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Abstract—Our hands play a crucial role in daily activities, 

serving as a primary tool for interacting with technology. This 

paper explores using hand gestures to control presentations, 

offering a dynamic alternative to traditional devices like mice or 

keyboards. These conventional methods often limit presenters to 

a fixed position and depend on the device's proximity. In 

contrast, hand gesture controls promise a more fluid and 

engaging presentation style. This study utilizes the HaGRID 

dataset, supplemented by custom-recorded data, divided into 

80% for training, and 10% each for validation and testing. The 

data undergoes preprocessing and a linear classifier with four 

dense layers and a SoftMax activation layer is employed. The 

model, optimized with the Adam optimizer and a learning rate of 

1e-1, incorporates a motion classifier (LSTM) with two dense 

layers and an LSTM layer, tailored for long-distance body pose 

estimation. The resulting application, a local desktop tool 

independent of internet connectivity, uses tkinter for its user 

interface. It demonstrates high accuracy in classifying gestures, 

achieving 90.1%, 89%, and 90% in training, validation, and 

testing, respectively, for the linear classifier. The motion classifier 

records 79.8%, 72%, and 70.1%. The model effectively 

recognizes and categorizes dataset gestures, capturing live 

camera feeds to manage presentations. Users benefit from 

various features, including PowerPoint selection, distance mode, 

gesture toggling and assignment, and appearance mode. This 

study illustrates how hand gesture control can enhance 

presentation experiences, merging technology with natural 

human movement for a more seamless interaction. 

Keywords—Hand gesture; linear classifier; motion classifier; 

LSTM; interface 

I. INTRODUCTION 

Our hands are more flexible when it comes to the usage of 
our body and when it comes to movement, so they are involved 
greatly in our day-to-day activities. It is a natural occurrence 
that someone uses their hands immediately when they wake up 
or want to get something. Researchers have been going over 
ways of interacting with computers and other devices and the 
aim is trying to increase human-computer interaction (HCI) 
through a communication channel from the user to the device. 
One of the ways we can communicate with a computer is with 
our “hands” making movements which are said to be hand 
gestures. The use of hand gestures as a means of interacting 
with technology has become increasingly popular and allows 
users to interact more naturally and intuitively and it has started 
entering the field of presentation [1]. Hand gestures have been 
used as a form of major communication in presentations for 
ages. Hand gestures have been effectively used in presentations 
by renowned presenters and public figures across past times, 
including Martin Luther King Jr., Winston Churchill, and Steve 
Jobs, to captivate audiences and convey compelling messages 

[2]. This historical setting highlights the importance of hand 
gestures as an important part of effective communication. Hand 
gestures in the field of presentation enhance communication 
performance, especially for presenters who may experience 
stage fright. While slides are often seen as the focal point, 
effective hand gestures can captivate the audience and draw 
their attention into the presentation. It then aids in emphasizing 
essential points, drawing focus on significant details, and 
illustrating ideas or operations. Presenters can improve listener 
understanding and recollection of information by adopting 
gestures that correspond to the topic [3]. Non-verbal indicators, 
such as hand gestures, are an important part of communicating. 
These aid in the general comprehension and understanding of 
the information. Presentations get better when presenters 
enhance their verbal communication, express emotions, and 
include richness in their presentations by integrating intentional 
and well-timed gestures [4]. 

In recent years, many eyes have been on various 
technologies to offer improved user interfaces that enable 
computer interactions as intuitive as human interactions. 
Furthermore, standard gadgets such as a keyboard and mouse 
cannot entirely fulfil human interaction needs in presentations 
[5]. The study on controlling presentations using hand gestures 
is significant as it aims to enhance user experience, increase 
interactivity, improve accessibility, enable seamless 
integration, and drive innovation in presentation delivery. By 
developing a presentation package that allows presenters to 
control their presentations using hand gestures, the study seeks 
to provide a more intuitive and natural interaction method. This 
approach eliminates the need for physical devices or complex 
keyboard shortcuts, making the presentation process seamless 
and enjoyable. Incorporating hand gestures in presentations 
enhances interactivity, captures the audience's attention, and 
promotes engagement. The study also emphasizes the 
importance of seamless integration with popular presentation 
software and contributes to the advancement of interaction 
techniques and innovative presentation delivery methods [6]. 

In summary, this paper investigates the gap focusing on the 
practical implementation of hand gesture recognition. Section 
II delves into the existing literature on the subject, establishing 
the foundation for our study. Section III outlines the research 
methodology employed, followed by Section IV which 
presents the results and discussion. Section V presents the user 
implementation. Finally, Section VI concludes the paper. 

