
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

538 | P a g e  

www.ijacsa.thesai.org 

Flood Prediction using Hydrologic and ML-based 

Modeling: A Systematic Review 

A Fares Hamad Aljohani
1
, Ahmad. B. Alkhodre

2
, Adnan Ahamad Abi Sen

3
,  

Muhammad Sher Ramazan
4
, Bandar Alzahrani

5
, Muhammad Shoaib Siddiqui

6
 

Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, KSA
1, 3, 4, 5

 

Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah KSA
2, 6

 

 

 
Abstract—Flooding, caused by the overflow of water bodies 

beyond their natural boundaries, has severe environmental and 

socioeconomic consequences. To effectively predict and mitigate 

flood events, accurate and reliable flood modeling techniques are 

essential. This study provides a comprehensive review of the 

latest modeling techniques used in flood prediction, classifying 

them into two main categories: hydrologic models and machine 

learning models based on artificial intelligence. By objectively 

assessing the advantages and disadvantages of each model type, 

we aim to synthesize a systematic analysis of the various flood 

modeling approaches in the current literature. Additionally, we 

explore the potential of hybrid strategies that combine both 

modeling methods' best characteristics to develop more effective 

flood control measures. Our findings provide valuable insights 

for researchers and practitioners in the field of flood modeling, 

and our recommendations can contribute to the development of 

more efficient and accurate flood prediction systems. 
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I. INTRODUCTION 

Floods are one of the most destructive and widespread 
natural disasters, inflicting severe environmental and socio-
economic impacts worldwide [1]. In recent years, the 
frequency and intensity of floods have increased, underscoring 
the urgent need for accurate flood modeling to guide effective 
disaster response and management. Devastating floods have 
resulted in massive property damage, loss of human and animal 
lives, destruction of crops, and the propagation of waterborne 
diseases [2].  

Understanding the intricacies of floods and accurately 
predicting their occurrence and severity is critical in 
developing strategies for flood management and mitigating 
potential damages. In the field of flood modeling, two primary 
approaches have been widely utilized: hydrologic models and 
data-driven prediction models. Hydrologic models aim to 
simulate the complex physical processes and interactions 
within the hydrological system, relying on high-quality data 
and hydrological expertise. However, these models face 
challenges in accurately evaluating uncertainty propagation 
and predicting real-time flood depths [3]. Conversely, data-
driven prediction models, leveraging machine learning 
techniques, have shown superior accuracy and broad 
applicability in flood forecasting [3]. Nevertheless, a promising 
avenue for advancement lies in the hybridization of both 

approaches, harnessing the strengths of each to overcome the 
limitations. 

The primary objective of this study is to explore and 
compare different modeling approaches employed in flood 
modeling, specifically categorizing them into hydrologic 
models and data-driven machine-learning-based models. The 
research aims to address the existing knowledge gaps in flood 
modeling and shed light on the diverse methodologies used in 
simulating and understanding flood events. 

To achieve this objective, the study presents an analysis of 
the strengths and limitations of both model types. Furthermore, 
it highlights the potential benefits of integrating these 
approaches to create more robust and accurate hybrid models. 
The study analyzes a comprehensive range of sources, 
including case studies, real-world data, and academic research, 
to provide a well-rounded evaluation of flood modeling 
techniques. The article introduces and compares one-
dimensional (1D), two-dimensional (2D), and three-
dimensional (3D) hydrologic models, with a focus on their 
capabilities, limitations, and applications in flood hazard 
simulation and prediction. Additionally, the study delves into 
the advantages of hybrid models, demonstrating how their 
integration can contribute to more effective flood management 
strategies. 

Contribution: This article’s main contribution is to provide 
valuable insight into flood modeling, and advancement in the 
field, and ultimately aid in better understanding and managing 
flood events. By combining a thorough exploration of 
modeling approaches with a critical assessment of their 
performances, this study aims to lay the foundation for more 
resilient flood management practices in the face of escalating 
climate challenges. The article is structured as follows: 

Section II provides the systematic approach adopted to 
gather related work and literature review along with 
bibliometric analysis. Sections III and IV provide introductions 
to various subdomains in Hydrologic modeling and Machine-
learning-based modeling, respectively. Sections V and VI 
analyze the literature review on Hydrologic modeling and 
Machine-learning-based modeling, respectively. Section VII 
provides the analysis and discussion, while Section VIII 
provides the conclusions. 
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II. BIBLIOMETRIC ANALYSIS OF HYDROLOGIC MODELING 

AND MACHINE LEARNING IN PREDICTING FLOOD 

The study focused on examining the trends and patterns in 
research publications in the field of flood prediction using 
machine learning-based modeling and hydrologic modeling. 
Two widely used databases, Web of Science (WoS) and 
Scopus, were utilized to gather relevant research papers. 
Additionally, the Dimension database was included to ensure 
comprehensive coverage of the literature. To visualize and 
analyze the data, VOSviewer software [4] was employed, 
along with traditional methods of data representation. 

Using information from the Scopus and WoS databases, the 
bibliometric analysis produced the two instructive 
visualizations shown in Fig. 1 and Fig. 2. The size of the 
circles in Fig. 1 represents the number of citations each 
document in the hydrologic modeling and flood prediction 
domain has received. Greater circles indicate more citations, 
which reflects the importance and influence of the 
corresponding works on this topic. Similar to Fig. 1, but with a 
focus on machine learning modeling, Fig. 2 shows the citation 
distribution for the same domain. 

Similarly, Fig. 2 and Fig. 3 show the number of citations in 
the context of machine learning and Hydrologic Modeling in 
flood prediction. Bibliometric analysis software VOSviewer 
was used to create both visualizations. A better knowledge of 
the current trends and contributions in hydrologic modeling 
and machine learning applied to flood prediction research is 
made possible by these numbers, which provide insightful 
information about the research environment by highlighting the 
most important and cited articles in both fields. 

Table I lists how many articles have been written about 
using hydrologic modeling and machine learning techniques to 
anticipate flooding. The article counts or publication records 
for each type of study are shown in the table, indicating the 
volume of research done in the field of hydrologic modeling 
and machine learning for flood prediction across the various 
databases. 

 

Fig. 1. Map the hydrologic modeling and "Flood prediction" network – 

Scopus. 

 
Fig. 2. Map the hydrologic modeling and "Flood prediction" network- WoS. 

 

Fig. 3. Map machine learning and "Flood prediction" network WoS. 

