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Abstract—Stereo matching techniques are a vital subject in 

computer vision. It focuses on finding accurate disparity maps 

that find its use in several applications namely reconstruction of 

a 3D scene, navigation of robot, augmented reality.  It is a 

method of obtaining corresponding matching point in stereo 

images to get disparity map. With additional details, this 

disparity map could be converted into a depth of a scene. 

Obtaining an efficient disparity map in the texture less, occluded, 

and discontinuous areas is a difficult job. A matching cost using 

an improvised Census transform and an optimization framework 

is proposed to produce an initial disparity map. The classic 

Census transform focus on the value of pixel at the center. If this 

pixel is prone to noisy condition, then the census encoding may 

differ which leads to mismatches. To overcome this issue an 

improved census transform based on weighted sum values of the 

neighborhood pixels is proposed which suppresses the noise 

during stereo matching. Additionally, a deep learning based 

disparity refinement technique using the generative adversarial 

network to handle texture less, occluded, and discontinuous areas 

is proposed. The suggested method offers cutting-edge 

performance in terms of both qualitative and quantitative 

outcomes. 

Keywords—Census transform; deep learning; depth; generative 

adversarial network; occlusion; stereo matching 

I. INTRODUCTION 

Stereo matching has gathered attraction recently because 
of its applications in  fields like visual entertainment, 3D 
reconstruction, autonomous driving, object detection [1], 
outdoor mapping, navigation and 3DTV [2], [3]. It is a 
research area that tries to imitate vision systems in humans by 
using two or several 2D views of the same scene to get three-
dimensional depth details of the scene. It intends to find the 
corresponding relationship between matching pixels. A stereo 
matching algorithm uses stereo images that are rectified as an 
input [4], [5]. The horizontal displacement between the 
matching pixels is called disparity. With additional details, a 
disparity map could be transformed to a depth of scene. 
Disparity map accuracy is very crucial as small inaccuracies 
may affect the result. Obtaining an efficient and precise 
disparity map is a tedious task because of  the existence of 
noise, occlusions, low textures, ill-posed regions, and the 
lighting conditions. Hence, it is significant to create a good 
disparity map. 

Stereo matching techniques are classified as conventional 
algorithms and deep learning methods. Conventional 
algorithms are grouped into local and global algorithms. In 
local approaches, disparity is computed by comparing small 
areas [6] [7]. The disparity calculation relies on intensity in a 
defined support area. In real time the stereo images collected 
may be prone to noise, lighting distortions which reduces the 
efficiency of these algorithms. To overcome these drawbacks, 
a census transform in stereo matching is proposed in [8] which 
can decrease the effect of amplitude distortion. It aims at 
mapping the pixels to a binary string and then calculates the 
similarity between the pixels by means of Hamming distance. 
But, this method relies mainly on the central pixel, leading to 
false matching in a noisy environment. To reduce this 
shortcomings, a three-state census is proposed in [9] which is 
tolerant to any noise and enhances the robustness of stereo 
matching. An algorithm is implemented in [10] to perform 
census transform that reduces the noise interference and 
amplitude distortions in the images. A star-census transform 
(SCT) is introduced [11] that initiates the neighborhood pixel 
sampling in a symmetrical order that excludes the central pixel 
in the matching window. An improvised AD-Census stereo 
matching using gradient fusion (ADSG) is introduced in [12]. 
The absolute difference is used along with census transform 
for cost calculation, the result is then combined with gradient 
cost.  These methods focus only on the information locally 
and hence have a low complexity and execute in shorter time. 
But the results generated by these local methods in the areas 
of occlusion, texture less and discontinuities is not satisfying. 

