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Abstract—SMS facilitates the transmission of concise text 

messages between mobile phone users, serving a range of 

functions in personal and business domains such as appointment 

confirmation, authentication, alerts, notifications, and banking 

updates. It plays a vital role in daily communication due to its 

accessibility, reliability, and compatibility.  However, SMS 

unintentionally generates an environment where smishing can 

occur. This is because SMS is extensively available and reliable. 

Smishing attackers exploit this trust to trick victims into 

divulging sensitive information or performing malicious actions. 

Early detection saves users from being victimized. Researchers 

introduced different methods for accurately detecting smishing 

attacks. Machine Learning models, coupled with Language 

Processing methods, are promising approaches for combating the 

escalating menace of SMS phishing attacks by analyzing large 

datasets of SMS messages to differentiate between legitimate and 

fraudulent messages. This paper presents two methods 

(SmishGaurd) to detect smishing attacks that leverage machine 

learning models and language processing techniques. The results 

indicate that TF-IDF with the LDA method outperforms Weight 

Average Word2Vec in precision and F1-Score, and Random 

Forest and Extreme Gradient Boosting demonstrate higher 

accuracy. 

Keywords—Smishing; phishing; SMS; machine learning; 

natural language processing; TF-IDF 

I. INTRODUCTION 

SMS (Short Message Service) is a pervasive mode of 
communication that spans geographic boundaries and device 
types in the digital world. It delivers information, warnings, 
and notifications quickly and reliably, making it essential for 
personal and professional interactions. However, this 
convenience raises the risk of smishing. Smishing, a malicious 
combination of "SMS" and "phishing," represents a grievous 
and pervasive threat to cybersecurity [1].  It is a particularly 
effective vector for cybercriminals due to the prevalence of 
mobile phones and the inherent trust in text messages, that 
causes serious harm to both individuals and organizations.  
Many victims are tricked into giving over personal 
information, clicking on harmful links, or unintentionally 
installing malware on their mobile devices, compromising 
their financial security, privacy, and digital identity [2]. The 
compromise of sensitive personal information can lead to 
identity theft, unauthorized account access, and additional 
intrusions. Smishing is especially dangerous because attackers 
are constantly changing their strategies, and with the low 

technical barrier to entry, attackers of all ability levels can 
participate, making this danger widespread.  They use social 
engineering and psychological tricks to make text messages 
that look real and trustworthy. Even the most cautious people 
can be tricked by urgent messages posing as from banks, 
governments, or well-known businesses, forcing them to take 
steps that would benefit the attackers [3]. Additionally, when 
personal and financial information is stolen, it makes people 
more likely to be victims of hacking in the future, since 
attackers can use this information for damaging purposes. 

In this dynamic environment, machine learning (ML) 
arises as a formidable ally in the defense against 
smishing attacks [4]. By their very nature, machine learning 
algorithms excel at pattern recognition, allowing for the 
detection of nuanced clues within text messages that reveal 
fraudulent intent. Most importantly, machine learning systems 
always learn from new data and adapt to the changing 
strategies used by smishing attackers. This adaptability is 
crucial because smishing attacks evolve to avoid detection and 
capitalize on emergent trends. Furthermore, machine learning 
scales well, enabling real-time analysis of enormous amounts 
of SMS messages across large mobile networks, enabling 
proactive detection and prevention. One of the main goals of 
machine learning in smishing detection is to reduce false 
positives, which prevents valid SMS messages from being 
inadvertently tagged as suspicious and protects the integrity of 
communication channels. Machine Learning with Natural 
Language Processing (NLP) methods enhance the detection of 
smishing attacks. ML-NLP models excel at identifying 
linguistic anomalies and patterns within SMS messages, 
distinguishing smishing-specific keywords, phrases, and 
grammatical inconsistencies [5]. 

