
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

586 | P a g e

www.ijacsa.thesai.org

SmishGuard: Leveraging Machine Learning and

Natural Language Processing for Smishing Detection

Saleem Raja Abdul Samad
1
, Pradeepa Ganesan

2
, Justin Rajasekaran

3
,

Madhubala Radhakrishnan
4
, Hariraman Ammaippan

5
, Vinodhini Ramamurthy

6

College of Computing and Information Sciences, Information Technology Department,

University of Technology and Applied Sciences-Shinas, Sultanate of Oman
1,2,3.4,5

Little Angel Institute, Karur, Tamil Nadu. India
6

Abstract—SMS facilitates the transmission of concise text

messages between mobile phone users, serving a range of

functions in personal and business domains such as appointment

confirmation, authentication, alerts, notifications, and banking

updates. It plays a vital role in daily communication due to its

accessibility, reliability, and compatibility. However, SMS

unintentionally generates an environment where smishing can

occur. This is because SMS is extensively available and reliable.

Smishing attackers exploit this trust to trick victims into

divulging sensitive information or performing malicious actions.

Early detection saves users from being victimized. Researchers

introduced different methods for accurately detecting smishing

attacks. Machine Learning models, coupled with Language

Processing methods, are promising approaches for combating the

escalating menace of SMS phishing attacks by analyzing large

datasets of SMS messages to differentiate between legitimate and

fraudulent messages. This paper presents two methods

(SmishGaurd) to detect smishing attacks that leverage machine

learning models and language processing techniques. The results

indicate that TF-IDF with the LDA method outperforms Weight

Average Word2Vec in precision and F1-Score, and Random

Forest and Extreme Gradient Boosting demonstrate higher

accuracy.

Keywords—Smishing; phishing; SMS; machine learning;

natural language processing; TF-IDF

I. INTRODUCTION

SMS (Short Message Service) is a pervasive mode of
communication that spans geographic boundaries and device
types in the digital world. It delivers information, warnings,
and notifications quickly and reliably, making it essential for
personal and professional interactions. However, this
convenience raises the risk of smishing. Smishing, a malicious
combination of "SMS" and "phishing," represents a grievous
and pervasive threat to cybersecurity [1]. It is a particularly
effective vector for cybercriminals due to the prevalence of
mobile phones and the inherent trust in text messages, that
causes serious harm to both individuals and organizations.
Many victims are tricked into giving over personal
information, clicking on harmful links, or unintentionally
installing malware on their mobile devices, compromising
their financial security, privacy, and digital identity [2]. The
compromise of sensitive personal information can lead to
identity theft, unauthorized account access, and additional
intrusions. Smishing is especially dangerous because attackers
are constantly changing their strategies, and with the low

technical barrier to entry, attackers of all ability levels can
participate, making this danger widespread. They use social
engineering and psychological tricks to make text messages
that look real and trustworthy. Even the most cautious people
can be tricked by urgent messages posing as from banks,
governments, or well-known businesses, forcing them to take
steps that would benefit the attackers [3]. Additionally, when
personal and financial information is stolen, it makes people
more likely to be victims of hacking in the future, since
attackers can use this information for damaging purposes.

In this dynamic environment, machine learning (ML)
arises as a formidable ally in the defense against
smishing attacks [4]. By their very nature, machine learning
algorithms excel at pattern recognition, allowing for the
detection of nuanced clues within text messages that reveal
fraudulent intent. Most importantly, machine learning systems
always learn from new data and adapt to the changing
strategies used by smishing attackers. This adaptability is
crucial because smishing attacks evolve to avoid detection and
capitalize on emergent trends. Furthermore, machine learning
scales well, enabling real-time analysis of enormous amounts
of SMS messages across large mobile networks, enabling
proactive detection and prevention. One of the main goals of
machine learning in smishing detection is to reduce false
positives, which prevents valid SMS messages from being
inadvertently tagged as suspicious and protects the integrity of
communication channels. Machine Learning with Natural
Language Processing (NLP) methods enhance the detection of
smishing attacks. ML-NLP models excel at identifying
linguistic anomalies and patterns within SMS messages,
distinguishing smishing-specific keywords, phrases, and
grammatical inconsistencies [5].