 The semi global algorithm was proposed in [13]. The 
accuracy and computational efficiency of semi global 
algorithms lies in between that of local and global algorithms. 
A global method considers disparity computation as a global 
energy minimization method for all disparity values. The 
energy function has two terms namely data term which 
penalizes pixels with inconsistent values and smoothness term 
with enforces smoothing constraint by considering the 
neighboring pixels. Some of the commonly used global 
algorithms are graph cuts algorithm [14] and belief 
propagation  technique [15]. A disparity estimation based on 
tree structure named Pyramid-tree is introduced in [16]. It 
performs cross regional smoothing that can handle low texture 
regions. Global methods can generate a good quality disparity 
map, but they are also quite  expensive and time-consuming. 
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  Deep stereo methods are popular these days. Zbontar et 
al. [17] used a network to get patch-wise details to compute 
matching cost. The proposed network is trained to find the 
similarity that exists between a pair of images. It is then 
processed using classic post processing. The GC-Net [18] is a 
network with a high performance. It applied 3D convolution 
kernel to the correspondence space and proposed disparity 
refinement. This provided improvement over the previous 
approach. A pyramid stereo matching network is proposed in 
[19]. It improved the feature extraction by means of multi 
scale feature extraction network [20]. A network namely 
cascaded residual learning [21] was introduced which uses a 
DispNet. This  is made up of two sub parts called DispFullNet 
and a DispResNet. The first network computes the raw 
disparity map. The second network tries to optimize the raw 
disparity map by computing the multiscale residual 
information. Williem et al. [22] introduced a method known as 
self-guided cost aggregation that uses a convolution network 
for local stereo matching. The network is made up of 
emotional weight network and descent filtering network. In 
LEA Stereo [23] a search is performed to streamline matching 
pipeline. Shivam Duggal et al. [24] developed a trainable 
network. Many recent papers introduced refinement 
components steps to improvise the disparity map quality. The 
MSMD-Net [25] introduced multi scale technique in which 
the stereo images are processed using multi resolution 
pyramid network. The RAFT- stereo [26] consists of a 
network for stereo estimation along with refinement stage. 
The deep learning-based methods can produce depth map 
from a given stereo image pairs, but these stereo methods still 
find it difficult to find correct correspondences in texture less 
and the occluded regions. 

Though several techniques have been proposed to 
improvise the matching accuracy, the low accuracy in the 
occluded and texture less regions has not been handled very 
well. A  depth estimation technique using improvised census 
transform and disparity refinement using deep learning to 
enhance the results in occluded and texture less regions is 
proposed .  The weighted sum of the center pixel and its four 
neighbors is used to calculate the center pixel value in the 
improvised census transform in order to reduce noise in initial 
disparity map. The occluded and texture less regions of initial 
disparity map are refined using Generative adversarial 
network (GAN) deep learning framework. The extensive 
experiments performed on Middlebury datasets shows the 
efficacy of our method. Our method improvises the efficiency 
of disparity map by a considerable amount. The suggested 
method is explained in Section II. The outcomes of the 
suggested method are shown in Section III. In Section IV, the 
paper's conclusions are discussed. 

II. METHODOLOGY 

The proposed method applies improved census transform 
is applied for the stereo images and a matching cost is 
obtained using Hamming distance. Then, a cost aggregation is 
carried using semi global method to compute an initial 
disparity map. Finally, a disparity refinement network using 
GAN is proposed to increase the efficiency of disparity map 
from which depth is estimated. An overview of the whole 
methodology is Fig. 1. 

 
Fig. 1. Block diagram of the methodology. 

A. Improves Census Transform 

Methods for stereo matching based on intensity difference 
contain a lot of errors, especially for the outdoor images. To 
overcome these drawbacks Census transform (CT) method is 
used for computing matching cost. It is a local method that 
relies on relative ordering of pixels rather than intensity within 
a fixed window. Hence it can efficiently handle radiometric 
variations like lighting changes and illumination differences 
and discontinuities. The traditional CT is shown in Fig. 2.  
Census transform consider the center pixel value, compares 
with all the remaining pixels and assigns the 1 if the center 
pixel value is less than the compared pixel, otherwise 0 is 
assigned. It is then represented as a binary bit string. 

 
Fig. 2. Traditional census transform. 

Census transform is represented by the following equation 

          
 [         ]                   (1) 

 [         ]  {
              

  
           

           (2) 

Here,   is a bitwise operation,    represent window with 

   as centre pixel,       is any point in     and           are 

pixel values of points   and   respectively. 

The traditional CT can reduce the impact of distortions in 
amplitude, but it depends heavily on the middle pixel. It is 
prone to noise, as it measures the relative difference of the 
neighboring pixels based on middle pixel. When the center 
pixel is affected by noise, encoding from the census transform 
might vary drastically which may lead to mismatched pixels.  
Due to noise if the center pixel value changes from 15 to 35, 
the traditional CT transformation for a       patch of image is 
depicted in Fig. 3.  Since the traditional CT depends on the 
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pixel at the center, the noisy center pixel value 35 is 
considered to compare with the remaining pixels in the image 
patch. The census code obtained is 00000000. Here there is a 
difference in 5 bits as compared to the initial code 01111001. 