Researchers introduced several smishing detection 
strategies using deep and machine learning techniques. Most 
methodologies use machine learning or deep learning models 
to extract features from textual content for classification. 
Generating features from textual data, such as counting the 
number of words or special characters in a document, provides 
structural insights and facilitates data representation.  
However, these features are not concerned with the context or 
semantics of the text but rather with its structural 
characteristics. Sometimes, the generated features may not 
optimize the potential of the dataset. Particularly in smishing 
detection, the context of the textual content is more critical 
than structural characteristics. By capturing the relationships 
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between words and contextual meaning, NLP methods for 
fully vectorizing text, such as TF-IDF (Term Frequency 
Inverse Document Frequency) or word embeddings, provide a 
richer grasp of the text's semantic content and make 
complicated analysis and machine learning tasks possible [6]. 
This paper introduces two novel methods (SmishGuard), 
which use TF-IDF with LDA (Latent Dirichlet Allocation) 
topic proportion score and Average Word2vec with TF-IDF 
score as weight for smishing detection and compares the 
performances. The results show that algorithms using random 
forest and extreme gradient boosting attain higher accuracy. 

Contribution of the work: 

 Two novel methods (SmishGuard) for smishing 
detection. 

 The first method combines TF-IDF with LDA topic 
proportion scores to improve smishing detection by 
providing a comprehensive view of SMS messages that 
captures both term-level and underlying topics. 

 The second method uses Average Word2Vec with TF-
IDF scores as weights for smishing detection 
capitalizing on the strengths of both approaches, 
capturing semantic information and term importance. 

 Proposed methods decrease false positives and enhance 
cybersecurity by enabling more precise and context-
aware detection. 

 Experimental evaluation and Performance 
Comparisons. 

The research work's sections are arranged as follows. 
Section I delineates the problem's significance and outlines the 
proposed research works. The background is in Section II. In 
Section III, related works are highlighted. Section IV 
describes the proposed methodologies in detail. Experimental 
results are explained in Section V. The paper concludes with 
Section VI. 

II. BACKGROUND 

Smishing attacks, a form of phishing that utilizes SMS or 
text messaging, pose a serious cybersecurity risk. In these 
attacks, scammers typically send false communications to 
victims to coerce them into disclosing personal information, 
opening malicious links, or downloading dangerous files. 
Machine learning analyses content, sender information, and 
message context to detect smishing using natural language 
processing methods. Through training models on labeled 
datasets that include examples of both smishing and real 
messages, machine learning systems can identify patterns, 
language indications, and typical behavioral oddities. This 
proactive approach enhances the capability to automatically 
identify and flag suspicious messages, thereby protecting users 
from smishing frauds and boosting the security of mobile 
communication channels. This section describes the key 
technologies utilized in the proposed methods. 

 TF-IDF Vectorizer: Using vectorizers, the unstructured 
text data are transformed into a numerical 
representation that machine learning algorithms can 
process.  They convert text to numerical vectors. TF-

IDF vectorizer creates a matrix where each document is 
a row, and each distinct word is a column from a set of 
text documents. A term's TF-IDF score is calculated by 
multiplying TF and IDF. TF counts how frequently a 
term appears in a document, while IDF measures a 
word's rarity across the corpus [7]. 

 Latent Dirichlet Allocation (LDA): LDA plays a key 
role in detecting smishing (SMS phishing) by revealing 
hidden themes and topics in SMS communications. It 
enables the identification of underlying linguistic 
patterns frequently observed in fraudulent messages, 
enabling the classification of incoming texts as either 
legitimate or potentially malevolent. By leveraging 
LDA, smishing detection systems acquire the ability to 
distinguish context and content nuances, making them 
more adept at recognizing attacker‟s deceptive 
techniques [8] [9]. 

 Average Wor2Vec Word Embedding: It expands on 
Word2Vec word embeddings by providing a method for 
representing entire sentences or documents as dense 
vectors. Average Word2Vec computes the vector 
representation of a sentence by calculating the average 
of the word vectors in it rather than considering each 
word separately. The approach involves converting 
each sentence word to its Word2Vec form and 
determining the mean of these vectors. Thus, the whole 
phrase is a short, fixed-length vector that captures its 
meaning. Average Word2Vec efficiently represents 
sentences while preserving semantic links and context 
from the Word2Vec model. It helps machine learning 
algorithms understand sentences and documents of 
different lengths by providing a constant vector 
dimension [10]. 