Researchers introduced several smishing detection
strategies using deep and machine learning techniques. Most
methodologies use machine learning or deep learning models
to extract features from textual content for classification.
Generating features from textual data, such as counting the
number of words or special characters in a document, provides
structural insights and facilitates data representation.
However, these features are not concerned with the context or
semantics of the text but rather with its structural
characteristics. Sometimes, the generated features may not
optimize the potential of the dataset. Particularly in smishing
detection, the context of the textual content is more critical
than structural characteristics. By capturing the relationships

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

587 | P a g e

www.ijacsa.thesai.org

between words and contextual meaning, NLP methods for
fully vectorizing text, such as TF-IDF (Term Frequency
Inverse Document Frequency) or word embeddings, provide a
richer grasp of the text's semantic content and make
complicated analysis and machine learning tasks possible [6].
This paper introduces two novel methods (SmishGuard),
which use TF-IDF with LDA (Latent Dirichlet Allocation)
topic proportion score and Average Word2vec with TF-IDF
score as weight for smishing detection and compares the
performances. The results show that algorithms using random
forest and extreme gradient boosting attain higher accuracy.

Contribution of the work:

 Two novel methods (SmishGuard) for smishing
detection.

 The first method combines TF-IDF with LDA topic
proportion scores to improve smishing detection by
providing a comprehensive view of SMS messages that
captures both term-level and underlying topics.

 The second method uses Average Word2Vec with TF-
IDF scores as weights for smishing detection
capitalizing on the strengths of both approaches,
capturing semantic information and term importance.

 Proposed methods decrease false positives and enhance
cybersecurity by enabling more precise and context-
aware detection.

 Experimental evaluation and Performance
Comparisons.

The research work's sections are arranged as follows.
Section I delineates the problem's significance and outlines the
proposed research works. The background is in Section II. In
Section III, related works are highlighted. Section IV
describes the proposed methodologies in detail. Experimental
results are explained in Section V. The paper concludes with
Section VI.

II. BACKGROUND

Smishing attacks, a form of phishing that utilizes SMS or
text messaging, pose a serious cybersecurity risk. In these
attacks, scammers typically send false communications to
victims to coerce them into disclosing personal information,
opening malicious links, or downloading dangerous files.
Machine learning analyses content, sender information, and
message context to detect smishing using natural language
processing methods. Through training models on labeled
datasets that include examples of both smishing and real
messages, machine learning systems can identify patterns,
language indications, and typical behavioral oddities. This
proactive approach enhances the capability to automatically
identify and flag suspicious messages, thereby protecting users
from smishing frauds and boosting the security of mobile
communication channels. This section describes the key
technologies utilized in the proposed methods.

 TF-IDF Vectorizer: Using vectorizers, the unstructured
text data are transformed into a numerical
representation that machine learning algorithms can
process. They convert text to numerical vectors. TF-

IDF vectorizer creates a matrix where each document is
a row, and each distinct word is a column from a set of
text documents. A term's TF-IDF score is calculated by
multiplying TF and IDF. TF counts how frequently a
term appears in a document, while IDF measures a
word's rarity across the corpus [7].

 Latent Dirichlet Allocation (LDA): LDA plays a key
role in detecting smishing (SMS phishing) by revealing
hidden themes and topics in SMS communications. It
enables the identification of underlying linguistic
patterns frequently observed in fraudulent messages,
enabling the classification of incoming texts as either
legitimate or potentially malevolent. By leveraging
LDA, smishing detection systems acquire the ability to
distinguish context and content nuances, making them
more adept at recognizing attacker‟s deceptive
techniques [8] [9].

 Average Wor2Vec Word Embedding: It expands on
Word2Vec word embeddings by providing a method for
representing entire sentences or documents as dense
vectors. Average Word2Vec computes the vector
representation of a sentence by calculating the average
of the word vectors in it rather than considering each
word separately. The approach involves converting
each sentence word to its Word2Vec form and
determining the mean of these vectors. Thus, the whole
phrase is a short, fixed-length vector that captures its
meaning. Average Word2Vec efficiently represents
sentences while preserving semantic links and context
from the Word2Vec model. It helps machine learning
algorithms understand sentences and documents of
different lengths by providing a constant vector
dimension [10].