TABLE I. THE NUMBER OF ARTICLES RELATED TO THE USE OF 

HYDROLOGIC AND MACHINE LEARNING IN FLOODING PREDICTION 

Topic \ Database WoS Scopus Dimension 

Hydrologic 1493 1249 1255 

Machine learning 3,027 2280 3,730 

A. Bibliometric Analysis 

The bibliometric analysis revealed an interesting trend in 
the distribution of research papers. It became evident that there 
is a significantly higher number of research papers dedicated to 
machine learning compared to those published in the field of 
hydrologic modeling (see Fig. 4, 5, 6, and 7). This indicates a 
greater emphasis on the utilization of machine learning 
techniques in flood forecasting research. 

The higher number of research papers on machine learning 
suggests that it has gained significant attention and interest in 
the field of flood forecasting. Machine learning techniques 
offer the potential to improve the accuracy and efficiency of 
flood prediction models by leveraging large datasets and 
complex algorithms. On the other hand, the relatively lower 
number of research papers on hydrologic modeling may 
indicate a need for further exploration and development in this 
area. The findings of this study provide valuable insights for 
researchers and practitioners interested in the field of 
hydrologic modeling, machine learning, and flood forecasting. 
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Fig. 4. Publications over time: Machine Learning and "Flood Prediction" 

WoS. 

 
Fig. 5. Publications over time: Machine Learning and "Flood Prediction" 

Scopus. 

 

Fig. 6. Publications over time: Hydrologic Modeling and "Flood Prediction" 

Scopus. 

 

Fig. 7. Publications over time: Hydrologic modeling and "Flood prediction" 

WoS. 

III. HYDROLOGIC MODELING 

Hydrologic modeling plays a crucial role in simulating and 
predicting flood hazards, enabling a deeper understanding of 
the complex dynamics associated with floods. This modeling 

approach encompasses various techniques, including one-
dimensional (1D), two-dimensional (2D), and three-
dimensional (3D) models, each offering unique advantages and 
limitations. This study delves into these different modeling 
approaches, exploring their applications, capabilities, and 
challenges in simulating flood events. By examining the 
strengths and limitations of each modeling method, the study 
aims to enhance the understanding of hydrologic modeling and 
its significance in effectively managing and mitigating the 
impacts of floods. 

Fig. 8 shows the hydrologic model configured for 1D, 2D, 
and coupled 1D/2D simulations (a, b, and c) [5]. The 1D 
simulation in panel (a) shows a condensed version of the 
hydrologic system that works well in settings with linear flow 
patterns. The 2D simulation, which considers two-dimensional 
flow characteristics, illustrates the hydrologic processes in 
more detail in Panel (b). The coupled 1D/2D simulation, which 
combines both methods in panel (c), enables a more precise 
and in-depth portrayal of complicated flow interactions in 
situations when both 1D and 2D models are required. This 
figure helps academics and practitioners choose the best 
strategy based on particular modeling requirements and 
objectives by providing a useful visual reference for 
understanding the various modeling setups and their 
applications in hydrologic simulations [5]. 

A. One-Dimension Hydrologic Modeling 

Various authors have discussed the effectiveness of 
hydrologic modeling methods in simulating and predicting 
flood hazards. For example, a study conducted by Ambiental 
Environ-mental Assessment [6] demonstrates that the 1D 
model effectively captures the interconnected network of a 
river by linking multiple cross-sections that traverse both the 
land and the river. Through this model, the water level is 
simulated and allowed to flow in a single direction along the 
channel. Additionally, the model accommodates the possibility 
of reverse water flow, such as in cases where the presence of 
structures obstructs the passage of water. Pinos et al. [7] 
highlight that river flood events are among the most frequent 
and economically burdensome natural disasters. Despite floods 
being a natural component of the hydrological cycle, they have 
far-reaching environmental consequences and can cause 
significant human and financial losses. Consequently, the 
utilization of modeling techniques becomes essential in 
simulating and predicting these occurrences. 

Pinos et al. [7] conducted a study on the performance of the 
hydrologic 1D model approach in approximating flood levels 
for a mountain river. The study utilized HEC-RAS, Mike 11, 
and Floor Modeler as modeling tools. In the case of HEC-RAS, 
high-resolution cross-section surveys were conducted at 
intervals of 25 meters along the river line. The validation of the 
model was based on historical flood regions with return periods 
ranging from 2 to 10 years. The findings of research [7] served 
as reference models for different return periods and were 
compared to other models. The 1D model is considered an 
acceptable approximation as long as the water remains within 
the roadway profile. However, when the flow in the streets 
exceeds the curbs, there is a potential for the flow direction to 
shift, making the 2D model more suitable at that point [8]. It is 
important to note that using the 1D hydrologic modeling 
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approach has certain limitations. One major limitation is the 
assumption that the floodplain between the various cross-
sections of the river is similar. Additionally, there is a need to 
determine the specific number and spacing of cross-sections to 
accurately represent the river channel and neighboring 
topography, and the guidelines for establishing these 
parameters are limited [10]. 

B. Two-dimensional Hydrologic Modeling 

2D flood modeling is an approach used to analyze and interpret 
the two-dimensional flow of water during anticipated flood 
events. It relies on digital terrain modeling and the bathymetry 
of water channels to establish the depth of water and depth-
averaged velocity on a mesh or grid [11]. One of the 
advantages of this modeling technique is that it does not 
require predefined flow routes, allowing for a more flexible 
representation of the flow dynamics. 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. Hydrologic model set up of (a) 1-D simulation, (b) 2-D simulation, and (c) coupled 1-D/2-D simulation [5]. 
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An example of the application of 2D flood modeling can be 
seen in the assessment of the Medjerda River conducted by 
Gharbi et al. [12]. The researchers utilized 2D hydrologic 
modeling to understand the behavior of the river and accurately 
estimate the extent of flood zones. Their findings demonstrated 
that 2D analysis provides a more precise depiction of the 
flooded region compared to the one-dimensional (1D) unsteady 
flow study. The visual representation of flood extent through 
2D model maps is superior to the traditional water-depth 
curves used in 1D models [9]. 

However, it is important to acknowledge the limitations of 
the 2D modeling approach. Firstly, the complexity of the 2D 
model makes it more computationally costly compared to 1D 
models. The computational time required for a complete run of 
a 2D model is significantly longer, often taking hours as 
opposed to minutes for a 1D model [8]. This can pose 
challenges for inexperienced hydrologists who may struggle 
with the complexity of the model and the efficient transfer of 
information to relevant departments. 