 Machine Learning Algorithms (ML): In detecting 
smishing messages, machine learning models are quite 
effective [11]. They are essential in recognizing and 
classifying smishing messages with dangerous or 
harmful information, which helps to improve cyber 
security and shield users from potential risks. Most of 
the research work utilizes different machine learning 
algorithms for smishing detection using SMS text, such 
as Logistic Regression (LogR), Support Vector 
Machine (SVM), Multinomial Naive Bayes (MNB) 
Gaussian Naive Bayes (GNB), Naïve Bayes (NB), 
Decision Tree (DT), Random Forest (RF), Gradient 
Boosting (GB), Ada Boosting (AB), Extra Tree (ET) 
and Extreme Gradient Boosting (XGB). 

III. RELATED WORKS 

Detecting and preventing smishing attacks is essential for 
safeguarding individuals and organizations from potential 
harm. Effective methods for detecting smishing attempts have 
been developed using machine learning and deep learning 
(DL) approaches. The most recent findings from research 
conducted in this area are presented in this section. 

Boukari et al. [12] proposed a fraud detection system that 
utilizes the TF-IDF method to convert SMS text into a 
vectorized representation. A dataset of 5000 emails was used 
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for smishing. The importance of each word in the SMS is 
determined using the TF-IDF algorithm. The experiment‟s 
findings indicate a high level of accuracy, with the RF 
algorithm achieving an accuracy of 98.15% and the NB 
approach achieving an accuracy of 90.59%. Mishra et al. [13] 
developed an efficient smishing detection system using an 
artificial neural network. The dataset utilized in the 
experiment consisted of 5858 messages, with 538 classifieds 
as smishing messages and 5320 as valid messages. Seven 
distinctive features were extracted from the dataset. The 
neural network was implemented with seven features, 
including email, URL, phone number, etc. The performance 
results for NB, DT, and Neural Network were 96.29 %, 93.40 
%, and 97.40 %, respectively. Ulfath et al. [14] employed the 
N-grams and TF-IDF techniques for feature extraction and the 
statistical feature selection method. The vocabulary only 
includes the top 10,000 terms across the SMS dataset.  The 
dataset was obtained from UCI's machine learning library.  
Five machine learning algorithms, XGB, DT, RF, SVM, and 
AB were employed. The outcome reveals that the SVM 
classifier obtains a higher accuracy of 98.39%. Smishing 
messages from various Internet sources were collected by 
Mishra et al. [15]. There are 638 smishing, 489 spam, and 
4844 ham messages in the 5971 samples. Finally, five features 
were extracted and used in the experiment. ML algorithms 
such as NB, RF, and DT were employed. The performance 
outcomes for NB were 94.06%, RF 94.64%, and DT 93.96%. 
Maqsood et al. [16] used both ML and DL classifiers to detect 
spam SMS.  The dataset was obtained via Kaggle, (SMS Spam 
Collection Dataset). The process of extracting features was 
conducted via the Bag-of-Words and TF-IDF methodologies.  
The gathered features served as input for three distinct 
machine learning models and CNN in deep learning. The 
SVM demonstrated a high level of accuracy, outperforming 
the other models with a performance of 99.6% for spam SMS. 