 Machine Learning Algorithms (ML): In detecting
smishing messages, machine learning models are quite
effective [11]. They are essential in recognizing and
classifying smishing messages with dangerous or
harmful information, which helps to improve cyber
security and shield users from potential risks. Most of
the research work utilizes different machine learning
algorithms for smishing detection using SMS text, such
as Logistic Regression (LogR), Support Vector
Machine (SVM), Multinomial Naive Bayes (MNB)
Gaussian Naive Bayes (GNB), Naïve Bayes (NB),
Decision Tree (DT), Random Forest (RF), Gradient
Boosting (GB), Ada Boosting (AB), Extra Tree (ET)
and Extreme Gradient Boosting (XGB).

III. RELATED WORKS

Detecting and preventing smishing attacks is essential for
safeguarding individuals and organizations from potential
harm. Effective methods for detecting smishing attempts have
been developed using machine learning and deep learning
(DL) approaches. The most recent findings from research
conducted in this area are presented in this section.

Boukari et al. [12] proposed a fraud detection system that
utilizes the TF-IDF method to convert SMS text into a
vectorized representation. A dataset of 5000 emails was used

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

588 | P a g e

www.ijacsa.thesai.org

for smishing. The importance of each word in the SMS is
determined using the TF-IDF algorithm. The experiment‟s
findings indicate a high level of accuracy, with the RF
algorithm achieving an accuracy of 98.15% and the NB
approach achieving an accuracy of 90.59%. Mishra et al. [13]
developed an efficient smishing detection system using an
artificial neural network. The dataset utilized in the
experiment consisted of 5858 messages, with 538 classifieds
as smishing messages and 5320 as valid messages. Seven
distinctive features were extracted from the dataset. The
neural network was implemented with seven features,
including email, URL, phone number, etc. The performance
results for NB, DT, and Neural Network were 96.29 %, 93.40
%, and 97.40 %, respectively. Ulfath et al. [14] employed the
N-grams and TF-IDF techniques for feature extraction and the
statistical feature selection method. The vocabulary only
includes the top 10,000 terms across the SMS dataset. The
dataset was obtained from UCI's machine learning library.
Five machine learning algorithms, XGB, DT, RF, SVM, and
AB were employed. The outcome reveals that the SVM
classifier obtains a higher accuracy of 98.39%. Smishing
messages from various Internet sources were collected by
Mishra et al. [15]. There are 638 smishing, 489 spam, and
4844 ham messages in the 5971 samples. Finally, five features
were extracted and used in the experiment. ML algorithms
such as NB, RF, and DT were employed. The performance
outcomes for NB were 94.06%, RF 94.64%, and DT 93.96%.
Maqsood et al. [16] used both ML and DL classifiers to detect
spam SMS. The dataset was obtained via Kaggle, (SMS Spam
Collection Dataset). The process of extracting features was
conducted via the Bag-of-Words and TF-IDF methodologies.
The gathered features served as input for three distinct
machine learning models and CNN in deep learning. The
SVM demonstrated a high level of accuracy, outperforming
the other models with a performance of 99.6% for spam SMS.

Ramanujam et al. [17] compiled a multiple languages SMS
dataset, which encompasses both spam and non-spam
messages in English and four distinct Indian languages. The
SMS data contains 2,757 ham and 525 spam messages. A deep
learning hybrid model (CNN-LSTM) has been proposed
without feature engineering. The model exhibits a 97.7%
accuracy rate. Jain et al. [18] presented a method to classify
messages as smishing messages. The model was trained using
multiple machine learning techniques with the Almeida spam
data collection of 5169 messages, 362 of which are smishing
and 4817 non-smishing. In addition, the model's accuracy has
been determined for across datasets. The voting classifier that
integrates KNN, RF, and ET Classifier (ETC) achieves an
accuracy of 99.03% and a precision of 98.94%. Using
machine learning, Mishra et al. [19] extracted the five most
effective text message features for smishing detection. The
dataset used for smishing detection contains 5858 text
messages, 538 of which are smishing and 5320 valid. For the
experimental results, RF, NB, DT, and Backpropagation
Algorithm were used. The Backpropagation Algorithm
outperformed the competition with a 97.93% accuracy rate.
Sjarif et al. [20] used an algorithm incorporating TF-IDF and
machine learning algorithms to identify SMS spam messages.
The UCI Repository provided the dataset. The collection
includes 5,574 English raw text messages categorized as
ham or spam. Of these messages, 4,827 are classified as ham
and the remaining 747 as spam. Five ML algorithms were
used combined with the TF-IDF method for experimental
purposes. The TF-IDF and RF combination produced an
impressive 97.50% accuracy rate.