 
Fig. 3. Traditional census transform in noisy condition. 

Aiming to overcome this drawback, an improvised census 
method is proposed in this paper where the weighted 
summation of pixel at the center and the four neighboring 
pixels is used to update the center pixel. 

Let        be the center pixel. The weight distribution of 
pixel of the center and the four neighboring pixels are: 

                                           (3) 

                                       (4) 

                                        (5) 

                                        (6) 

                                       (7) 

The weights are assigned in such a manner that the weight 
of each pixel lies in between 0 and 1 and the total weighted 
sum of the pixel at the center and four neighboring pixel is 1. 

The weighted sum of pixel centered at (x, y) is computed 
using the following equation. 

                                         
                                    

                         (8) 

The following equation is used to update the value of the 
center pixel. 

          {
{           |                  |

         |                  |
         (9) 

 If the variation between the weighted sum of center pixel 
and the original center pixel is more than the threshold      
then the pixel value in the center is updated by the weighted 
sum otherwise the original is used. 

The improvised technique for census transform proposed 
in the paper is depicted in Fig. 4. 

 
Fig. 4. Census transform of the proposed method in noisy condition. 

Due to noise if center pixel value change from 15 to 35, 
the improvised method proposed in the paper updates the 
value of center pixel to 27.95 using the weighted sum as 
shown in Fig. 4 (i.e 35*0.4+11*0.15+32*0.15+30* 
0.15+20*0.15). This value is compared with the remaining 
pixels in the patch to get the census code 01101000. The 
pixels differ only by 2 bit as compared to original code 
01111001. This demonstrates how the approach is noise-
resistant and improves matching performance. 

B. Matching Cost Computation 

To ascertain whether the values between two pixels 
indicate the matching point of a scene, a matching 
computation of cost is carried out. After the census transform 
the correspondence of pixels can be determined using 
Hamming distance [8]. The Hamming distance between 
matching points is found to estimate the correspondence 
between matching points.  Let           be a binary bit array 
of pixel   in the left stereo image and             be the binary 
bit array of pixel     in right stereo image for disparity    . The 
following calculation uses the Hamming distance to compute 
the matching census cost between p and q. 

              [                  ]          (10) 

The cost computation for the center pixel of        image 
patch is depicted in Fig. 5. 

 

Fig. 5. Matching cost computation. 

C. Initial Disparity Estimation 

Due to noise, the pixel wise cost may produce ambiguous 
results. Hence additional constraint is included to get a smooth 
disparity by penalizing the changes in the neighboring pixels 
[27]. The smoothness constraint and pixel wise cost is 
represented by the energy function     . 

      ∑            ∑      [|       |   ]    
 

 ∑     [|       |   ]    
      (11) 

          is the cost summation of all the pixel for 
disparity  .      is the penalty applied to pixels     in NP with 
low disparity difference.    is the penalty for pixels in    with 

high disparity difference. 

The stereo matching problem aims to minimize the energy 
function    . Finding the minimum energy function      is 
computationally expensive. The energy function is 
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approximated by aggregating the matching cost from all 
directions      . The total number of directions     is 8. The cost 
at direction r is represented by, 

                     [                        

                               ]  (12) 

        is cost  for pixel    and            is the pixel 
cost at direction   with  disparity  ,               is  cost 
at direction     and disparity      .             denotes 
cost for disparity       and direction      .       is minimum 
pixel cost at direction  . 

The following equation is then used to determine the initial 
disparity. 

           ∑                           (13) 

D. Disparity Refinement 

The initial disparity calculated may contain wrongly 
matched disparities at the object boundaries, occluded areas 
and the texture less regions. Finding the correct disparities in 
these areas is a difficult task. Hence, an appropriate disparity 
refinement method is needed. A disparity refinement is 
performed based on deep learning-based technique using the 
generative adversarial network (GAN) to handle texture less, 
occluded, and discontinuous areas. The method proposed  uses 
GAN network introduced by Good fellow [28] for disparity 
refinement. GAN includes two networks called generator and 
a discriminative network that are implemented based on neural 
networks. The generator takes initial disparity map as its input 
and focuses on generating a refined disparity map. The 
discriminator is fed with ground truth disparity along with 
disparity map produced by the generator. The discriminator 
aims to differentiate the ground truth disparity and generated 
refined disparity map. The feedback from the discriminator is 
given to the generator to fine tune the generated image. This 
procedure is repeated until the resulting disparity 
resembles the ground truth disparity. The disparity refinement 
network proposed in the paper is depicted in Fig. 6. 