II. RELATED WORK 

When a 15th-century author describes an individual as 'cute 
of gesture', they are not referring to mere clapping or shaking 
performed gracefully. Instead, the author is highlighting the 
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person's graceful movements and posture [7]. This broader 
bodily movement was referred to as 'gesture'. The study of 
gestures is not a recent endeavor. Various physiognomists, 
such as G. B. Della Porta, Charles Le Brun, and J. C. Lavater, 
have explored the representation of gestures since the Medieval 
period. In the 17th Century, Francis Bacon emphasized the 
importance of gestures as a primary form of symbolism. 
Giovanni Bonifacio and John Bulwer discussed a universal 
language of gestures that could facilitate international trade and 
interactions [8] [9] [10]. Charles Darwin's work on the 
expression of emotions in humans and animals in the 18th 
century provided further evidence for the biological inheritance 
of expressions [11]. Present-day ethologists emphasize the 
similarities between human and animal bodily movements used 
to convey emotions such as resentment, superiority, or 
possessiveness. Certain emotional facial expressions like 
laughter, tears, yawning, and giggling are nearly universal, 
transcending linguistic and geographical boundaries [12]. 
However, contemporary views suggest that a global language 
of gestures is not feasible, as cultural, and social differences 
play a significant role. There are also various types of gestures 
and languages [12]. 

In the early 19th century, Andrea de Jorio attempted to 
recreate the mimicry of classical antiquity using Neapolitan 
gestures. Anthropologist Marcel Mauss, in his work 'The 
Techniques of the Body' (1935), highlighted the vast cultural 
variations in bodily activities. These differences became 
apparent when people from different cultures watched foreign 
films or encountered unfamiliar gestures. Marcel Mauss' 
insights led to cross-cultural studies of body language and 
facial expressions. David Efron's research explained how 
Italians and Eastern Europeans adapted to the gesture culture of 
the United States [13] [14]. After World War II, interest in 
communication surged once again. New development theories 
introduced powerful models for enhancing communication 
through analogue and digital codes. The language was seen as 
an example of digital code, while elements of changing natural 
behaviour were also considered as forms of language. 
Gestures, although frequently mentioned, received limited 
attention in this context [15]. This distinction gave rise to the 
concept of "nonverbal communication," distinct from oral 
language, focusing on interpersonal relationship building [16] 
[17]. Ray L. Birdwhistell introduced the concept of kinesics, 
aiming to study body movement communication 
systematically, although this didn't lead to extensive studies of 
gesture [18] [19]. The coalescence of nonverbal 
communication studies was dedicated to aspects of behaviour 
not directly linked to spoken language. Ray L. Birdwhistell's 
contribution was notable, but his definition of kinesics 
overlooked the analysis of gestures. Some authors, like Morton 
Wiener and Paul Ekman, attempted to incorporate gestures into 
nonverbal communication theory, but their efforts remained 
somewhat isolated [20] [21]. 

Gordon Hewes' influential study reignited interest in 
gestures as a key topic of discussion. Hewes argued that 
original language might have been gestural and cited Gardner's 
discovery of sign language in juvenile monkeys as a significant 
foundation. The study of sign languages progressed rapidly 
after William Stokoe's work on American Sign Language. 

Although sign language differs from spoken language, it poses 
a challenge to linguistic models and necessitates its 
incorporation into linguistic perspectives [22][23]. Gesture and 
sign language are intertwined, and the resurgence of interest in 
sign language has contributed to the recognition of gesture as a 
significant research area once again. A lot of techniques have 
been used in advancing hand gestures. The research in [24] 
used CNN and LSTM for gesture recognition. The authors 
used the CNN approach followed by the CNN+LSTM 
approach with a skeleton model (hand points), and they 
empirically showcased the capability of extracting pertinent 
attributes from 3D skeleton data. This extraction serves as a 
precursor to effectively address activity recognition through the 
utilization of LSTM. The result shows a high performance. 
Gesture identification, tracking and classification were carried 
out. K. V. Eshitha et al., [25] firstly, segment the hand gestures 
by using the skin colour model and AdaBoost classifier based 
on the type of skin colour, which also segments the hand from 
the background. It is monitored by the Cam Shift algorithm and 
classified by CNN to recognize 10 common digits. The result 
shows a 98.3% accuracy. A. Ikram et al., [26] carried out 
gesture acquisition, segmentation, feature extraction and 
classification by compiling different gesture datasets, and these 
gestures are distinguished from an input image using colour-
based segmentation then the Histogram of Gradient technique 
is used to extract features in this case. After segmentation, the 
gestures are classified into left-hand and right-hand gestures, 
together with labels, and then sent to an artificial neural 
network for training. The result shows a high accuracy. The 
authors combined CNN and RNN to increase the accuracy of 
gesture classification using dynamic hand gestures. The result 
obtained is 85.46% H. Y. Chung et al., [27] I. Dhall et al.,[28] 
carried out hand gesture classification of people with stroke. 
The data set contains 140 gestures and is trained using CNN. 
Accuracy gotten is 99%. P. Parvathy et al., [29] used CNN to 
improve the accuracy of gesture recognition using the OpenCV 
library and the result shows a 99.13% accuracy. A. Mujahid et 
al. [30] proposed a lightweight model based on YOLO and 
DArkNet-53. The gestures are obtained from the Cambridge 
hand gesture dataset and are pro-processed and segmented 
using various techniques and then classified using deep CNN. 
The result shows a 96.66% accuracy. However, despite 
extensive research in gesture recognition and classification, 
deployment has been limited. 

