A. (2014). Modeling and exploring base station 
characteristics of LTE mobile networks. Life Science Journal, 11(6), 
227-233. 

[18] I. H. Peng, P. C. Lee, C. K. Tien, J. S. Tong, ―Development of a cycling 
safety services system and its deep learning bicycle crash model,‖ 
Journal of Communications and Networks, vol. 24, no. 2, pp. 246-263, 
2022. 

[19] L. Kou, ―A review of research on detection and evaluation of the rail 
surface defects,‖ Acta Polytechnica Hungarica, vol. 19, no.3, pp. 167-
186, 2022. 

[20] L. M. Bine, A. Boukerche, L. B. Ruiz, A. A. Loureiro, ―Leveraging 
urban computing with the internet of drones,‖ IEEE Internet of Things 
Magazine, vol. 5, no.1, pp. 160-165, 2022. 

[21] S. Khan, L. Alarabi and S. Basalamah, ―Toward smart lockdown: a 
novel approach for COVID-19 hotspots prediction using a deep hybrid 
neural network,‖ Computers, vol. 9, no. 4, pp. 1-16, 2020. 

[22] M. Dua, D. Makhija, P. Manasa and P. Mishra, ―A CNN–RNN–LSTM 
based amalgamation for Alzheimer’s disease detection,‖ Journal of 
Medical and Biological Engineering, vol. 40, no. 5, pp. 688-706, 2020. 

[23] H. Gill, O. Khalaf, Y. Alotaibi, S. Alghamdi and F. Alassery, ―Multi-
model CNN-RNN-LSTM based fruit recognition and classification,‖ 
Intelligent Automation & Soft Computing, vol. 33, no. 1, pp. 637-650, 
2022. 

[24] K. Chandriah and R. Naraganahalli, ―RNN/LSTM with modified Adam 
optimizer in deep learning approach for automobile spare parts demand 
forecasting,‖ Multimedia Tools and Applications, vol. 80, no. 17, pp. 
26145-26159, 2021. 

[25] S. Hansun and J. Young, ―Predicting LQ45 financial sector indices using 
RNN-LSTM,‖ Journal of Big Data, vol. 8, no. 1, pp. 1-13, 2021. 

[26] Y. Xue, P. Shi, F. Jia, H. Huang, ―3D reconstruction and automatic 
leakage defect quantification of metro tunnel based on SfM-Deep 
learning method,‖ Underground Space, vol. 7, no.3, pp. 311-323, 2022. 

[27] L. Zhang, L. Yan, Y. Fang, X. Fang, X. Huang, ―A machine learning-
based defensive alerting system against reckless driving in vehicular 
networks,‖ IEEE Transactions on Vehicular Technology, vol. 68, no.12, 
pp.12227-12238, 2019. 

[28] A. M. Youssef, B. Pradhan, A. Dikshit, M. M. Al-Katheri, S. S. Matar 
et. al., ―Landslide susceptibility mapping using CNN-1D and 2D deep 
learning algorithms: comparison of their performance at Asir Region, 
KSA,‖ Bulletin of Engineering Geology and the Environment, vol. 81, 
no.4, pp. 1-22, 2022. 

[29] S. Asadianfam, M. Shamsi, A. Rasouli Kenari, ―Hadoop Deep Neural 
Network for offending drivers,‖ Journal of Ambient Intelligence and 
Humanized Computing, vol. 13, no.1, pp. 659-671, 2022. 

[30] Tursynova, A., & Omarov, B. (2021, November). 3D U-Net for brain 
stroke lesion segmentation on ISLES 2018 dataset. In 2021 16th 
International Conference on Electronics Computer and Computation 
(ICECCO) (pp. 1-4). IEEE. 

[31] D. K. Dewangan, S. P. Sahu, ―Deep learning-based speed bump 
detection model for intelligent vehicle system using raspberry Pi,‖ IEEE 
Sensors Journal, vol. 21, no.3, pp. 3570-3578, 2020. 

[32] Z. Fang, B. Yin, Z. Du and X. Huang, ―Fast environmental sound 
classification based on resource adaptive convolutional neural network,‖ 
Scientific Reports, vol. 12, no. 1, pp. 1-18, 2022. 

[33] V. Gugnani, R. K. Singh, ―Analysis of deep learning approaches for air 
pollution prediction,‖ Multimedia Tools and Applications, vol. 81, no.4, 
pp. 6031-6049, 2022. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

472 | P a g e  

www.ijacsa.thesai.org 

[34] Omarov, B., Altayeva, A., Turganbayeva, A., Abdulkarimova, G., 
Gusmanova, F., Sarbasova, A., ... & Omarov, N. (2019). Agent based 
modeling of smart grids in smart cities. In Electronic Governance and 
Open Society: Challenges in Eurasia: 5th International Conference, 
EGOSE 2018, St. Petersburg, Russia, November 14-16, 2018, Revised 
Selected Papers 5 (pp. 3-13). Springer International Publishing. 

[35] H. Kyle, P. Agarwal, J. Zhuang, ―Monitoring misinformation on Twitter 
during crisis events: a machine learning approach,‖ Risk Analysis, vol. 
42, no.8, pp. 1728-1748, 2022. 

[36] M. Esmail Karar, O. Reyad, A. Abdel-Aty, S. Owyed, M. F. Hassan, 
―Intelligent iot-aided early sound detection of red palm weevils,‖ 
Computers, Materials & Continua, vol. 69, no.3, pp. 4095–4111, 2021. 

[37] T. Thomas Leonid and R. Jayaparvathy, ―Classification of elephant 
sounds using parallel convolutional neural network,‖ Intelligent 
Automation & Soft Computing, vol. 32, no.3, pp. 1415–1426, 2022. 

[38] Z. Ma, G. Mei, , F. Piccialli, ―Machine learning for landslides 
prevention: a survey,‖ Neural Computing and Applications, vol. 33, 
no.17, pp. 10881-10907, 2021. 

 