In existing research, feature extraction and vectorization
from the SMS dataset are prioritized. Understanding the
content of the message is essential for improved classification.
The existing related works summary is shown in Table I.

TABLE I. RELATED WORKS SUMMARY

Author Dataset
Feature generation

method
Accuracy Issues

Boukari et al.

[12]

Smishing dataset

5000 messages
TF-IDF Vectorizer

Naïve Bayes: 90.59%

Random Forest: 98.15%

Contextualization of text is not

included.

Mishra et al. [13]
Smishing dataset
Smishing messages=538

Legitimate messages=5320

Feature Extraction
Naïve Bayes: 96.29
Decision Tree: 93.40

Neural Network:97.40

A limited number of features.
The system does not fully utilize

the dataset.

Ulfath et al. [14]
UCI Dataset (SMS-Spam Collection)
Spam messages=1197

Legitimate messages=4377

TF-IDF Vectorizer
Support vector machine:

98.39

Contextualization of text is not

included.

Mishra et al. [15]

Smishing dataset

Smishing messages=638, Spam messages=489
Legitimate messages=4844

Feature Extraction

Nave Bayes: 94.06,

Random Forest: 94.64,
Decision Tree: 93.96

The system is based on 5

features. The system does not
fully utilize the dataset.

Maqsood et al.

[16]

Kaggle- SMS Spam Collection Dataset.

Spam messages=750,
Legitimate messages=4250

Count (BoW) and TF-

IDF Vectorizer

Support vector machine:

99.6

Contextualization of text is not

included.

Ramanujam et al.

[17]

Multilingual SMS Dataset.

Legitimate messages=2,757, Spam
messages=525

-- CNN-LSTM model: 97.7
Ne specific feature engineering

was adopted.

Jain et al. [18]

Almeida spam data set.

Spam Messages=362,

Legitimate Messages=4817

TF‐IDF Vectorizer

Voting classifier with

KNN, RF, and ET

Classifier (ETC) =99.03

Time-consuming method

Mishra et al. [19]

Smishing dataset

Smishing messages=538

Legitimate messages=5320

Feature Extraction
Backpropagation
Algorithm: 97.93

A limited number of features.

The system does not fully utilize

the dataset.

Sjarif et al. [20]
UCI Dataset
Legitimate message=4,827 Spam messages= 747

TF-IDF Vectorizer RF:97.50
Contextualization of text is not
included.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

589 | P a g e

www.ijacsa.thesai.org

IV. PROPOSED METHODS

Our proposed methods (SmishGuard) include two different
systems for smishing (SMS phishing) detection that employ
ML and NLP methods to improve mobile communications
security. Most of the existing methodologies extract features
from textual content for classification using ML or DL
models. Generating features from textual data, such as
counting the number of words or special characters in a
document, provides structural insights and facilitates the
representation of data. However, these features are not
concerned with the context or semantics of the text, but rather
with its structural characteristics. Sometimes, the generated
features may not optimize the potential of the dataset. The
primary goal of the proposed system is to maximize the
utilization of the dataset through the implementation of several
natural language processing methods, including TF-IDF with
LDA and average Word2Vec with TF-IDF. NLP methods
fully vectorizing text, such as TF-IDF or word embeddings,
provide a richer grasp of the text's semantic content and make
complicated analysis and machine learning tasks feasible. The
outcomes of both methods exhibit a higher level of
performance in comparison to the currently available methods.
The process flow of the proposed system is shown visually in
Fig. 1.

A. Dataset

For experiments, two distinct data sources are combined.
Table II provides information about the data sources.
Combining data from multiple sources necessitates the
elimination of duplicate entries from the dataset. After
removing duplicates, the final dataset used for our
experiment is presented in Table III.

TABLE II. DATA SOURCES

Data Set Features

SMS Phishing Dataset [21]
Smishing =1127
Legitimate messages=4844.

SMS Spam Collection [22]
Legitimate Messages=4825

Spam messages=747

TABLE III. COMBINED DATASET

Data Set Features

SMS_PHISH
Smishing Messages =1627

Legitimate messages=5634

Fig. 1. Process flow of the proposed system.

B. Preprocessing

Text preprocessing is a crucial initial stage for Natural
Language Processing and Machine Learning tasks that involve
textual data. Effective text preprocessing is essential for
maintaining data integrity and eliminating irrelevant
information, enabling NLP and ML models to concentrate on
extracting valuable insights and discerning patterns from
textual data [23] [24]. Common procedures include
lowercasing, tokenization, stop word elimination, and special
character handling, etc. Algorithm 1 describes the
preprocessing procedures.