 
Fig. 6. Architecture of disparity refinement network. 

A Pix2Pix GAN [29] is used to refine the disparity map. 
Pix2Pix GAN is an adversarial network. Pix2Pix GAN is 
known for the capacity of producing high quality images. The 
initial disparity is given as input to the generator.  The 
generator generates the disparity map which is then fed to the 
discriminator. The various generator networks available are 
UNET 128, ResNet 6 and Resnet 9. The proposed disparity 
refinement network uses UNET128 as it can learn with few 
training images. The architecture of UNET 128 generator used 
in the proposed approach is depicted in Fig. 7. 

 
Fig. 7. Architecture of generator. 

It uses a network consisting of several convolutional layer, 
batch normalization, dropout, and activation layers. It is 
trained using adversarial loss and then revised by means of   
L1 loss. This loss drives the generator to generate image close 
to ground truth disparity. The generator is then updated using 
a sum of   L1 loss and a loss called as adversarial loss.  A 
comparative study of UNet 128 with other networks such as 
ResNet 6 and ResNet 9 is given in Table I.  ResNet 6 and 
Resnet 9 are the deep residual networks which include 6 
residual blocks and nine residual blocks respectively. The 
information details are passed via a shortcut connection. 
Convolutional, batch-normalization, and corrected Liner Unit 
(ReLU) layers make up a traditional residual block. For 
evaluation, measurements like squared relative difference 
(SRD) and absolute relative distance (ARD) are used.  Lower 
values of the above metrics indicate better performance. The 
efficiency of the generator architecture is shown in Table I. 
Results obtained for UNet 128 is better than the ResNet 6 and 
ResNet 9. 

    
 

 
∑

                

       
                       (14) 

    
 

 
∑

|               |
 

       
                     (15) 

Here     is generated disparity map,    is ground truth 

disparity map.   is the total pixels. 

TABLE I.  COMPARATIVE STUDY OF GENERATOR ARCHITECTURE 

 ResNet 6 ResNet 9 UNet 128  

ARD 0.058 0.051 0.037 Lower is 

better SRD 0.409 0.413 0.403 

The discriminator is based on Patch GAN model. This 
PatchGAN model provides extremely high frequency 
information. The GAN's primary objective is described as, 
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               [         ]      *   (  

 (        ))+      (16) 

Here,    de represent the a ground truth disparity,   denote 
the generated disparity and   denotes the initial disparity map 

The generator G attempts to decrease the objective as 
response to the discriminator D which attempts to increase it. 
The result is as follows: 

                                     (17) 

The aim of    is to decrease the objective and the 
generator updates itself using Loss    . It is computed as, 

      
           [ (        )  ]      (18) 

The objective is updated as 

                               
       (19) 

The performance of training model is depicted in Fig. 8. 
Here the training loss decreases gradually as the number of 
epochs increases. Lower the loss, the more effective the model 
is. 

 
Fig. 8. Training loss versus epochs. 

E. Depth 

Once the disparity map is generated for the stereo images, 
the depth   is estimated using the following formula: 

  
      

 
                                     (20) 

 
Fig. 9. Point cloud generated for motorcycle image. 

Here   is focal length,     is stereo camera baseline. These 
values are obtained from the stereo calibration. Once the depth 
is estimated the exact coordinates of each pixel in the scene 

can be computed. These coordinates are made used to 
construct point clouds. The point cloud generated for 
Motorcycle image is shown in Fig. 9. The coordinates are 
stored in polygon format file. The output ply file is plotted 
using ply file plotters. The point cloud shown above was 
constructed using open3d. 

III. RESULTS AND DISCUSSION 

The experiments were performed using Middlebury dataset 
[30], [31] images to analyze the performance. The refinement 
network is trained using the Pytorch framework on a personal 
machine. The computer hardware environment used is a Dual 
Intel-Xeon E5-2609V4 8C having 1.7 GHz 20M 6.4 GT/s and 
128GB Memory. A Dual NVDIA Tesla server P100 GPU 
having 3584Cores and maximum of 18.7 TeraFLOPS is used.  
The datasets are downscaled to 256 pixels width and 256 
pixels height for computational purposes. The Adam optimizer 
is used to optimize the discriminator. The learning rate is 
0.0002. The GAN models does not converge, hence a balance 
has to be established between the generator and discriminator. 
The number of epochs is 100. 