Furthermore, the application of 2D modeling may be 
hindered by the availability of quality data. High-quality data, 
obtained through on-site sensors and Internet of Things (IoT) 
devices, is crucial for achieving accurate results [12]. 
Additionally, when analyzing flood risk within large cities and 
complex structures, relying solely on 2D geographical data 
may not be effective. In such cases, the integration of 3D city 
model-based GIS solutions becomes necessary to provide 
decision-makers with comprehensive information [13]. 

C. Three-dimensional Hydrologic Modeling 

3D modeling involves the mathematical representation of 
surfaces in three dimensions, utilizing specialized software to 
manipulate vertices, edges, and polygons in a simulated 3D 
space [14]. When it comes to simulating and predicting flood 
hazards, 3D models have proven to be computationally 
expensive but crucial for accurately representing the three-
dimensional flow around urban areas and interactions between 
flood waves and constructed buildings [15]. 

In the context of flood simulation and its impact on utilities, 
Adda et al. [16] emphasize that 3D modeling offers robust 
visual depictions that enable decision-makers to assess the 
safety of buildings located in flood zones. Their research 
explores the use of LiDAR (Light Detection and Ranging) data 
and 3D modeling to analyze flood risk on government utilities 
and buildings. LiDAR data is highlighted as an inexpensive 
and comprehensive method for multidimensional 3D mapping 
[16]. 

Data collection for 3D modeling often involves ground-
controlled points obtained through GPS methods. Adda et al. 
found that their 3D approach revealed regions that were 
potentially situated on low-lying terrain prone to flooding. This 
information is vital for emergency decision-making and 
prioritization. The use of 3D hydrologic modeling enables 
rapid reaction, alert, and warning systems, mitigation 
strategies, and effective planning and management of complex 
geographic issues. 

By utilizing 3D geospatial data, planning challenges can be 
better addressed, and conditions that may increase the risk of 

flooding can be identified. This aids in understanding and 
evaluating the nature of dangers and facilitates the 
development of clear management strategies for rescue 
operations. Additionally, one significant advantage of 3D 
hydrologic modeling is the ability to test infrastructure projects 
before implementing them on the ground, minimizing potential 
risks [17]. 

However, it is important to acknowledge the limitations of 
the 3D modeling approach. While it offers valuable insights, it 
is more suitable for localized hydrologic issues and may 
require substantial details, resulting in longer simulation times 
[17], [18]. 

D. Discussions 

The evaluation and discussion of 1D, 2D, and 3D modeling 
methodologies for flood simulation and prediction emphasize 
the advantages and disadvantages of each methodology as well 
as some of the field's practical uses.  

A common technique for simulating flow in a single 
direction along a channel is 1D hydrologic modeling. As long 
as the water stays inside the roadway profile, it offers a 
simplified portrayal of flood threats and is supposed to be 
acceptable. The primary benefit of 1D modeling is that it is 
straightforward and computationally efficient, making it 
appropriate for use in large-scale applications. A drawback of 
this method is that it necessitates particular rules for setting 
cross-section spacing and assumes uniform floodplain features 
between cross-sections. 

On the other hand, 2D hydrologic modeling, which 
considers the two-dimensional flow of water and incorporates 
digital terrain modeling and bathymetry, provides a more in-
depth simulation of flood events. It enables the depiction of 
flood inundation patterns and offers a more precise estimation 
of flood extent. The use of 2D models is particularly valuable 
when the flow exceeds the curbs and shifts direction, such as in 
urban areas with complex topography and structures. However, 
2D modeling is computationally more expensive and requires 
high-quality data, including LiDAR data, to achieve accurate 
results [19]. 

It may also pose challenges for inexperienced users and 
information transfer to relevant departments. Additionally, it 
might make it difficult for new users to transmit information to 
the appropriate departments. 

The study also emphasizes the value of 3D modeling in 
assessing flood risks, particularly when it comes to examining 
three-dimensional flow patterns around built-up areas and their 
interactions. 3D models enable precise simulation of flood 
impacts on utilities and infrastructure and offer a more 
thorough understanding of flood wave behavior. They give 
decision-makers useful information that enables them to 
evaluate the security of structures in flood-prone locations and 
prioritize emergency responses. By offering visualization tools, 
assessing hazards, and testing infrastructure projects before 
execution, 3D modeling also helps with planning and 
management. 3D modeling, on the other hand, necessitates 
specialist tools and comprehensive data and is more difficult 
and computationally expensive. It may take longer to simulate 
problems and is best suited for limited hydrologic problems. 
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IV. MACHINE LEARNING ALGORITHMS IN FLOOD 

PREDICTION 

The destructive nature of floods has necessitated the 
advancement of flood prediction as a basis for risk reduction, 
policy suggestions, and minimizing property damage and loss 
of life. These requirements have led to the development of 
machine learning algorithms that mimic the mathematical 
expressions utilized in examining the physical processes of 
floods over the past two decades. In their study, Mosavi et al. 
[20] acknowledged that machine learning methods have 
improved prediction accuracy and provided cost-effective 
solutions, which has contributed to their increased popularity 
among hydrologists. Fig. 9 shows the fundamental steps in 
creating an ML-based model. 

A systematic review revealed that several critical factors 
guide the selection of machine learning methods, including 
robustness, speed, computation cost, and generalization 
capability. Lawal et al. [21] discovered that the popularity of 
machine learning in predicting flood alerts and reducing the 
impact of floods arises from its low computational 
requirements, as it relies on observational data. However, a 
comparative study conducted by Lawal et al. [21], which 
evaluated logistic regression, support vector classification, and 
decision tree algorithms, highlighted the importance of 
considering performance accuracy, recall, and receiver 
operating characteristics when choosing machine learning 
algorithms for flood prediction. 

Machine learning has made it possible to monitor the 
changing patterns of river water levels, which helps mitigate 
the socioeconomic implications caused by floods. According to 
Mosavi et al. [20], popular machine-learning methods for flood 
prediction include ANNs, SVM, SVR, ANFIS, WNN, and 
DTs. However, hybridization through various methods is also 
common. The study also found that the data decomposition 
technique is preferred to improve dataset quality and prediction 
accuracy, while ensemble methods facilitate generalization and 
reduce prediction uncertainty. 

In addition, Mosavi et al. [20] identified that applying add-
on optimizer algorithms improves prediction quality by tuning 
ANNs to optimal neuronal architectures. In a study on the 
detection of flooding from river water levels, Zehra [22] 
observed that non-linear (NARX) and support vector machines 
(SVM) are viable machine learning methods. The study 
revealed that NARX and SVM utilize hydrological resource 
variables such as precipitation amount, seasonal flow, peak 
gust, and river inflow, which are regressed into flood and non-
flood classes. 