Algorithm 1: Processing

1. Input: Raw Text
2. Output: Preprocessed Text
3. Import required libraries (nltk for natural language processing and

re for regular expressions).
4. Load the raw text data.
5. Convert text to lowercase for consistency.
6. Remove any special characters, punctuation, and numerical values

using regular expressions.
7. Break the text down into individual words or tokens.
8. Eliminate stop words as they do not contribute much to the

meaning.
9. Join the tokens back into a preprocessed text string.

C. Method 1: TF-IDF Vectorization with LDA Topic

Proportion Score (TF-IDF-LDA)

Combining TF-IDF vectorization and LDA text proportion
scores is an effective approach. Through TF-IDF, text
messages are transformed into numerical feature vectors that
highlight the significance of phrases in each message,
allowing machine learning algorithms to identify patterns
suggestive of attempted smishing. Along with LDA topic
proportion scores (The number of topics is set to 2 for our
experiment) improve the identification accuracy of fraudulent
messages. These scores provide a numerical representation of
the subjects present in each message by applying LDA to SMS
content. Smishing attempts often use certain language patterns
or themes. LDA can reveal hidden motifs in smishing efforts,
helping models distinguish between authentic and suspect
communications. High proportions of topics relating to fraud,
urgency, or deceptive content can serve as strong indicators of
smishing, enabling the development of robust detection
systems that protect users from phishing threats concealed
within text messages.

Term Frequency (TF) for a word in a document [25]

TF (w, d) =

nw,d = The frequency of occurrences of the term w in

document d.

Nd = Total word count in document d.

Inverse Document Frequency (IDF) for a word in the
corpus:

IDF (w) = (

)

N= Number of documents contained in the corpus

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

590 | P a g e

www.ijacsa.thesai.org

nw = Count of documents that contain the word w

TF-IDF Score for a word in the document is obtained by
multiplying TF and IDF.

Topic Proportion Calculation for a Document [26]

For a given document D and topic T:

P(T|D) =

where:

P(T|D) is the probability (proportion) of topic T in
document D.

P(T) is the topic's prior probability over the entire corpus.
It represents the proportion of documents within the entire
dataset that are assigned to topic T.

P(D|T) is the probability of document D being generated
from topic T. It determines the probability that the words in
document D are generated by topic T.

P(D) is the probability of observing document D in the
corpus.

D. Method 2: Weighted Average Word Embedding

Generation

After preparing the raw textual contents, preprocessed data
is prepared for the experiment. To determine the weight of
words within a corpus through the utilization of TF-IDF
vectorization, the initial step involves the computation of TF-
IDF scores for every individual word encompassed within the
entirety of the corpus. The TF-IDF metric quantifies the
significance of a word within a particular document by
considering its frequency in that document and inversely
comparing it to its frequency across all documents. After
obtaining these TF-IDF scores, the next step is to compute the
weighted average Word2Vec embedding for machine learning
using these scores as weights. The Word2Vec model is
utilized to represent words as continuous vectors that capture
semantic relationships. To calculate the weighted average
Word2Vec embedding for a document, the vector of
Word2Vec for each word is multiplied by its corresponding
TF-IDF score. The result is a weighted vector. Then the sum
of all weighted vectors of the document is divided by the sum
of all weights of a document. Every document in the corpus
finally gets a single weighted average word vector. This
weighted average Word2Vec representation includes word
importance and semantic context for downstream machine-
learning tasks. The entire process is presented in Algorithm 2.

Weighted Average Word2Vec Computation for a
document „d‟ [27]

Multiply each word‟s Word2Vec vector by its
corresponding TF-IDF score. The weighted average word
embedding is calculated using the equation below:

Weighted Average Word2Vec (d) =

∑ ()

∑ ()

where, w represents the word and d represents the
document.

Where n is the number of words in a document.

Algorithm 2: Weighted Average Word2Vec

Input: TF-IDF matrix, Word2Vec embeddings

Output: Weighted Average Word2Vec representation for a

document.

1. Multiply each word's Word2Vec vector by its TF-IDF score

in the matrix.

2. Calculate the weighted average word embeddings for each

of the document's words.