III. SYSTEM ANALYSIS AND DESIGN 

This section outlines a comprehensive methodology 
employed in this research. It covers the step-by-step procedure 
and methods utilized for using hand gestures as a tool for 
presentation. Additionally, it discusses the process of data 
acquisition, feature extraction and deployment of the model. 

Fig. 1 illustrates a comprehensive block diagram of the 
system starting from data gathering, followed by Mediapipe 
hands for preprocessing and extraction then a hybrid model 
comprising of linear classifier and LSTM will be used to 
develop the model. This hybrid architecture has been 
thoughtfully designed to combine the strengths of both 
components, thereby enhancing the model's overall 
performance and predictive capabilities. The utilization of the 
LSTM component holds significant promise in capturing 
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temporal dependencies within the data, further elevating the 
model's predictive prowess. The training environment is the 
Jupital Notebook and finally, the model will be deployed in a 
model as a package. 

 
Fig. 1. Block diagram of the system. 

A. Data Gathering 

This is the first stage in the development of the model. 
There are two datasets used in the model. The first dataset is 
called HaGRID (Hand Gesture Recognition Image Dataset) for 
hand gesture recognition (HGR) systems. HaGRID size is 
716GB and the dataset contains 552,992 (1920p × 1080p) RGB 
images divided into 15 classes of gestures as seen in Fig. 2. 
The data were split into training 80% for the training set 10% 
for the validation set and 10% for the test set. 

The set contains at least 34,730 distinct individuals and 
scenes. The subjects range in age from 18 to 65. The dataset 
was primarily gathered at home, with significant variance in 
lighting, encompassing both artificial and natural light. 
Furthermore, the collection contains photographs captured 
under severe situations, such as facing and backing away from 
a window. In addition, the subjects were instructed to perform 
motions between 0.5 and four meters away from the camera. 

The second dataset is a custom-made dataset for finger 
swipe motion which contains five seconds for each video and 
four classes of gestures. 

 

Fig. 2. Sample of HaGRID dataset. 

B. Data Preprocessing 

This process utilizes functions provided by the OpenCV 
library: 

1) Color channel conversion: The initial step involves 

converting the image captured by the webcam from the BGR 

(blue, green, red) colour channel mode to the RGB mode. This 

transformation is vital because the models we are using expect 

images in the RGB format for accurate processing and 

analysis. 

2) Horizontal flipping: To ensure that the image is 

properly oriented for analysis, a horizontal flip is applied. 

Since webcams typically capture images facing the subject, 

this step prevents the image from being displayed in an 

inverted manner. It ensures that the hand gestures appear as 

intended when processed by the subsequent stages. 

3) NumPy array conversion: Once the colour and 

orientation adjustments are made, the image is converted into 

a NumPy array. A NumPy array is a fundamental data 

structure used in Python for efficient numerical computations. 

In this case, the image is transformed into a format that can be 

readily understood and manipulated by deep learning models. 

4) Adjusting array shape: The shape of the NumPy array 

is then modified to adhere to TensorFlow's specific 

requirements for input data. TensorFlow, a popular deep 

learning framework, expects the arrangement of data in a 

specific order. Therefore, the shape of the array is adjusted to 

have the colour channels come first, followed by the width 

and height dimensions. This ensures that the input data 

conforms to TensorFlow's expectations, enabling smooth 

processing and analysis by the deep learning models. 