Accurate prediction of floods and other hydrological events 
is crucial for water resource management techniques, policy 

development, and evacuation models. Improving prediction 
systems for short- and long-term flood events is significant in 
minimizing damage. It is important to note that machine 
learning (ML) approaches for flood prediction can vary 
significantly depending on the specific application, dataset, and 
type of prediction required. 

For instance, ML approaches for predicting short-term 
water levels may differ greatly from those used for predicting 
long-term stream flows. When building an ML model, all the 
available data undergoes training, validation, verification, and 
testing processes [23]. These steps ensure that the model is 
trained effectively and performs accurately when applied to 
new data. 

Overall, the development and utilization of ML models in 
flood prediction play a crucial role in improving the accuracy 
and effectiveness of water resource management, policy ideas, 
and analyses, as well as evacuation planning. 

When accurate data are available, machine learning 
approaches can be a powerful tool in risk analysis. However, 
the findings obtained from these approaches may not be as 
sophisticated or predictable as those from model-driven 
studies, such as hydrodynamic models [24]. The use of a data-
driven approach with machine learning for predictive studies 
can be relatively straightforward, particularly in the presence of 
uncertainty related to climate change. 

One of the key advantages of using machine learning 
prediction models is their ability to capture flood nonlinearity 
based solely on historical data, without requiring an 
understanding of the underlying physical processes. Data-
driven prediction models based on machine learning hold 
promise as they are easier to construct and require fewer 
inputs. Over the past two decades, the continuous improvement 
of machine learning algorithms has demonstrated their 
usefulness in flood forecasting, often surpassing conventional 
approaches in terms of performance and accuracy [25]. The 
distinguishing factor of machine learning technology in flood 
prediction is its ability to extract crucial information solely 
from input data without the need for specialized knowledge 
[26]. 

It is important to consider certain aspects of machine 
learning algorithms. Firstly, their performance is only as good 
as the quality of their training, which involves the system 
learning the intended task from previous data. Therefore, 
ensuring robust data enrichment is crucial in machine learning 
algorithms. Secondly, the competence of a machine learning 
algorithm varies depending on the specific task, which is 
commonly known as the "generalization problem." It refers to 
how effectively a trained system can forecast situations for 
which it was not specifically trained [20]. 

 

Fig. 9. The fundamental steps for creating a machine learning (ML) model.

  

Data 
collection 

Data 
processing 

Model 
Building 

Training Testing 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

544 | P a g e  

www.ijacsa.thesai.org 

Wagenaar et al. [27] discovered that the field of flood risk 
analysis, focusing primarily on rare extreme events, often faces 
challenges in data collection during such events, resulting in a 
lack of data for machine learning applications in flood risk and 
impact modeling, particularly for effective model training. 
However, advancements have been made in utilizing machine 
learning for descriptive hazard assessment using data from 
social media. Machine learning algorithms are effective 
optimization approaches rather than black box models, offering 
efficiency, reliability, and quick convergence at low 
computational costs. 

The following are some commonly used ML algorithms in 
flood prediction: 

A. ANNs: Artificial Neural Networks  

The most often used algorithms for modeling flood 
prediction are ANNs. ANNs interpret historical data rather than 
the physical qualities of a catchment. As a result, ANNs are 
regarded as trustworthy data-driven tools for building 
sophisticated and nonlinear black-box models of the links 
between rainfall and flood. Despite their benefits, ANNs have 
several disadvantages, including network architecture, data 
management, and the inability to physically perceive the 
modeled system. The comparatively low precision while 
employing ANN is a significant disadvantage [20]. 

B. MLP: Multilayer Perceptron  

The MLP is a class of FFNN that trains its network of 
interconnected nodes with multiple layers using supervised 
learning from BP. The MLP is characterized by simplicity, 
nonlinear activation, and a large number of layers. These 
qualities led to the model's widespread application in 
complicated hydrogeological models and flood prediction. 
MLP models were shown to be more effective and more 
generalizable in a review of ANN classes used in flood 
simulation. However, it is typically discovered that the MLP is 
more challenging to optimize [28]. 

C. SVM: Support Vector Machine  

SVM, a supervised learning machine that operates on the 
statistical learning theory and the structural risk minimization 
(SRM) rule, is very well-liked in flood modeling. To reduce 
the predicted error and overfitting concerns of a learning 
machine, the SRM principle operates as a tradeoff between the 
quality and multidimensional character of the approximation 
function [29]. The SVM's training method creates new, non-
probabilistic binary linear classifiers that maximize the 
geometric margin through inverse problem-solving and 
minimize the empirical classification error. Hydrologists use 
SVM extensively for flood prediction [20]. SVM, which is 
based on the structural risk reduction concept, is a reliable and 
efficient method for equation fitting, data analysis, 
hydrological forecasting, and other applications. Furthermore, 
SVM is used to handle small sample, non-linear, and high-
dimensional pattern recognition problems and has unique 
benefits. SVM may be applied to classification as well as 
regression issues [30]. 

SVM applications are widely used in hydrological 
modeling and flood predictions. SVM's enhanced form as a 
regression tool supports vector regression (SVR) is a 

developed and efficient alternative procedure for dealing with 
regression difficulties during the last two decades by giving 
alternative loss functions. SVR is based on mapping and 
solving the original data into a high-dimensional feature space 
using linear and/or nonlinear regression classification. SVR 
formulation is based on SRM rather than ERM, which 
minimizes an upper bound of the generalization error rather 
than the prediction error on the training set [29]. 

SVM and other data-driven ML models rely on the quality 
and amount of training data as well as model optimization 
parameters. If the data is insufficient and inadequate to cover 
the differences, their learning falls short and, as a result, they 
cannot achieve reasonable accuracy. The disadvantages of 
SVM-type ML models for dealing with the "generalization 
problem" might be mitigated by a strong and complete 
understanding of ML techniques, as well as user-specified 
practical solutions [29]. 

SVM is essentially a linear machine and can be thought of 
as a statistical tool that solves issues using an approach akin to 
Artificial Neural Networks (ANN). Its approximate use of the 
Structural Risk Minimization (SRM) concept aids in its ability 
to generalize effectively to new data. While it has all the 
advantages of ANN, it also addresses some of the fundamental 
flaws that were observed in the ANN application. [31]. ANNs 
employ empirical risk minimization, but SVMs use structural 
risk minimization to handle the overfitting problem by 
balancing the model's complexity against its success in fitting 
the training data. [35]. 