Ramanujam et al. [17] compiled a multiple languages SMS 
dataset, which encompasses both spam and non-spam 
messages in English and four distinct Indian languages. The 
SMS data contains 2,757 ham and 525 spam messages. A deep 
learning hybrid model (CNN-LSTM) has been proposed 
without feature engineering. The model exhibits a 97.7% 
accuracy rate. Jain et al. [18] presented a method to classify 
messages as smishing messages. The model was trained using 
multiple machine learning techniques with the Almeida spam 
data collection of 5169 messages, 362 of which are smishing 
and 4817 non-smishing. In addition, the model's accuracy has 
been determined for across datasets. The voting classifier that 
integrates KNN, RF, and ET Classifier (ETC) achieves an 
accuracy of 99.03% and a precision of 98.94%. Using 
machine learning, Mishra et al. [19] extracted the five most 
effective text message features for smishing detection. The 
dataset used for smishing detection contains 5858 text 
messages, 538 of which are smishing and 5320 valid.  For the 
experimental results, RF, NB, DT, and Backpropagation 
Algorithm were used. The Backpropagation Algorithm 
outperformed the competition with a 97.93% accuracy rate. 
Sjarif et al. [20] used an algorithm incorporating TF-IDF and 
machine learning algorithms to identify SMS spam messages. 
The UCI Repository provided the dataset.  The collection 
includes 5,574 English raw text messages categorized as 
ham or spam. Of these messages, 4,827 are classified as ham 
and the remaining 747 as spam. Five ML algorithms were 
used combined with the TF-IDF method for experimental 
purposes. The TF-IDF and RF combination produced an 
impressive 97.50% accuracy rate. 

In existing research, feature extraction and vectorization 
from the SMS dataset are prioritized. Understanding the 
content of the message is essential for improved classification. 
The existing related works summary is shown in Table I. 

TABLE I.  RELATED WORKS SUMMARY 

Author Dataset 
Feature generation 

method 
Accuracy Issues 

Boukari et al. 

[12] 

Smishing dataset 

5000 messages 
TF-IDF Vectorizer 

Naïve Bayes: 90.59% 

Random Forest: 98.15% 

Contextualization of text is not 

included. 

Mishra et al. [13] 
Smishing dataset 
Smishing messages=538 

Legitimate messages=5320 

Feature Extraction 
Naïve Bayes: 96.29 
Decision Tree: 93.40 

Neural Network:97.40 

A limited number of features. 
The system does not fully utilize 

the dataset. 

Ulfath et al. [14] 
UCI Dataset (SMS-Spam Collection) 
Spam messages=1197 

Legitimate messages=4377 

TF-IDF Vectorizer 
Support vector machine: 

98.39 

Contextualization of text is not 

included. 

Mishra et al. [15] 

Smishing dataset 

Smishing messages=638, Spam messages=489 
Legitimate messages=4844 

Feature Extraction 

Nave Bayes: 94.06, 

Random Forest: 94.64, 
Decision Tree: 93.96 

The system is based on 5 

features. The system does not 
fully utilize the dataset. 

Maqsood et al. 

[16] 

Kaggle- SMS Spam Collection Dataset. 

Spam messages=750, 
Legitimate messages=4250 

Count (BoW) and TF-

IDF Vectorizer 

Support vector machine: 

99.6 

Contextualization of text is not 

included. 

Ramanujam et al. 

[17] 

Multilingual SMS Dataset. 

Legitimate messages=2,757, Spam 
messages=525 

-- CNN-LSTM model: 97.7 
Ne specific feature engineering 

was adopted. 

Jain et al. [18] 

Almeida spam data set. 

Spam Messages=362, 

Legitimate Messages=4817 

TF‐IDF Vectorizer 

Voting classifier with 

KNN, RF, and ET 

Classifier (ETC) =99.03 

Time-consuming method 

Mishra et al. [19] 

Smishing dataset 

Smishing messages=538 

Legitimate messages=5320 

Feature Extraction 
Backpropagation 
Algorithm: 97.93 

A limited number of features. 

The system does not fully utilize 

the dataset. 