C. Feature Extraction 

This is done using the media pipe hands model and is 
divided into two phases: 

1) Hand detection model: In this phase, a Convolutional 

Neural Network (CNN) is employed to analyze images or 

video frames. The primary goal is to detect the presence and 

location of one or more hands within the visual data. This 

involves generating a bounding box or a region of interest 

(ROI) that encapsulates the hand(s). Before entering the CNN, 

the input image or frame undergoes preprocessing to ensure it 

is suitable for analysis. This might involve actions such as 

scaling, normalization, and data transformation into a format 

compatible with the neural network's requirements. 

The architecture of the CNN is meticulously designed to 
learn patterns and features associated with hands. Comprising 
multiple layers, including convolutional, pooling, and 
activation functions, CNN focuses on extracting spatial 
features from the input data. Throughout this feature extraction 
process, the CNN discerns important elements like edges, 
textures, shapes, and spatial relationships that distinguish hands 
from the background or other objects. 

The acquired features are then utilized for classification. 
Each portion of the input data is assigned a probability or 
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confidence score, indicating the likelihood of containing a 
hand. 

2) Landmark detection model: After successfully 

identifying the hand's location using the bounding box, the 

focus shifts to the more precise estimation of hand landmarks. 

To achieve this, a specialized CNN is employed, fine-tuned to 

predict the positions of landmarks on the hand. This CNN 

operates on the hand ROI extracted from the previous phase. 

Similar to the hand detection model, the landmark 
estimation network comprises layers dedicated to feature 
extraction. These layers meticulously analyze the hand ROI to 
capture vital visual patterns, encompassing edges, textures, and 
other defining characteristics that aid in pinpointing landmarks. 

Drawing from these extracted features, the landmark 
estimation network generates predictions for the coordinates of 
each hand landmark. These landmarks, totalling 21 key points 
as seen in Fig. 3, represent precise positions within the image 
or video coordinate system. These points correspond to crucial 
locations on the hand, aiding in accurate identification and 
analysis. 

These two phases work collaboratively to provide an 
integrated solution for hand gesture analysis. The hand 
detection phase establishes the presence and location of hands, 
while the landmark detection phase refines this information, 
pinpointing specific landmarks on the hand. This dynamic 
process enables precise and nuanced hand gesture recognition, 
forming the foundation for effective communication and 
interaction. 

 

Fig. 3. The 21 key landmarks. 

D. The Linear Classifier Model 

To commence, the landmark features obtained from hands 
within the HaGRID dataset using the Mediapipe hands model 
serve as the input for training the linear classifier. This 
classifier is structured with four dense layers, also known as 
fully connected layers. In this arrangement, each neuron is 
connected to every neuron in the preceding layer and Rectified 
Linear Activation Units (ReLU) are placed between these 
neurons. The final layer employs a SoftMax activation, 
effectively converting logits into probabilities that facilitate 
classification. The architecture of the linear classifier model 
can be visualized in Fig. 4, offering a visual summary of its 
components and connectivity. 

During the optimization process, the model is fine-tuned 
using the Adam optimizer, which utilizes a learning rate of 1e-
1. This optimizer plays a pivotal role by iteratively adjusting 
the weights and biases of the network throughout the training 
process. It effectively manipulates these parameters to 

minimize the loss function, thereby enhancing the model's 
predictive accuracy. 

The Adam optimizer operates with the inclusion of two 
beta parameters: β1 and β2. These parameters govern the decay 
rates of moving averages of gradients and squared gradients, 
respectively. In this context, β1 is set to 0.9, and β2 is set to 
0.99. These values essentially dictate the extent to which past 
gradients and squared gradients influence the current weight 
adjustments during training. 

To improve training accuracy and mitigate overfitting, a 
dropout mechanism is applied across all layers with a rate of 
0.2. Dropout involves randomly deactivating a portion of 
neurons during each training iteration. This deliberate 
deactivation reduces interdependencies between neurons, 
encouraging the network to acquire more generalized and 
robust representations, ultimately enhancing its ability to 
perform well on new, unseen data. 

E. The Motion Classifier Model 

To achieve motion detection, we employed a specialized 
neural network called LSTM, which stands for Long Short-
Term Memory. This LSTM network is designed to analyze 
sequences of landmarks captured throughout 30 consecutive 
frames or steps. To facilitate training, we utilized a dataset 
specifically recorded to capture different types of motion. 
Using the Mediapipe model, we extracted landmark features 
from this custom motion dataset. These extracted landmark 
features were then used as input to train the LSTM network. 
The motion classifier layer diagram is shown in Fig. 5 and the 
summary of the motion classifier model is shown in Fig. 6. 

 
Fig. 4. Linear classifier model architecture. 

 

Fig. 5. Model classifier layer diagram. 
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Fig. 6. Summary of the motion classifier model. 