The reason why the SVM algorithm is more popular in 
flood prediction than other algorithms is SVM may 
automatically choose the critical vectors in the training process 
as support vectors and delete the nonsupport vectors from the 
model. As a result, the model performs effectively in noisy 
environments. Furthermore, with certain crucial real training 
vectors encoded in the models as support vectors, SVM can 
trace back historical occurrences to enhance future forecasts 
with lessons learned from the past. Because the input vectors of 
SVM are fairly versatile, it is quite simple to integrate other 
relevant elements into the model (such as temperature, 
evaporation, date, etc.). Because SVM parameter optimization 
is a convex issue, there is only one optimal point, unlike ANN 
which has more than one optimal [33]. 

D. DT: Decision Tree  

Because DTs are rapid algorithms, ensemble models to 
simulate and predict floods have become increasingly popular. 
The classification and regression tree (CART) is a common DT 
type used in machine learning. The decision tree is very useful 
for determining the level of risk of flooding [34]. 

E. GA: Genetic Algorithm  

A genetic algorithm had been created by Holland. The 
survival of the fittest is the foundation of the idea. It uses 
chromosomes, which have several genes on each one. Every 
gene represents a choice variable (or model parameter), and 
every chromosome represents a potential best-case scenario 
[35]. 
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F. ACO: Ant Colony Optimization 

Dorigo developed the ACO after becoming curious about 
how ants choose the quickest route between their colony and a 
food source. It was discovered that although ants cannot see, 
they can communicate with one another via a chemical called a 
pheromone. Each spreads a scent along its course. Ants are 
therefore likely to select the route with the highest 
concentration of pheromone. According to this, ants will 
finally take the shortest way if there are both lengthy and short 
routes leading from the nest to the food source [35]. 

V. ANALYSIS OF HYDROLOGIC MODELING TECHNIQUES  

When it comes to hydrologic modeling, deciding between a 
steady-state and a non-steady-state flow is significantly easier. 
Although 2D modeling can yield better results in some cases, 
there are also scenarios where 1D modeling can produce 
outcomes equally as good as or better than 2D models, with 
less work and computing resources. Many situations are 
complex, and it is possible to include both the positive and bad 
aspects of each approach depending on the context. 

A few instances of scenarios in which it is believed that 2D 
modeling is preferable to 1D modeling are as follows: 

Water may flow in several directions if a levee is broken or 
overtopped in a model region located behind a levee system. 
Before it reaches the lowest point and begins to pool and 
maybe overtop or breach the levee on its lower end, water can 
flow overland in the protected region in several different ways 
thanks to the slopes present there. When the protected area is 
relatively small, and the entire area eventually fills to the level 
of a pool, a 1D model may accurately predict the ultimate 
water surface and the extent to which the region will be 
inundated. 

Tides, river flows, and other water sources entering an 
estuary or bay can cause the water to flow in various 
directions—a place or occurrence where the water's flow path 
is not entirely clear. It is challenging to forecast flood 
occurrences due to the episodic character of flow evolutions on 
alluvial fans. This is because the channels' whole direction may 
shift while the event takes place, making it impossible to 
generate accurate predictions. 

It is best to avoid making sharp bends when there is a good 
chance that considerable super elevation may occur. Because 
flood plains are expansive and level, the water that leaves the 
overbank zone may go in various directions. Measurements of 
precise velocities are required to correctly analyze the 
hydrology of flow around an item. 

Because of the complexity of urban terrain, flows on the 
urban surface are often substantially different from flows in 
channels. In recent years, several examples have been explored 
and applied to coupled 1D/2D techniques, in which the urban 
surface is represented using two-dimensional (2D) flow 
approaches and combined with a 1D pipe network model. 
Roads, buildings, barriers, and other elements of metropolitan 
surfaces abound [30]. These structures, particularly buildings, 
will alter the direction and velocity of the flood water, resulting 
in a variety of complicated flow pathways. The information on 
the buildings may be distorted or lost if the grid resolution is 

too coarse. Models with finer grid resolutions may offer more 
precision and a more accurate depiction of physical processes. 

Constructing an entirely 3D model is more complex, but 
once it has been constructed, changes to the design may be 
made methodically and straightforwardly. Applying design 
changes in a 2D model is more challenging than in 3D. 

There are three types of instruments for predicting 
hydrological variables: conceptual, physically based, and 
"black-box" models. The underlying physics of the first two 
categories, which may be represented by either simplified 
relations or partial differential equations in one or two 
dimensions, must be understood. Furthermore, using these 
models to forecast rainfall/runoff processes and/or river routing 
also calls for a significant amount of topographic, land-use, and 
other information that might not be accessible. Additionally, 
the lengthy calculation requirements associated with this 
method, particularly when two-dimensional models are 
required, sometimes limit real-time forecasting derived from 
physically based models [36]. 

VI. ANALYSIS OF MACHINE LEARNING TECHNIQUES FOR 

FLOOD PREDICTION 

This study on hydrologic modeling and machine learning in 
flood hazard assessment gives a thorough examination of 
machine learning techniques for flood prediction in this 
section. This analysis's goal is to assess the usefulness and 
applicability of several machine-learning strategies for 
anticipating flood dangers. 

A. Evaluation Standards for Prediction 

Establishing evaluation standards that cover accuracy, 
dependability, robustness, consistency, generalization, and 
timeliness is essential for creating accurate flood prediction 
models. These standards act as the basic rules for evaluating 
the efficacy of flood prediction models and guaranteeing their 
dependability in practical implementations. 

B. Metrics for Performance Evaluation 

Root-mean-square error (RMSE), mean error (ME), mean 
squared error (MSE), Nash coefficients (E), and correlation 
coefficient (CC or R

2
) are some of the performance evaluation 

metrics for flood prediction models that are frequently utilized. 
These measures allow for a quantitative evaluation of the 
model's prediction skills and make it easier to compare various 
strategies. 

C. Analysis of Various ML Algorithms in Flood Prediction 

The study identifies the advantages of ANNs, such as 
enabling working with huge datasets, and the benefits and 
drawbacks of particular ANNs, such as Backpropagation 
Neural Networks (BPNN), functional networks, and the NARX 
network. The study also investigates how the inclusion of 
autoregressive models can improve the precision of flood 
forecasts. 

The performance of the MLP and various DT models, such 
as the ADT model, the Rotation Forest (RF), and the M5 model 
tree (MT), is specifically examined. The study draws attention 
to their strength and effectiveness, particularly in cases with 
lengthy lead times. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

546 | P a g e  

www.ijacsa.thesai.org 

SVM’s excellent generalization capacity, promising hourly 
flood prediction results, and uncertainty evaluation for 
potentially dangerous flood quantiles are identified. 