E. Training and Testing

Finally, K-fold validation trains and tests machine learning
models using vectorized data/ word embedding. K-fold cross-
validation is a widely employed technique utilized for the
assessment of a model's performance and the mitigation of
overfitting [28]. In this technique, the dataset is partitioned
into K subsets, sometimes referred to as "folds," which are
approximately of similar size. K-fold cross-validation trains
and evaluates the model K times. For each iteration, one-fold
is marked as the validation set, and K-1 folds are used for
training. The performance metric is determined by calculating
the average of K evaluation results.

V. EXPERIMENTS AND RESULTS

The experiments employ Jupyter Notebook and Python's
sklearn package on Windows 10. Accuracy, precision, recall,
and the f1-score are performance parameters that are
considered. Table IV presents the experimental result of the
TF-IDF Vectorization with the LDA Topic Proportion Score
(TF-IDF-LDA) method. Fig. 2 shows the ROC AUC curve.

The outcome demonstrates that the methods used in
Random Forest and Extreme Gradient Boosting attains
accuracy levels of 98.42% and 98.47%, respectively.
Additionally, they obtained respective F1-Scores of 96.52%
and 96.30%.

Table V presents the parameter details of the Word2Vec
model. Table VI presents the experimental result of the
weighted average word2vec (WAW2Vec) method. Fig. 3
shows the ROC AUC curve for the Random Forest and
Extreme Gradient Boosting Algorithm.

TABLE IV. PERFORMANCE OF TF-IDF-LDA METHOD

ML Algorithm Accuracy % Precision % Recall % F1-Score %

LogR 96.97 95.26 91.03 93.07

SVC 98.33 98.33 94.16 96.17

MNB 97.52 98.58 90.22 94.19

DT 97.42 94.60 93.85 94.20

RF 98.42 99.53 93.36 96.30

GB 97.08 95.85 90.90 93.27

AB 97.22 94.97 92.50 93.70

XGB 98.47 97.91 95.20 96.52

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

591 | P a g e

www.ijacsa.thesai.org

Fig. 2. ROC-AUC curve for TF-IDF-LDA method.

TABLE V. PARAMETER OF WORD2VEC MODEL

Parameter Value

Vector Size 100

Window 5

Min_count 1

Sg 0

TABLE VI. PERFORMANCE OF WAW2VEC METHOD

ML Algorithm Accuracy Precision Recall F1-Score

LogR 86.08 85.35 90.07 87.34

SVC 91.23 91.23 92.55 91.78

GNB 82.83 87.58 79.18 82.53

DT 94.13 85.61 88.62 87.05

RF 96.09 92.50 89.79 91.07

GB 94.33 88.67 85.61 87.09

AB 93.04 84.94 83.83 84.34

XGB 96.21 92.23 90.71 91.42

Fig. 3. ROC-AUC curve for WAW2Vec method.

The results indicate that Random Forest and Extreme
Gradient Boosting obtained an accuracy of 96.09% and
96.22%, respectively. They also obtained respective F1-Scores
of 91.07% and 91.42%.

Confusion matrix is crucial to classification model
evaluation as it provides extensive insights into model
performance. It divides the predictions and actual outcomes of
the model into four categories: true positives, true negatives,
false positives, and false negatives. Fig. 4 and Fig. 5 illustrate
the performance of the proposed model by displaying fewer
false positives and false negatives.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

592 | P a g e

www.ijacsa.thesai.org

Fig. 4. Confusion matrix for TF-IDF-LDA method.

Fig. 5. Confusion matrix for WAW2Vec method.

The results demonstrate that the TF-IDF with LDA
approach (Method-1) exhibits superior accuracy and F1-Score
compared to the Weight Average Word2Vec method
(Method-2). However, both methods produce better outcomes
than existing methods as shown in Fig. 6.

Fig. 6. Performance comparison (accuracy).

VI. CONCLUSION

Cybercriminals are increasingly using smishing, also
known as SMS phishing, as a sneaky way to trick and deceive
people and businesses. The expanding usage of mobile
devices and text messaging for communication and
transactions has increased the risk of smishing attacks.
Attackers typically imitate reputable organizations to trick
victims into disclosing critical information or committing
crimes. So, smishing detection systems are vital for
maintaining the security of vital infrastructure, protecting
private and financial information, and maintaining public
confidence in digital communication. Using ML and NLP
methods for Smishing Detection is a promising way to counter
the growing menace of SMS phishing attempts. This
approach improves smishing detection by analyzing message
content and contextual information.