Sjarif et al. [20] 
UCI Dataset 
Legitimate message=4,827 Spam messages= 747 

TF-IDF Vectorizer RF:97.50 
Contextualization of text is not 
included. 
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IV. PROPOSED METHODS 

Our proposed methods (SmishGuard) include two different 
systems for smishing (SMS phishing) detection that employ 
ML and NLP methods to improve mobile communications 
security. Most of the existing methodologies extract features 
from textual content for classification using ML or DL 
models. Generating features from textual data, such as 
counting the number of words or special characters in a 
document, provides structural insights and facilitates the 
representation of data. However, these features are not 
concerned with the context or semantics of the text, but rather 
with its structural characteristics. Sometimes, the generated 
features may not optimize the potential of the dataset. The 
primary goal of the proposed system is to maximize the 
utilization of the dataset through the implementation of several 
natural language processing methods, including TF-IDF with 
LDA and average Word2Vec with TF-IDF. NLP methods 
fully vectorizing text, such as TF-IDF or word embeddings, 
provide a richer grasp of the text's semantic content and make 
complicated analysis and machine learning tasks feasible. The 
outcomes of both methods exhibit a higher level of 
performance in comparison to the currently available methods. 
The process flow of the proposed system is shown visually in 
Fig. 1. 

A. Dataset 

For experiments, two distinct data sources are combined. 
Table II provides information about the data sources. 
Combining data from multiple sources necessitates the 
elimination of duplicate entries from the dataset. After 
removing duplicates, the final dataset used for our 
experiment is presented in Table III. 

TABLE II.  DATA SOURCES 

Data Set Features 

SMS Phishing Dataset [21] 
Smishing =1127 
Legitimate messages=4844. 

SMS Spam Collection [22] 
Legitimate Messages=4825 

Spam messages=747 

TABLE III.  COMBINED DATASET 

Data Set Features 

SMS_PHISH 
Smishing Messages =1627 

Legitimate messages=5634 

 

Fig. 1. Process flow of the proposed system. 

B. Preprocessing 

Text preprocessing is a crucial initial stage for Natural 
Language Processing and Machine Learning tasks that involve 
textual data. Effective text preprocessing is essential for 
maintaining data integrity and eliminating irrelevant 
information, enabling NLP and ML models to concentrate on 
extracting valuable insights and discerning patterns from 
textual data [23] [24]. Common procedures include 
lowercasing, tokenization, stop word elimination, and special 
character handling, etc. Algorithm 1 describes the 
preprocessing procedures. 

Algorithm 1: Processing 

1. Input: Raw Text 
2. Output: Preprocessed Text 
3. Import required libraries (nltk for natural language processing and 

re for regular expressions). 
4. Load the raw text data. 
5. Convert text to lowercase for consistency. 
6. Remove any special characters, punctuation, and numerical values 

using regular expressions. 
7. Break the text down into individual words or tokens. 
8. Eliminate stop words as they do not contribute much to the 

meaning. 
9. Join the tokens back into a preprocessed text string. 

C. Method 1: TF-IDF Vectorization with LDA Topic 

Proportion Score (TF-IDF-LDA) 

Combining TF-IDF vectorization and LDA text proportion 
scores is an effective approach. Through TF-IDF, text 
messages are transformed into numerical feature vectors that 
highlight the significance of phrases in each message, 
allowing machine learning algorithms to identify patterns 
suggestive of attempted smishing. Along with LDA topic 
proportion scores (The number of topics is set to 2 for our 
experiment) improve the identification accuracy of fraudulent 
messages. These scores provide a numerical representation of 
the subjects present in each message by applying LDA to SMS 
content. Smishing attempts often use certain language patterns 
or themes. LDA can reveal hidden motifs in smishing efforts, 
helping models distinguish between authentic and suspect 
communications. High proportions of topics relating to fraud, 
urgency, or deceptive content can serve as strong indicators of 
smishing, enabling the development of robust detection 
systems that protect users from phishing threats concealed 
within text messages. 

Term Frequency (TF) for a word in a document [25] 

TF (w, d ) = 
    

  
 

nw,d  = The frequency of occurrences of the term w in 

document d. 

Nd  = Total word count in document d. 

Inverse Document Frequency (IDF) for a word in the 
corpus: 

IDF (w) =    (
 

  
) 

 
N= Number of documents contained in the corpus 
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nw = Count of documents that contain the word w  

TF-IDF Score for a word in the document is obtained by 
multiplying TF and IDF. 