D. Hybrid Designs 

The study investigates the effectiveness of hybrid models 
like the Adaptive Neuro-Fuzzy Inference System (ANFIS) and 
Wavelet Neural Network (WNN) for longer-term flood 
predictions that last longer than two hours. ANFIS's excellent 
capacity to predict flash floods in real-time, as well as its high 
accuracy and dependability is also identified. The study also 
looks at the advantages of sophisticated ANFIS hybrid models 
calibrated by Support Vector Regression (SVR) for nonlinear 
and real-time flood prediction, highlighting their enhanced 
prediction accuracy and cost-effectiveness. 

E. Ensemble Methods 

Finally, the study looks into cutting-edge hybrid models 
and ensemble techniques that combine statistical, soft 
computing, and machine learning techniques to improve flood 
prediction models. It examines Ensemble Prediction System 
(EPS) techniques, such as ANN, MLP, SVM, and RF 
ensembles, which show promise in enhancing prediction 
precision, and robustness, and lowering model uncertainty. 

Table II lists the machine-learning techniques that have 
been applied to flood modeling. Although data-driven 
technologies, artificial neural networks (ANNs) have limits 
when it comes to understanding systems. The Multilayer 
Perceptron (MLP) is straightforward but difficult to optimize. 
Small sample sizes are effectively handled by a Support Vector 
Machine (SVM), but it requires high-quality data. Although 
Decision Tree (DT) is rapid and appropriate for flood 
modeling, more study is required. The Genetic Algorithm (GA) 
seeks the best options, but it depends on accurate encoding. For 
hydrogeological modeling and flood prediction, these methods 
have advantages and factors to consider. 

An accurate forecast should be judged by its accuracy, 
dependability; robustness; consistency; generalization; and 
timeliness [37]. Durable and simple models are the best way to 
ensure that projects are completed on schedule. Using various 
root-mean-square errors (RMSE) can also evaluate the 
accuracy of forecasting models, mean error (ME), mean 
squared error (MES), and R

2
 correlation coefficients, as well as 

the mean and squared errors for each model tested (CC). RMSE 
and R

2
 values close to one indicate that flood forecasting 

models are generally reliable (Calculated using Eq. (1) and Eq. 
(2) respectively).  

The flood forecasting models' reliability can be determined 
by examining their RMSE and R

2
 values, where values close to 

one indicate higher reliability (calculated using Eq. (1) and Eq. 
(2) respectively). By referencing [20] and reviewing 
approximately 45 references, the study extracted and presented 
the results in Fig. 10 and Fig. 11. Evaluations of this study 
considered various factors, including the dataset, processing 
cost, and specific application. The study also assessed the 
method's generalizability, speed, installation cost, ease of use, 
and maintenance expenses. Standard deviation (RMSE) was 
measured using a single unit for accurate representation, and 

thorough confirmation ensured the absence of errors. R
2
 and 

RMSE were utilized to assess the performance of single and 
hybrid ML approaches for short-term flood forecasting, as 
depicted in Fig. 10 and Fig. 11, based on Mousavi's research 
[20]. 
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where, the values are defined as follows: 

xi,  The values that were observed and 

forecasted, along with the residue 

correspond to the i
th

 data point. 

yi 

 ̅ &  ̅ The arithmetic means of those values 

Xobs Observed value 

Xmodel The forecasted values for the specific year i 

An ANN is a short-term forecasting technology that is 
widely viewed as promising. Improved methods for greater 
effectiveness Although ANNs performed severely in some 
early research, especially in the generalization component, they 
showed improved results when dealing with massive datasets. 
In this case, BPNNs and functional networks should be 
avoided. The models can handle noisy datasets accurately, 
efficiently, and quickly. In contrast, the NARX network 
outperformed the BPNN network. Even so, incorporating 
autoregressive models could improve accuracy. 

 

Fig. 10. Comparison of machine learning technologies in flood prediction 

based on R2 and RMSE [20]. 

 

Fig. 11. R2 and RMSE comparison of ML technologies in flood prediction 

[20]. 
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TABLE II. A COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR FLOOD MODELING 

Algorithm Description Advantages Disadvantages References 

ANNs (Artificial 

Neural Networks) 

Interpret historical data, build sophisticated and 

nonlinear models 

Trustworthy data-

driven tools 

Network architecture 

limitations, inability to 
perceive the modeled system 

[30] 

MLP (Multilayer 

Perceptron) 

FFNN with multiple layers, widely used in 

hydrogeological models 

Simplicity, nonlinear 

activation, 
effectiveness 

Challenging to optimize [39] 

SVM (Support 

Vector Machine) 

Supervised learning machine based on structural risk 

minimization 

Reliable and efficient, 

handles small sample 

and nonlinear 
problems 

Dependence on training data 

quality, challenges in 

generalization 

[29], [30], [31][32], 

[43] [8] 

DT (Decision Tree) The rapid algorithm, increasingly popular in ensemble 

models 

Speed, suitability for 

flood modeling 

Further research is needed for 

flood prediction 

[30] 

GA (Genetic 

Algorithm) 

The survival of the fittest concept uses chromosomes 

and genes 

Ability to search for 

optimal solutions 

Dependent on suitable 

chromosome encoding 

[47] 

TABLE III. A SYSTEMATIC REVIEW OF KEY RESEARCH PAPERS FOCUSED ON FLOOD MODELING AND PREDICTION 

Location Methodology Results Key Factors Implications Reference 

Kalvan 
watershed, Iran 

Tested five ML algorithms 

(ERT, RRF, PRF, RF, BRT) 
with 15 climatic and geo-

environmental variables 

ERT yielded the highest 
AUC (0.82) 

Topographical and 
hydrological parameters 

Aid in flood mitigation 
planning 

[43] 

Various urban 

settings 

Reviewed prevailing flood 

modeling approaches 

Overview of methods 
for pluvial flood 

modeling 

- 
Guide urban flood 
managers in selecting 

appropriate methods 

[44] 

Quannan area, 
China 

Compared NBTree, ADTree, 

and RF methods using 13 flood 

explanatory factors 

RF demonstrated high 

accuracy for flood 
susceptibility 

assessment 

Multiple environmental 
factors 

Support flood prediction 
in the study area 

[45] 

Khiyav-Chai 

watershed, Iran 

Employed MDA, CART, 
SVM, and ensemble modeling 

with various factors 

MDA had the highest 
predictive accuracy 

(89%) 