The key strength of the LSTM network lies in its ability to 
recognize and comprehend patterns within motion data over an 
extended period. It achieves this by capturing both short-term 
and long-term dependencies present in the sequential landmark 
information. This capability enables the LSTM network to 
understand the intricate nuances of motion sequences, making 
it adept at detecting and interpreting motion patterns. 
Throughout the training process, the LSTM network 
continually adjusts its internal parameters to minimize the 
disparity between the predicted motion labels and the actual, 
true motion labels present in the dataset. By iteratively fine-
tuning its parameters, the LSTM network effectively learns to 
classify and differentiate various types of motions. This 
process involves learning the distinctive characteristics and 
patterns associated with different motions, enhancing its ability 
to accurately detect and classify motions within new, unseen 
data. 

F. Combining the Linear Classifier and the LSTM Model 

Employing an LSTM (Long Short-Term Memory) model to 
analyze every individual frame in real-time for prediction is 
computationally demanding. Due to its high computational 
needs, we adopt a different strategy by integrating the two 
previously described models. 

First, the linear classifier is applied to each frame captured 
in real time. The linear classifier, known for its computational 
efficiency, operates on the landmarks or features extracted 
from individual frames. It predicts the corresponding gesture or 
action for each frame efficiently. If the linear classifier 
confidently detects a meaningful gesture or action in a frame, 
indicating the potential presence of significant motion, a 
sequence of frames is then directed to the LSTM model for 
further motion analysis. The linear classifier's outcome serves 
as a trigger for the LSTM model's involvement. Specifically, 
the sequence of frames encompasses the present frame along 
with a set of previous frames. This sequence is inputted to the 
LSTM model, which has been designed to excel at capturing 
temporal patterns and dependencies within motion data. 

By analyzing this sequence of frames over time, the LSTM 
model comprehends the evolving motion pattern. The LSTM's 
ability to account for sequential information empowers it to 
provide more precise predictions regarding the detected 
motion. This innovative approach involves the strategic fusion 
of the linear classifier and the LSTM model, thereby enhancing 
computational efficiency. The linear classifier rapidly 
processes individual frames, identifying potential gestures 

swiftly. However, the more computationally intensive LSTM 
model is only engaged when the linear classifier detects a 
gesture or action, ensuring resource-intensive calculations are 
focused precisely on moments of interest. 

This approach effectively enables real-time motion 
detection while mitigating the overall computational demands. 
By leveraging the strengths of both models, we strike a balance 
between efficiency and accuracy, resulting in a streamlined and 
effective system for motion analysis. 

G. Setting up Body Pose Estimation 

To cater to situations in which users are situated at a 
significant distance from the camera, a specialized feature 
known as Long-Distance Mode is introduced for Body Pose 
Estimation. While the standard Mediapipe feature extraction 
excels when users are in proximity (<2m), it might not 
accurately capture hand landmarks for individuals located far 
away. 

The concept is illustrated in Fig. 7, which presents a body 
pose diagram. In this context, we focus on specific points of 
interest, specifically points 13 to 22 that correspond to the 
location of the hands. Instead of relying on the precise 
detection of hand landmarks, the approach involves utilizing an 
estimated bounding box that encapsulates the hands' spatial 
extent. This bounding box, serving as input for the classifier 
layers, becomes the basis for making predictions. In this 
scenario, the classifier operates on the information derived 
from the bounding box rather than individual hand landmarks. 
This adjustment allows the classifier to predict and classify 
gestures or actions based on the overall position and region of 
the hands within the bounding box. 

By incorporating the Long-Distance Mode and leveraging 
the bounding box estimation from the Mediapipe pose 
extraction, the system adeptly handles situations where users 
are positioned at a considerable distance from the camera. This 
innovation ensures that the system remains versatile and 
capable of accurately analyzing hand gestures, even when users 
are far away. 

 
Fig. 7. Body pose diagram. 
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H. Flow Chart of the Model 

The flow chart of the working of the model can be 
visualized in Fig. 8. The algorithm for the flow chart is as 
follows. 

Step 1: Start 

Step 2: Gather the data 

Step 3: Carry out Preprocess and Data extraction  

Step 4: Select the neural network to use for the model 

Step 5: Set up body pose estimation 

Step 6: Train, test and validate the model 

Step 7: Is Performance Satisfactory? 

 - If Yes, Go to Step 8 

 - If No, Go to Step 4 

Step 8: Save Model 

Step 9: Stop 

 
Fig. 8. Flow chart of the system. 