This paper presents two methods based on ML
algorithm and NLP methods for smishing detection. The
results indicate that the TF-IDF with LDA approach (Method-
1) achieves greater precision and F1-Score than the Weight
Average Word2Vec technique (Method-2). Nevertheless, both
methodologies yield outcomes that exhibit enhancements
compared to current approaches. This empirical evidence is
crucial to cybersecurity research since it refines methods and
guides future study. Proposed method enhances the overall
security of digital communication and transactions by
contributing to the development of effective tools to counter
evolving cyber threats.

Despite the potential of the proposed smishing detection
system to mitigate the exponential growth of the smishing
threat, the current system's capabilities are restricted to
smishing messages in the English language. The task of
managing diverse languages is progressively becoming more
difficult.

REFERENCES

[1] A.Kanaoka and T.Isohara, “Beyond Mobile Devices: A Cross-Device
Solution for Smishing Detection and Prevention”, USENIX Symposium
on Usable Privacy and Security, pp. 6–8, 2023.

[2] Smishing: https://dgc.org/en/smishing/ . (Last access: 20/9/2023).

[3] Malware: https://www.malwarebytes.com/what-is-smishing. (Last
access: 20/9/2023).

https://dgc.org/en/smishing/
https://www.malwarebytes.com/what-is-smishing

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

593 | P a g e

www.ijacsa.thesai.org

[4] A.Mahmood and S.Hameed, “Review of Smishing Detection Via
Machine Learning,” Iraqi Journal of Science, 64(8), pp. 4244–4259,
2023. https://doi.org/10.24996/ijs.2023.64.8.42.

[5] A.Alhogail and A.Alsabih, “Applying machine learning and natural
language processing to detect phishing email,” Computers and Security,
vol.1,10, 2021. https://doi.org/10.1016/j.cose.2021.102414.

[6] B.Sharma and P.Singh, “An improved anti-phishing model utilizing TF-
IDF and AdaBoost,” Concurrency Computation Practice and
Experience. 34(26):e7287, 2022. https://doi.org/10.1002/cpe.7287.

[7] Mukesh, “TF-IDF Vectorizer scikit-learn,"
https://medium.com/@cmukesh8688/tf-idf-vectorizer-scikit-learn-
dbc0244a911a. (Last access: 20/9/2023).

[8] E.Gualberto, R.Sousa, T.Vieira, J.Costa and C.Duque, “From Feature
Engineering and Topics Models to Enhanced Prediction Rates in
Phishing Detection,” in IEEE Access, vol. 8, pp. 76368-76385, 2020.
doi: 10.1109/ACCESS.2020.2989126.

[9] S.Lee, S.Kim, S.Lee, J.Choi, H.Yoon, D.Lee and J.Lee, “LARGen:
Automatic Signature Generation for Malwares Using Latent Dirichlet
Allocation,” in IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 5, pp. 771-783, 2018. doi:
10.1109/TDSC.2016.2609907.

[10] Word embedding: https://www.analyticsvidhya.com/blog/2017/06/word-
embeddings-count-word2veec/. (Last access: 20/9/2023).

[11] J.Nabi, “Machine Learning Fundamentals,” 2018
https://towardsdatascience.com/machine-learning-basics-part-1-
a36d38c7916. (Last access: 20/9/2023).

[12] B.Boukari, A.Ravi and M.Msahli, “Machine Learning detection for
SMiShing frauds,” IEEE 18th Annual Consumer Communications &
Networking Conference (CCNC), 2021.

[13] S.Mishra and D.Soni, “Implementation of „Smishing Detector: An
Efficient Model for Smishing Detection Using Neural Network,” SN
Computer Science, Springer. 2022. https://doi.org/10.1007/s42979-022-
01078-0.