Slope, drainage density, 

distance from river 

Identify flood-prone 

areas for prevention 
[46] 

Various urban 
areas 

Summarized calculation 

methods for urban flood 

numerical simulation 

Identified trends for 

improving model 
accuracy and 

computational efficiency 

1D-2D coupling, finite 

volume method, 

unstructured meshing 

Guide hydrologists in 
model selection 

[47] 

Damansara 
River catchment, 

Malaysia 

Combined FR approach with 
SVM using 13 flood 

conditioning parameters 

Effective for flood risk 
management along an 

expressway 

Environmental 

parameters 

Replicable in other areas 
for flood risk 

assessment 

[48] 

Various 

locations in 
Thailand 

Used MIKE-11 hydrologic 

model and ML techniques to 
improve runoff forecasting 

Enhanced flood 

prediction accuracy 
Hydrological data 

Real-time flood 

prediction for better 
management 

[49] 

Jakarta, 
Indonesia 

Utilized environmental factors 
and satellite imagery 

Supported flood 

susceptibility prediction 
for flood risk 

management 

Environmental 
conditions 

Effective flood risk 
assessment 

[50] 

Indian monsoon 

forecasting 

Employed neural networks for 

ISMR prediction 

Demonstrated superior 
accuracy over existing 

models 

Indian monsoon data 
Improved ISMR 

forecasting 
[51] 

Various 

locations 

Utilized various ML models 

for flood prediction 

Compared models to 

improve prediction 
accuracy 

Environmental and 

hydrological data 

Enhanced flood 

prediction for 
management 

[52] 

 

Overall, the single prediction models examined could 
produce reasonably accurate short-term forecasts. However, 
hybrid models such as ANFIS and WNN scored better for 
forecasts lasting more than two hours. Non-linear and actual 
flood predictions were made more accessible and accurate with 
SVR-tuned advanced ANFIS hybrid models. 

The capacity of (ML) models to capture the intricate 
(potentially unknown) nonlinear interactions between predictor 
(input) and predict and (output) variables sets them apart from 
other hydrologic modeling techniques, which solely base their 

predictions on previously observed data. Another benefit of 
these flexible models is their relatively high computational 
efficiency, which has increased their appeal over the past 20 
years because of the continuing advancements in computing 
power [20]. 

Table III provides a comprehensive overview of various 
studies that have employed these approaches, encompassing a 
diverse range of locations and methodologies. The studies 
demonstrate the effectiveness of ML algorithms in improving 
flood prediction accuracy, emphasizing the importance of 
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environmental and hydrological factors in flood susceptibility 
assessment. Furthermore, the table highlights the development 
of various modeling techniques for urban flood modeling and 
the potential of integrated approaches combining ML and 
traditional methods for enhanced flood risk management. 
These findings underscore the transformative role of ML and 
other advanced techniques in addressing flood-related 
challenges, paving the way for more effective flood 
preparedness and mitigation strategies. 

VII. ANALYTICAL DISCUSSION 

This systematic review offers valuable insights into the 
state of the art in flood modeling and prediction, providing a 
foundation for informed decision-making in flood risk 
management and urban planning. It underscores the potential 
of machine learning techniques in enhancing the ability to 
predict and mitigate the impacts of flash floods and pluvial 
flooding in urban areas. The study also highlights the strengths 
and weaknesses of both hydrologic models and data-driven 
machine learning models, paving the way for potential hybrid 
modeling approaches that can provide more accurate and 
efficient flood management strategies. 

Additionally, the review identifies trends in research focus 
and geographic areas, which can guide future research 
directions and flood management efforts. Overall, this 
comprehensive analysis contributes to the ongoing efforts to 
develop effective flood control measures and adapt to the 
increasing challenges posed by climate change and 
urbanization. 

Regarding computed water surface elevations and 
flow/stage hydrographs, 1D modeling can be just as accurate as 
2D and 3D modeling while requiring less computational time 
and effort. The following are some examples of where this 
might be possible: 

Rivers and floodplains where the predominant flow and 
force directions and paths follow the overall river flow. For 
most river systems, this is believed to be true, despite debates 
about the influence of lateral and vertical velocity on predicted 
water surface heights as well as the flood inundation boundary. 

Gravity-driven streams with sloping beds tend to have very 
little overbank area. According to the river’s dams, levees, 
pumping stations, and bridges, the river’s predicted level and 
flow are affected by these gated projects. 

The hydrologic flow characteristics present in many of the 
river systems are something that no 2D model has been able to 
represent adequately. It is a case where 1D models are much 
ahead of 2D models in terms of technological sophistication. 
These characteristics can be implemented in 2D models, but a 
popular 2D model with such a comprehensive collection of 
features is yet to be developed. 

Medium to big rivers are considered when modeling a 
significant portion of the river system (100 or more miles) (i.e., 
2-week to 6-month forecasts). Even with multi-processor 
computing and GPU (Graphics Processing Units) computation, 
2D models have substantial geographical and simulation time 
restrictions regarding real-time forecasting. This is going to 
change over time. There is no evidence to justify using a 2D 

model in these situations. Many of the benefits of a 2D model 
will be thwarted by inaccurate topographical data due to a lack 
of information in the overbank and channel bathymetry. 

As a result, the correctness of a 1D or 2D modeling 
approach for a given application is frequently in question. It is 
not as simple as choosing whether to solve the Saint Venant 
equations in one or two dimensions. There are other variables 
to consider. It was concluded that there are knowledge and tool 
gaps when determining whether to employ 1D, 2D, or 3D. It is 
necessary to use 1D and 2D models in the modeling efforts, 
and Hydrologic modeling software must be improved in this 
area. 

Le et al. [38] [39] proposed many ANNs for seasonal flood 
forecasting and compared the outcomes. Data from 1970–1985 
was employed as a training tool, while the 1986–1987 dataset 
was used to verify the results. The ANNs were able to identify 
whether the dataset was incomplete accurately. According to 
[20], employing ANNs to speed up data analysis could lower 
analytical expenses. ANNs have also been used to create 
precipitation forecast models, as seen in the [40]. An ANN 
model was used for a historical dataset spanning the years 
1900–2001 to evaluate prediction accuracy. For this dataset, 
more than 100 floodstream localities were examined. The 
ANN, on the other hand, had issues with generalization. 
Despite this, water management found the ANN to be helpful 
in this instance. 