A. Middlebury Dataset 

The Middlebury dataset includes rectified stereo images 
from indoor and outdoor surroundings utilizing a stereo vision 
concept. These images are complex, and it has images of 
different characteristics such as, different resolutions and low 
texture areas. Hence, the dataset consists of complex images 
for framework evaluation. Our stereo matching technique is 
robust to occluded and non-textured regions. The details of 
testing images like Cones, Teddy and Venus from Middlebury 
2001 and 2003 are given in Table II. The details of higher 
resolution images from Middlebury 2014 are given in Table 
III. 

TABLE II.  IMAGE OF MIDDLEBURY 2001 AND 2003 

Images Disparity level Image resolutions 

Cones 60 450 × 375 

Teddy 60 450 × 375 

Venus 20 434 × 383 

TABLE III.  IMAGE OF MIDDLEBURY 2014 

Images Disparity level Image resolutions 

Adirondak 73 718 × 496 

ArtL 64 347 × 277 

Jadeplant 160 659 × 497 

Motorcycle 70 741 × 497 

Pipes 75 735 × 485 

Playroom 83 699 × 476 

Playtable 73 680 × 463 

PlaytableP 73 681 × 462 

Recycle 65 720 × 486 

Shelves 60 738×497 

B. Noise Resistance Test 

The traditional CT heavily depends on the center pixel. If 
this pixel is prone to noisy condition, then the census encoding 
may differ which leads to mismatches. To analyze the 
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efficiency of the proposed improved census transform in a 
noisy condition, salt and pepper noise of 2% and 5% noise is 
applied to Cones, Teddy and Venus images. The qualitative 
results for Teddy image when 2% salt and pepper noise is 
applied is represented in Fig. 10 and Table IV shows the 
percentage of bad matching pixels (PBMP) of the initial 
disparity map for the proposed improved census transform and 
traditional CT. The outcome conclude that results of the 
method proposed in the noisy condition is remarkably good 
than the traditional CT. 

 
Fig. 10. Visual results for initial disparity map on noisy Teddy image  (a) Left 

reference image (b) Right image (c) Ground Truth Disparity (d) Initial 

Disparity Map using traditional CT (e)  Initial Disparity Map using  proposed 
method. 

TABLE IV.  PBMP OF INITIAL DISPARITY MAP 

 Salt & Pepper Noise (2%) Salt & Pepper Noise (5%) 

 
Traditional 

CT 
Proposed 

Traditional 

CT 
Proposed 

Cones 8.984 7.556 12.990 8.980 

Teddy 13.492 9.715 19.492 12.103 

Venus 3.229 1.370 6.062 2.740 

C. Qualitative Results 

The initial and improved disparity maps estimated by the 
suggested method are shown in Fig. 11. In the Fig. 11, the Fig. 
11(a) is the left reference image. Fig. 11(b) is the right image. 
The ground truth disparity is given Fig. 11(c). The fourth 
column Fig. 11(d) represent initial disparity map. The refined 
disparity map is represented in Fig. 11(e). The red rectangular 
regions marked in Fig. 11(d) represent the occluded areas 
which are filled in the refined disparity map obtained by the 
suggested approach. The yellow circular region marked in the 
initial disparity of the Venus image shows the texture less 
region which is filled in the refined disparity map. It is 
discovered that the suggested method effectively creates high-
quality disparity maps in noisy, textureless, and occluded 
regions. 

 
Fig. 11. Visual results on Cone, Teddy, and Venus images (a) Left image (b) 

Right image (c) Ground Truth Disparity (d) Initial Disparity Map (e) Refined 

disparity map. 