Topic Proportion Calculation for a Document [26] 

For a given document D and topic T: 

P(T|D) = 
           

    
 

where: 

P(T|D) is the probability (proportion) of topic T in 
document D. 

P(T) is the topic's prior probability over the entire corpus. 
It represents the proportion of documents within the entire 
dataset that are assigned to topic T. 

P(D|T) is the probability of document D being generated 
from topic T. It determines the probability that the words in 
document D are generated by topic T. 

P(D) is the probability of observing document D in the 
corpus. 

D. Method 2: Weighted Average Word Embedding 

Generation 

After preparing the raw textual contents, preprocessed data 
is prepared for the experiment. To determine the weight of 
words within a corpus through the utilization of TF-IDF 
vectorization, the initial step involves the computation of TF-
IDF scores for every individual word encompassed within the 
entirety of the corpus. The TF-IDF metric quantifies the 
significance of a word within a particular document by 
considering its frequency in that document and inversely 
comparing it to its frequency across all documents. After 
obtaining these TF-IDF scores, the next step is to compute the 
weighted average Word2Vec embedding for machine learning 
using these scores as weights. The Word2Vec model is 
utilized to represent words as continuous vectors that capture 
semantic relationships. To calculate the weighted average 
Word2Vec embedding for a document, the vector of 
Word2Vec for each word is multiplied by its corresponding 
TF-IDF score. The result is a weighted vector. Then the sum 
of all weighted vectors of the document is divided by the sum 
of all weights of a document. Every document in the corpus 
finally gets a single weighted average word vector. This 
weighted average Word2Vec representation includes word 
importance and semantic context for downstream machine-
learning tasks. The entire process is presented in Algorithm 2. 

Weighted Average Word2Vec Computation for a 
document „d‟ [27] 

Multiply each word‟s Word2Vec vector by its 
corresponding TF-IDF score. The weighted average word 
embedding is calculated using the equation below: 

Weighted Average Word2Vec (d) = 

∑  (                                )    

∑ (               )   

 

where, w represents the word and d represents the 
document. 

Where n is the number of words in a document. 

Algorithm 2: Weighted Average Word2Vec 

Input: TF-IDF matrix, Word2Vec embeddings 

Output: Weighted Average Word2Vec representation for a 

document. 

1. Multiply each word's Word2Vec vector by its TF-IDF score 

in the matrix. 

2. Calculate the weighted average word embeddings for each 

of the document's words. 

E. Training and Testing 

Finally, K-fold validation trains and tests machine learning 
models using vectorized data/ word embedding. K-fold cross-
validation is a widely employed technique utilized for the 
assessment of a model's performance and the mitigation of 
overfitting [28]. In this technique, the dataset is partitioned 
into K subsets, sometimes referred to as "folds," which are 
approximately of similar size. K-fold cross-validation trains 
and evaluates the model K times. For each iteration, one-fold 
is marked as the validation set, and K-1 folds are used for 
training.  The performance metric is determined by calculating 
the average of K evaluation results. 

V. EXPERIMENTS AND RESULTS 

The experiments employ Jupyter Notebook and Python's 
sklearn package on Windows 10. Accuracy, precision, recall, 
and the f1-score are performance parameters that are 
considered. Table IV presents the experimental result of the 
TF-IDF Vectorization with the LDA Topic Proportion Score 
(TF-IDF-LDA) method. Fig. 2 shows the ROC AUC curve. 

The outcome demonstrates that the methods used in 
Random Forest and Extreme Gradient Boosting attains 
accuracy levels of 98.42% and 98.47%, respectively. 
Additionally, they obtained respective F1-Scores of 96.52% 
and 96.30%. 

Table V presents the parameter details of the Word2Vec 
model. Table VI presents the experimental result of the 
weighted average word2vec (WAW2Vec) method. Fig. 3 
shows the ROC AUC curve for the Random Forest and 
Extreme Gradient Boosting Algorithm. 