I. Model Deployment 

The model is built as a local desktop application that does 
not require any internet connection during usage. The user 
interface for the application was made using custom tkinter – a 
python library which uses the tkinter as its baseline but adds 
customizations to make the interface more user-friendly; also 
the models are deployed using TensorFlow lite (tflite) models 
to speed up inference. 

Various diagrams as seen in Fig. 9 and Fig. 10 are used to 
illustrate the working of the deployed model as software. The 
diagrams are the use case diagram and the flow chart 
respectively. Fig. 9 shows the Unified Modeling Language 
(UML) of the system functions and responses, and Fig. 10 
shows the flow of the deployed system. 

 
Fig. 9. Use case diagram. 

 

Fig. 10. Model deployed flow chart. 
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IV. RESULT AND DISCUSSION 

This section discusses the results and execution of the 
model from the previous section and the performance of the 
system when evaluated. It defines the system constraints and 
tells us a bit more about the effectiveness of the system. 

A. Model Training and Validation 

The linear classifier model was trained using a strategy of 
10 epochs, which means the entire dataset was processed 10 
times. In each epoch, a batch of 128 data points was used for 
training. The entire training process took approximately three 
minutes, with each epoch lasting about 16 seconds. Notably, as 
the epochs progressed, the accuracy of the model consistently 
improved while the loss decreased. This is a positive sign that 
the model was learning effectively without becoming 
overfitted. 

Throughout the training phase, the model achieved high 
levels of accuracy across different datasets: the training dataset, 
the validation dataset, and the testing dataset. Specifically, after 
the completion of 10 epochs, the model achieved accuracy 
rates of 90.1%, 89%, and 90% on the training, validation, and 
testing datasets, respectively. This indicates that the model had 
become well-acquainted with the dataset and was capable of 
accurately classifying the gestures within it. 

Fig. 11 illustrates the model's training progress over each 
epoch. This visualization focuses on key metrics: loss, 
accuracy, val_loss (loss on the validation dataset), and 
val_accuracy (accuracy on the validation dataset). These 
metrics are tracked and displayed after every epoch to provide 
insight into the model's performance. 

 
Fig. 11. Output of the linear classifier model‟s training process. 

Here's a breakdown of what these metrics represent: 

1) Loss: This metric indicates how much the model's 

predictions deviate from the actual values (labels) in the 

training dataset. It quantifies the error between predicted and 

actual values. 

2) Accuracy: This metric represents the proportion of 

correctly classified data points in the training dataset. It shows 

how well the model is performing in terms of correctly 

predicting gestures. 

3) Val_loss: Similar to the loss metric, val_loss measures 

the error between predicted and actual values, but it 

specifically pertains to the validation dataset. 

4) Val_accuracy: Like accuracy, val_accuracy indicates 

the proportion of correctly classified data points, but on the 

validation dataset. It provides insight into how well the model 

generalizes to unseen data. 

Fig. 12 and Fig. 13 provide a visual representation of the 
trends highlighted in Fig. 11, offering a closer look at the 
training and validation accuracy of the model as well as the 
corresponding training and validation loss throughout the 10 
epochs. The x-axis on these figures denotes the number of 
epochs, while the y-axis illustrates the model's accuracy and 
loss. 

From Fig. 12, it becomes evident that during the initial 
stages of training, the model's training accuracy starts at a 
relatively low point. At this early phase, the model lacks the 
understanding to accurately identify static hand gestures and is 
essentially making random guesses. However, as training 
progresses through each epoch, there is a steady and gradual 
improvement in accuracy. This trend signifies that the model is 
learning and becoming more adept at recognizing and 
distinguishing various hand gestures over time. 

Examining Fig. 13, the graph portrays the trajectory of the 
model's loss on both the training and validation datasets across 
the epochs. Initially, during the early epochs, the training loss 
was notably high. This is attributed to the model's nascent 
stage, where it generates random and unrefined predictions, 
resulting in higher discrepancies between predicted and actual 
values. However, as the number of epochs advances, the 
training loss consistently diminishes. This decline indicates that 
the model is progressively honing its ability to accurately 
identify hand gestures within the training dataset. 

Furthermore, the graph reveals the validation loss, which 
pertains to the model's accuracy in recognizing hand gestures 
on unseen validation data. As the epochs unfold, the validation 
loss follows a similar downward trajectory, signifying the 
model's enhanced capacity to generalize its learning from the 
training dataset to effectively identify hand gestures in new, 
previously unseen data. 

 
Fig. 12. Training and validation accuracy curves of the linear classifier model. 
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Fig. 13. Training and validation loss curve of the linear classifier model. 