[14] R.Ulfath, I.Sarker, M.Chowdhury and M.Hammoudeh, “Detecting
Smishing Attacks Using Feature Extraction and Classification
Techniques,” Proceedings of the International Conference on Big
Data,IoT, and Machine Learning, Lecture Notes on Data Engineering
and Communications Technologies, 95, 2022.
https://doi.org/10.1007/978-981-16-6636-0_51

[15] S.Mishra and D.Soni, “SMS Phishing Dataset for Machine Learning and
Pattern Recognition,” Proceedings of 14th International Conference on
Soft Computing and Pattern Recognition, Lecture Notes in Networks
and Systems, 648, pp. 597–604, 2023. https://doi.org/10.1007/978-3-
031-27524-1_57

[16] U.Maqsood, S.Rehman, T.Ali, K.Mahmood , T.Alsaedi and M.Kundi,
“An Intelligent Framework Based on Deep Learning for SMS and e-mail

Spam Detection,” Applied Computational Intelligence and Soft
Computing, 2023. https://doi.org/10.1155/2023/6648970.

[17] E.Ramanujam, K.Shankar and A.Sharma, “Multi-lingual Spam SMS
detection using a hybrid deep learning technique,” IEEE Silchar
Subsection Conference (SILCON), pp. 1-6, 2022. doi:
https://doi.org/10.1109/SILCON55242.2022.10028936

[18] A.K.Jain , B.B Gupta, K. Kaur, P.Bhutani, A.Almomani and
W.Alhalabi, “A content and URL analysis‐based efficient approach to
detect smishing SMS in intelligent systems,” International Journal of
Intelligent Systems. 2022. https://doi.org/10.1002/int.23035

[19] S.Mishra and D.Soni, “DSmishSMS-A System to Detect Smishing
SMS,” Neural Computing and Applications. Springer. 35, pp. 4975–
4992, 2023. https://doi.org/10.1007/s00521-021-06305-y.

[20] N.Sjarif, N.Azmi, S.Chuprat, H.Sarkan, Y.Yahya and S.Sam, “SMS
Spam Message Detection using Term Frequency-Inverse Document
Frequency and Random Forest Algorithm,” Procedia Computer Science,
vol. 161, pp. 509-515, 2019. https://doi.org/10.1016/j.procs.2019.11.150.

[21] S.Mishra and D.Soni, https://data.mendeley.com/datasets/f45bkkt8pr/1.
(Last access: 20/9/2023).

[22] UCI Dataset: https://www.kaggle.com/datasets/uciml/sms-spam-
collection-dataset. (Last access: 20/9/2023).

[23] Y.Kerner, D.Miller and Y.Yigal, “ The influence of preprocessing on
text classification using a bag-of-words representation,” PLoS One.
1;15(5):e0232525, 2020. doi: 10.1371/journal.pone.0232525.

[24] A.Saleem, B.Sundarvadivazhagan, R.Vijayarangan and S.Veeramani,
“Malicious Webpage Classification Based on Web Content Features
using Machine Learning and Deep Learning, International Conference
on Green Energy,” Computing and Sustainable Technology (GECOST),
Miri Sarawak, Malaysia, pp. 314-319, 2022. doi:
10.1109/GECOST55694.2022.10010386. [Included in IEEE Xplore]

[25] S.W.Kim and J.M.Gil, “Research paper classification systems based on
TF-IDF and LDA schemes,” Human-centric Computing and Information
Sciences, vol. 9, no. 1, pp 1–21, 2019. https://doi.org/10.1186/s13673-
019-0192-7

[26] J.Gan and Y.Qi, “Selection of the Optimal Number of Topics for LDA
Topic Model-Taking Patent Policy Analysis as an Example,” Entropy
(Basel). 3;23(10):1301. 2021, doi: 10.3390/e23101301.

[27] A.Elsaadawy, M.Torki and N.Makky, “A Text Classifier Using
Weighted Average Word Embedding,” 2018 International Japan-Africa
Conference on Electronics, Communications and Computations (JAC-
ECC), Alexandria, Egypt, pp. 151-154, 2018. doi: 10.1109/JEC-
ECC.2018.8679539.

[28] J.Brownlee, A Gentle Introduction to k-fold Cross-Validation,
https://machinelearningmastery.com/k-fold-cross-validation/ (Last
access: 20/9/2023).

https://doi.org/10.24996/ijs.2023.64.8.42
https://doi.org/10.1016/j.cose.2021.102414
https://doi.org/10.1007/s42979-022-01078-0
https://doi.org/10.1007/s42979-022-01078-0
https://doi.org/10.1155/2023/6648970
https://doi.org/10.1109/SILCON55242.2022.10028936
https://doi.org/10.1007/s00521-021-06305-y
https://doi.org/10.1016/j.procs.2019.11.150
https://data.mendeley.com/datasets/f45bkkt8pr/1