TABLE IV.  PERFORMANCE OF TF-IDF-LDA METHOD 

ML Algorithm Accuracy % Precision % Recall % F1-Score % 

LogR 96.97 95.26 91.03 93.07 

SVC 98.33 98.33 94.16 96.17 

MNB 97.52 98.58 90.22 94.19 

DT 97.42 94.60 93.85 94.20 

RF 98.42 99.53 93.36 96.30 

GB 97.08 95.85 90.90 93.27 

AB 97.22 94.97 92.50 93.70 

XGB 98.47 97.91 95.20 96.52 
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Fig. 2. ROC-AUC curve for TF-IDF-LDA method. 

TABLE V.  PARAMETER OF WORD2VEC MODEL 

Parameter Value 

Vector Size 100 

Window 5 

Min_count 1 

Sg 0 

TABLE VI.  PERFORMANCE OF WAW2VEC METHOD 

ML Algorithm Accuracy Precision Recall F1-Score 

LogR 86.08 85.35 90.07 87.34 

SVC 91.23 91.23 92.55 91.78 

GNB 82.83 87.58 79.18 82.53 

DT 94.13 85.61 88.62 87.05 

RF 96.09 92.50 89.79 91.07 

GB 94.33 88.67 85.61 87.09 

AB 93.04 84.94 83.83 84.34 

XGB 96.21 92.23 90.71 91.42 

 

 

Fig. 3. ROC-AUC curve for WAW2Vec method. 

The results indicate that Random Forest and Extreme 
Gradient Boosting obtained an accuracy of 96.09% and 
96.22%, respectively. They also obtained respective F1-Scores 
of 91.07% and 91.42%. 

Confusion matrix is crucial to classification model 
evaluation as it provides extensive insights into model 
performance. It divides the predictions and actual outcomes of 
the model into four categories: true positives, true negatives, 
false positives, and false negatives. Fig. 4 and Fig. 5 illustrate 
the performance of the proposed model by displaying fewer 
false positives and false negatives. 
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Fig. 4. Confusion matrix for TF-IDF-LDA method. 

 

 

Fig. 5. Confusion matrix for WAW2Vec method. 

The results demonstrate that the TF-IDF with LDA 
approach (Method-1) exhibits superior accuracy and F1-Score 
compared to the Weight Average Word2Vec method 
(Method-2). However, both methods produce better outcomes 
than existing methods as shown in Fig. 6. 

 
Fig. 6. Performance comparison (accuracy). 

VI. CONCLUSION 

Cybercriminals are increasingly using smishing, also 
known as SMS phishing, as a sneaky way to trick and deceive 
people and businesses. The expanding usage of mobile 
devices and text messaging for communication and 
transactions has increased the risk of smishing attacks. 
Attackers typically imitate reputable organizations to trick 
victims into disclosing critical information or committing 
crimes. So, smishing detection systems are vital for 
maintaining the security of vital infrastructure, protecting 
private and financial information, and maintaining public 
confidence in digital communication. Using ML and NLP 
methods for Smishing Detection is a promising way to counter 
the growing menace of SMS phishing attempts. This 
approach improves smishing detection by analyzing message 
content and contextual information. 

This paper presents two methods based on ML 
algorithm and NLP methods for smishing detection. The 
results indicate that the TF-IDF with LDA approach (Method-
1) achieves greater precision and F1-Score than the Weight 
Average Word2Vec technique (Method-2). Nevertheless, both 
methodologies yield outcomes that exhibit enhancements 
compared to current approaches. This empirical evidence is 
crucial to cybersecurity research since it refines methods and 
guides future study. Proposed method enhances the overall 
security of digital communication and transactions by 
contributing to the development of effective tools to counter 
evolving cyber threats. 

Despite the potential of the proposed smishing detection 
system to mitigate the exponential growth of the smishing 
threat, the current system's capabilities are restricted to 
smishing messages in the English language. The task of 
managing diverse languages is progressively becoming more 
difficult. 
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