In essence, these graphical representations within Fig. 12 
and Fig. 13 align with the narrative conveyed in Fig. 11, 
collectively providing a comprehensive insight into the model's 
iterative learning process. The figures underscore the model's 
journey from initial uncertainty and randomness to increasingly 
accurate and refined hand gesture recognition, ultimately 
attesting to its growing proficiency in this specific task. 

The motion classifier model (LSTM) underwent training 
with a total of 200 epochs, where each epoch involved 
processing a batch of 64 data points. The entire training 
process took approximately 33 minutes, with each epoch 
lasting about 10 seconds. Similar to the linear classifier, the 
accuracy of the motion classifier increased while the loss 
decreased consistently with each successive epoch. 

Throughout the training phase, the motion classifier model 
demonstrated high accuracy levels across different datasets: the 
training dataset, the validation dataset, and the testing dataset. 
Specifically, after the completion of the training process, the 
model achieved accuracy rates of 79.8%, 72%, and 70.1% on 
the training, validation, and testing datasets, respectively. This 
performance indicates that the model had become well-
acquainted with the dataset and was proficient in correctly 
classifying different types of motions. 

 
Fig. 14. Output of the motion classifier (LSTM) model's training process. 

The training progress and performance of the motion 
classifier model are visualized in Fig. 14, 15, and 16. Fig. 14 
provides an overview of the model's output during the training 
process, highlighting key metrics such as accuracy and loss 
across epochs. Fig. 15 and 16 depict the training and validation 
accuracy curves, as well as training and validation loss curves 
respectively, providing a graphical representation of the 
model's learning journey. 

 
Fig. 15. Training and validation accuracy curve of the LSTM model. 

 
Fig. 16. Training and validation loss curves of the LSTM model. 

In Fig. 15, it is observable that the accuracy initially starts 
at a lower point, similar to the linear classifier model. As 
training progresses over the epochs, the accuracy gradually 
improves, reflecting the model's increasing ability to recognize 
and classify motion patterns. 

Fig. 16 displays the training and validation loss curves, 
illustrating a similar pattern observed in the linear classifier. At 
the start of training, the training loss is relatively high due to 
the model's random guesses. However, as the epochs advance, 
the training loss consistently decreases, indicating improved 
accuracy in recognizing motion patterns. The validation loss 
also follows a similar trajectory, indicating the model's 
enhanced ability to generalize its learning to unseen data. 

B. Performance Index 

Table I presents a comprehensive summary of how well the 
linear classifier model performed using various evaluation 
metrics. These metrics provide insights into the model's ability 
to accurately classify hand gestures. 

 Accuracy: This metric measures the overall correctness 
of the model's predictions. The reported accuracy of 
90% indicates that the model correctly classified 90% 
of the gestures in the dataset. 

 Precision: Precision refers to the ratio of true positive 
predictions to the total number of positive predictions 
made by the model. In this case, the precision score of 
92% implies that when the model predicts a gesture as 
positive (i.e., a certain hand gesture), it is correct 92% 
of the time. 
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 Recall: Recall, also known as sensitivity or true positive 
rate, calculates the ratio of true positive predictions to 
the total number of actual positive instances in the 
dataset. A recall of 90% indicates that the model 
correctly identified 90% of the actual hand gestures. 

 F1-score: The F1-score is the harmonic mean of 
precision and recall, providing a balanced measure of 
the model's performance. An F1 score of 91% suggests 
that the model achieves a balanced trade-off between 
precision and recall. 

TABLE I.  PERFORMANCE OF THE LINEAR CLASSIFIER MODEL 

Accuracy Precision Recall F1-score 

90% 92% 90% 91% 

Fig. 17 visually represents the model's performance in 
terms of accuracy, precision, recall, and F1 score using a bar 
chart. This chart offers a clear overview of the model's 
strengths in terms of accuracy and precision, indicating its 
ability to make accurate predictions, particularly with high 
precision. However, it may miss some positive cases, as 
indicated by the relatively lower recall score. 

 
Fig. 17. Bar chart showing the linear classifier's performance. 

 
Fig. 18. The confusion matrix of the linear classifier model. 

Fig. 18 and Fig. 19 present confusion matrices for the linear 
classifier model and the LSTM model, respectively. These 
matrices provide a visual depiction of the model's classification 
performance across different classes. They allow us to see how 
well the model correctly predicted each class and where it 
might have made errors. 

Table II delves into the performance of individual classes. 
It provides a breakdown of precision, recall, and F1-score 
metrics for each class. For instance, for class 0, the precision 
score of 0.97 means that when the model predicted class 0, it 
was correct 97% of the time. The recall score of 0.92 indicates 
that the model correctly identified 92% of instances belonging 
to class 0. The F1-score of 0.94 represents a balanced measure 
of precision and recall for class 0. 