The disparity maps generated for images such as Jade 
Plant, Adirondack, Motorcycle and Recycle are presented in 
first, second, third and fourth rows respectively in Fig. 12. The 
first row of the Fig. 12 shows a Jade Plant image from 
Middlebury dataset. This image is very challenging to match 
due to brightness difference. But, the proposed method has 
correctly discovered the disparities. The second and third rows 
of Fig. 12 shows Adirondack and Motorcycle images. The 
texture less surfaces in the initial disparity map of Adirondack 
image is highlighted by the yellow circular region. These 
regions are well recreated by the proposed approach. The 
fourth row of Fig. 12 shows Recycle image. The occluded 
areas in the initial disparity map is highlighted by the red 
rectangular region. The possibility of getting wrong matches 
in these regions are very high. These occluded areas are filled 
accurately in the estimated disparity map. We find that the 
proposed method produces efficient results in occluded and 
texture-less regions. 

 
Fig. 12. Visual results on Jade Plant ,Adirondack, , Motorcycle and Recycle 

images (a) Left reference image (b) Right image (c) Ground Truth image (d) 

Initial Disparity Map (e) Refined disparity map. 

D. Evaluation Metrics 

The quantitative analysis is performed using the evaluation 
metrics namely root mean square error (RMSE) and PBMP. 
The efficiency increases when PBMP and RMSE values 
decrease.  N be the number of pixels. dt and dg be the disparity 
map estimated and ground truth disparity maps respectively. 

RMSE is calculated as: 

     *
 

   
∑|               |

 
+

 

 
   (21) 

PBMP is calculated as follows: 

     *
  

 
 ∑|               |   +      (22) 

E. Comparison with Existing Methods 

The proposed method is compared with ADSG [12] and 
Deep Pruner [24]. The results for the methods compared are 
obtained from Middlebury evaluation leader board. An 
improved AD-Census method using gradient fusion is used in 
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ADSG. The absolute difference and census transform is used 
for cost calculation, which is then combined with gradient 
cost. This method focus only on local information and hence 
do not give satisfying results in the areas of occlusion, texture-
less and discontinuities. Deep Pruner uses a trainable network. 
It do not produce satisfactory results in the occluded regions. 
Tables V and VI demonstrate that the comparison of RMSE 
and PBMP results. 

TABLE V.  COMPARISON OF RMSE RESULTS 

Images ADSG Deep Pruner Proposed 

Adirondack 19.5 6.18 5.14 

ArtL 24.6 9.50 6.22 

Jade plant 25.8 28.2 5.44 

Motorcycle 79.6 10.3 6.52 

Pipes 32.1 13.9 6.74 

Playroom 35.2 8.91 7.85 

Playtable 50.0 4.89 3.52 

PlaytableP 19.9 4.74 3.54 

Recycle 17.6 3.81 5.55 

Shelves 21.9 4.28 5.66 

Avg 32.62 9.471 5.618 

TABLE VI.  COMPARISON OF PBMP FOR THRESHOLD=1 

Images ADSG Deep Pruner Proposed 

Adirondack 38.9 39.7 23.97 

ArtL 35.5 41.8 42.36 

Jade plant 49.8 62.8 44.50 

Motorcycle 43.2 45.3 45.92 

Pipes 41.5 53.8 34.78 

Playroom 57.8 57.7 26.08 

Playtable 64.4 48.2 46.28 

PlaytableP 42.2 41.7 47.15 

Recycle 37.5 36.8 27.36 

Shelves 65.0 54.2 45.20 

Avg 47.58 48.2 38.36 

Our technique yields the lowest average RMSE and 
PBMP, as shown in Table V and Table VI. This signifies the 
accuracy and competitiveness of our method as compared to 
ADSG [12] and Deep Pruner [24]. The proposed method 
produces average RMSE 5.68 and PBMP 38.36%. The 
improved census transform in matching cost is robust to noise. 
Additionally the disparity refinement based on deep learning-
based technique using the generative adversarial network 
(GAN) handle texture less, occluded, and discontinuous areas 
and produce a good quality disparity map. 

IV. CONCLUSION 

A stereo matching method that is based on improvised 
census transform along with an optimization framework is 
proposed to determine the initial disparity map. Further 
disparity refinement is carried out using GAN to obtain the 
depth of a scene. The traditional census transform heavily 
depends on center pixel. If this pixel is prone to noise, then 
census encoding generated will differ which may lead to false 
matching. To handle this issue an improved census cost that 
relies on the weighted sum values is proposed. In the disparity 

refinement stage a deep learning based network using GAN is 
proposed which can handle outliers and enhance the 
correctness of matching. The efficiency of the suggested 
strategy is assessed using images from Middlebury 
benchmark. The comparison with the current system showed 
that the proposed method works better than other methods. 
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