Prediction models for heavy rain and flooding were 
developed by [37] using a variety of BPNNs. This dataset 
covered 1871–2010, and it did so every month. It was 
discovered that BPNN models using virtual networks were 
ideal for nonlinear flood forecasting since they were both fast 
and resilient. The following source may be long-term flood 
projections: BPNN and LLR-based models were used by 
Shamim et al. [41] to explain nonlinear floods better. An 
estimated two decades' worth of rainfall, evaporation, and 
water level statistics stretches back to 1988 in this dataset. 
According to their findings, LLR outperformed the BFGSNN 
neural network model in terms of efficiency and durability. In 
contrast to the other approaches, BPNN performed well. 

According to [20], the most reliable ANN for long-term 
flood prediction is the BPNN model. For the long-term 
forecasting of flood discharge, ANNs performed better than 
BPNNs and MLPs in reference. There were promising 
outcomes while employing MLP. There was, however, the 
problem of generality. Mulualem and Liou [40] used an SVM 
model to forecast streamflow and reservoir inflow long-term. 
For comparison, they used neural networks and ARMA. 
Monthly river-flow flows from 1974–1998 were used to train 
the models, and data from 1999–2003 was used to evaluate 
them. According to a comparison of model performance, SVM 
outperformed the ANN when predicting long-term discharges. 

ANNs are the most extensively utilized ML tool for dealing 
with complex flood features and incomplete data sets because 
of their accuracy, high fault tolerance, and parallel solid 
processing. ANN, on the other hand, has a problem with 
generalization. In [30], ANFIS, MLP, and SVM outperformed 
ANNs. As suitable data pre-processing, wavelet 
transformations may increase the performance of most machine 
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learning (ML) methods, which have been suggested. WANs, as 
opposed to traditional ANNs, have few benefits. 

According to Hosseini et al. [42], short-term and long-term 
rainfall-runoff models' accuracy, precision, and performance 
were all improved by deconstructing ML algorithms (such as 
WNN). However, while WNNs have proven a success, long-
term forecasts are limited. Hybrid WNN/autoregressive models 
WMRA and WARM were developed to improve the precision 
of one-year-ahead forecasts. 

Through deconstruction, models performed far better in 
some circumstances, resulting in more accurate results. For 
example, wavelet–neuro-fuzzy models outperformed 
standalone ANFIS and ANNs in terms of accuracy and speed 
[42]. However, as the lead time lengthened, so did the degree 
of uncertainty in the predictions. Future research should take 
into account the accuracy of the model. An essential part of 
developing hybrid techniques was using data decomposition 
methodologies such as autoregressive, wavelet transformations 
(DWT), wavelet–autoregressive, IIS, and EMD. 

Extrapolative prediction systems are another advancement 
in prediction accuracy and generalizability (EPS). Recent 
ensemble techniques have significantly changed speed, 
accuracy, and generality. Many non-traditional approaches to 
machine learning were used in developing ANN and WNN 
model training algorithms, such as BB sampling and genetic 
programming, in addition to typical ML techniques like the 
basic average and Bayesian inference. Conversely, ensembles 
outperformed models that did not include human decision-
making as an input component. New decomposition–ensemble 
prediction models appropriate for monthly forecasts were the 
most significant hybrid models. Their accuracy and 
generalization improved significantly compared to SVM, 
ANFIS, and ANNs. 

Predicting floods using machine learning models is still a 
developing field. An overview of machine learning models 
used in flood forecasting is presented in this study, along with 
the development of a classification strategy to examine the 
literature. More than 6,000 items were analyzed and 
investigated in the survey. Several original and significant 
studies compared the precision of at least two machine learning 
models. Models were classified into two groups depending on 
the lead time, with hybrid and single-method subgroups further 
subdividing. 

Considering performance comparisons from previous 
literature helped in accessing and analyzing how these 
approaches perform. All approaches were examined using R

2
 

and RMSE, as well as a generalization, robustness, and 
computing costs/speeds. Despite the previous optimistic 
results, there was a lot of research and testing to enhance and 
develop the most popular machine learning algorithms like 
ANNs and SVM, SVR and ANFIS, WNN, and DTs. Four 
essential topics emerged from the research on improving 
prediction models' accuracy and general models. 

The initial stage was to use both conventional and soft 
computing in conjunction with at least two different types of 
machine learning algorithms. Secondly, data segmentation 
methods were used to increase the dataset's quality, resulting in 

much higher accuracy in the predictions made from the data. 
Generalizability and predictive power were significantly 
improved and decreased by employing several approaches. 
Add-on optimizer algorithms, for example, can be used to 
increase the quality of neural network models. 

Flood prediction is projected to improve significantly in the 
near and long term due to the development of these four 
leading technologies. Developing these new machine learning 
approaches relies heavily on applying soft computing 
principles in algorithm design. As a result, future hybrid 
machine-learning methods will rely heavily on soft computing 
techniques, as detailed in the study. 

VIII. CONCLUSION 

In conclusion, the study has underscored the critical impact 
of floods on the environment, emphasizing the need for 
effective prediction models to mitigate their adverse effects, 
such as loss of life, crop destruction, and increased waterborne 
ailments. The investigation has focused on the application of 
one-dimensional, two-dimensional, and three-dimensional 
hydrologic modeling for flood hazard forecasting, providing 
valuable insights for the development of preventive 
interventions. Notably, the study has revealed the growing 
superiority of machine learning (ML) techniques over 
traditional hydrologic models in predicting flood occurrences. 

The findings indicate that ML, armed with sophisticated 
algorithms and extensive datasets, excels in its ability to 
provide accurate flood predictions. Notably, the study suggests 
that ML models can offer effective solutions by correctly 
estimating complex hydrological parameters, as exemplified in 
the accurate determination of water flow through structures like 
the hydrologic manifold P-10. This superiority of ML over 
hydrologic modeling systems is further supported by the 
bibliometric investigation, which revealed a burgeoning 
interest in utilizing machine learning for flood prediction. 

Two key recommendations emerge from this study to 
further advance flood prediction accuracy. First, there is a 
discernible shift toward the use of machine learning 
techniques, and it is recommended to collect real-world data on 
flood events from Jeddah municipality. This data would serve 
as a valuable resource for training machine learning 
algorithms, enhancing their accuracy and applicability in the 
specific context of the study. Second, acknowledging the need 
for a comprehensive approach, the study recommends 
developing a hybrid model that combines time-series data for 
machine learning-based algorithms with the expertise of 
1D/2D/3D hydrologic modeling. This hybrid approach aims to 
leverage the strengths of both methodologies for improved 
flood prediction, acknowledging the importance of evolving 
hydrologic modeling science while embracing the 
advancements offered by machine learning. 
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