 

 

Fig. 19. The confusion matrix of the LSTM model. 

TABLE II.  PRECISION, RECALL AND F1-SCORE OF THE CLASSES 

Class Precision Recall F1-Score 

0 0.97 0.92 0.94 

1 0.99 0.90 0.94 

2 0.99 0.91 0.94 

3 0.98 0.88 0.93 

4 0.92 0.90 0.91 

5 0.95 0.91 0.93 

6 0.98 0.91 0.94 

7 0.73 0.90 0.81 

8 0.88 0.91 0.90 

9 0.97 0.88 0.92 

10 0.92 0.89 0.90 

11 0.64 0.94 0.76 

12 0.97 0.88 0.93 

13 0.93 0.92 0.92 

14 0.94 0.89 0.91 
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V. USER IMPLEMENTATION 

A. The PowerPoint Selection 

The interface permits users to choose which presentation 
file to open. The file browser approach is used to do this. The 
interfaces include a file browser which enables users to search 
the file system of their device for the desired PowerPoint 
presentation file. When selected, the slides pop up in the 
background as shown in Fig. 20. 

 

Fig. 20. Power point selection. 

B. Distance Mode Selection 

The user can select which mode is needed based on his/her 
distance from the system. A short distance is used in this 
operation. This can be visualized in Fig. 21. 

C. Gesture Selection and Assignment 

The interface allows the user to select gestures, and their 
functions and then assign them. In Fig. 22, the gesture used in 
this case is “call” and it is assigned to a function called 
“next_slide” which moves the slides page by page, the other 17 
gestures in this model can also be assigned to other functions. 

 
Fig. 21. Input distance mode. 

 

Fig. 22. Gesture selection and assignment. 

D. Gesture Toggler 

After assigning the gesture needed by the user, the user can 
turn on or off gestures based on their preferences as shown in 
Fig. 23, Fig. 24 And Fig. 25 shows that when the user toggles 
off a gesture, the gesture can no longer be recognized by the 
system and cannot perform its assigned function on the slides. 
When the gesture is toggled on, the system recognizes the 
gesture and the action assigned to it on the slides. 

 

Fig. 23. Gesture toggler. 

 
Fig. 24. Toggling OFF a gesture. 
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Fig. 25. Toggling ON a gesture. 

E. Flow Chart 

Fig. 26 shows the flow of the working of the package from 
the first stage to the end. This shows how the user should 
operate the software package. 

 
Fig. 26. Interface flowchart. 

VI. CONCLUSION 

In this study, we developed a software package that 
controls presentations using hand gestures. The system's 
performance was thoroughly examined through various 
evaluation metrics and visualization tools. Our findings 
highlight the effectiveness of the developed models in 
accurately identifying and classifying hand gestures. 

The linear classifier model demonstrated impressive results, 
achieving an overall accuracy of 90%. This model's strong 
precision and recall scores further emphasize its ability to make 
accurate predictions while effectively identifying positive 
cases. The bar chart depicting the model's performance 
underscored its proficiency in precision, shedding light on its 
potential for minimizing false positive predictions. The 
confusion matrix provided valuable insights into the model's 
classification patterns. By analyzing true positives, true 
negatives, false positives, and false negatives, we gained a 
clearer understanding of where the model excelled and where 
improvements could be made. This granular analysis helps 
guide future refinements and optimizations of the system. 
Additionally, the LSTM model, designed to capture temporal 
patterns in motion data, demonstrated its efficacy in motion 
detection. While achieving lower accuracy compared to the 
linear classifier model, the LSTM model's performance 
remained solid, with an accuracy of 70.1% on the testing 
dataset. This model's potential for capturing long-term 
dependencies and recognizing complex motion patterns 
positions it as an asset for more nuanced applications. The 
study also addressed challenges related to distance by 
implementing Long-Distance Mode, which enhanced the 
system's adaptability to users situated far from the camera. This 
innovation showcases the system's robustness in 
accommodating varying scenarios and environments. 

In conclusion, the developed system, consisting of a linear 
classifier and LSTM model, exhibits strong potential for real-
time and accurate hand gesture identification. The combination 
of efficient classification and temporal analysis provides a 
comprehensive approach to gesture recognition. As a result, 
this system holds promise for a wide range of applications, 
from interactive presentations to virtual reality interfaces, 
enhancing user experience and interaction. Further research 
and optimization can propel this system towards even greater 
accuracy and utility in real-world settings. 
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