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Abstract—In recent years, the escalating challenges of noise 

pollution in urban environments have necessitated the 

development of more sophisticated sound detection and 

classification systems. This research introduces a novel approach 

employing a Convolutional Long Short-Term Memory 

(ConvLSTM) network tailored for real-time impulsive sound 

detection in metropolitan landscapes. Impulsive sounds, 

characterized by sudden onsets and short durations—such as 

honking, abrupt shouts, or breaking glass—are inherently 

sporadic but can significantly impact urban soundscapes and the 

well-being of city dwellers. Traditional sound detection 

mechanisms often falter in identifying these ephemeral noises 

amidst the cacophony of urban life. The ConvLSTM network 

proposed in this study amalgamates the spatial feature learning 

capabilities of Convolutional Neural Networks (CNN) with the 

temporal sequence retention attributes of LSTM, culminating in 

an architecture that excels in both sound detection and 

classification tasks. The model was trained and evaluated on a 

comprehensive dataset sourced from various urban settings and 

demonstrated commendable proficiency in discerning impulsive 

sounds with minimal false positives. Furthermore, the system's 

real-time processing capabilities ensure timely interventions, 

paving the way for smarter noise management in cities. This 

research not only propels the frontier of impulsive sound 

detection but also underscores the potential of ConvLSTM in 

addressing multifaceted urban challenges. 
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I. INTRODUCTION 

The burgeoning growth and urbanization of cities around 
the globe has, in recent decades, ushered in a plethora of 
environmental and societal challenges [1]. Among these 
challenges, noise pollution stands out as a particularly 
pervasive issue, affecting both the physical [2] and 
psychological health [3] of urban residents. While the 
continuous hum of traffic or the distant murmur of a crowded 
plaza might be classified as the usual sounds of urban life [4], 
impulsive sounds—those characterized by sudden onsets and 
fleeting durations—present a unique set of challenges. Whether 
it's the abrupt honk of a car, a sudden shout, or the shatter of 
glass, these noises can be more than just momentary 

disturbances; they can disrupt sleep, exacerbate stress, and 
even influence long-term health outcomes. 

Historically, noise monitoring in urban spaces has relied 
predominantly on traditional sound detection methodologies 
[5]. However, these conventional systems often lack the 
precision and agility needed to discern between the myriad of 
auditory signals that coexist in a bustling urban environment 
[6]. Specifically, the ability to distinguish impulsive sounds 
from the ambient noise milieu and subsequently classify them 
in real-time has remained a significant gap in urban noise 
management systems [7]. This lacuna is further widened when 
considering the increasing heterogeneity of urban sounds as 
cities continue to evolve and densify. 

Enter the era of deep learning and its transformative impact 
across various domains. Recent advancements in neural 
networks, especially Convolutional Neural Networks (CNNs) 
[8], have demonstrated remarkable success in image and sound 
processing tasks. CNNs, designed to automatically and 
adaptively learn spatial hierarchies from data, have 
fundamentally altered the landscape of sound analysis in 
controlled environments. However, the temporally fleeting 
nature of impulsive sounds in dynamic urban environments 
presents challenges that go beyond the scope of traditional 
CNNs. It necessitates the incorporation of temporal sequence 
learning, an attribute inherent to Long Short-Term Memory 
(LSTM) networks. 

LSTM networks, a subtype of recurrent neural networks, 
excel at tasks that require the understanding of long-term 
dependencies, making them particularly suited for sequence 
prediction problems, like those seen in speech and time-series 
data [9]. The integration of CNN's spatial feature learning with 
LSTM's prowess in temporal sequence retention could 
potentially hold the key to a robust solution for impulsive 
sound detection and classification in urban locales. This 
potential amalgamation gave birth to the Convolutional LSTM 
(ConvLSTM) network—a hybrid model aiming to harness the 
strengths of both parent architectures. 

This research pivots around the design, implementation, 
and evaluation of a ConvLSTM network tailored explicitly for 
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the detection and classification of impulsive sounds in real-
time urban settings. Recognizing the profound implications of 
efficient noise management—ranging from urban planning and 
policy-making to the well-being and satisfaction of city 
residents—this study endeavors to bridge the existing 
technological gap. Through the marriage of convolutional and 
recurrent mechanisms, we embark on an exploration into a new 
frontier of urban sound management, positing a solution that 
promises both accuracy and timeliness in addressing the 
cacophony of modern urban life. 

II. RELATED WORKS 

The quest to discern and classify impulsive sounds within 
urban environments is embedded in a rich tapestry of research 
efforts, encompassing fields from acoustic engineering to 
artificial intelligence. This section delves into the pertinent 
literature, highlighting seminal works, and tracing the 
evolution of methodologies applied to this challenge. 

A. Urban Sound Detection and Classification 

One of the earliest works in urban sound classification was 
presented by [10], who utilized basic spectral features coupled 
with Support Vector Machines (SVM) to classify a limited set 
of urban sounds. Their model, though pioneering, had a limited 
scope in differentiating between closely related sounds. A more 
comprehensive approach was introduced by [11], which 
focused on extracting Mel-Frequency Cepstral Coefficients 
(MFCC) from urban soundscapes. Their work laid the 
foundation for many subsequent endeavors by demonstrating 
the potential of MFCC in capturing the nuances of urban 
noises. 

B. Convolutional Neural Networks in Sound Analysis 

The revolution brought about by deep learning in image 
processing soon trickled into the realm of acoustic analysis. 
Authors in the study [12] were among the first to employ 
CNNs for environmental sound classification. His model, 
though primarily geared towards stationary sounds, showcased 
the profound potential of CNNs in capturing intricate sound 
patterns. Further advancements by [13] extended the use of 
CNNs, leveraging transfer learning from pre-trained image-
based networks to sound data, highlighting the shared 
hierarchical structures between the two domains. 

C. LSTM and Sequence Modeling in Acoustics 

Long Short-Term Memory (LSTM) networks, a subtype of 
recurrent neural networks (RNNs), have emerged as 
particularly influential in the realm of acoustic analysis. Their 
inherent capability to capture and model long-term 
dependencies within sequences makes them exceptionally 
suited for time-based sound data. Researchers in [14] 
effectively harnessed LSTMs for voice activity detection, 
shedding light on their potential in discerning complex 
temporal patterns. Furthermore, [15] built upon this by 
integrating LSTMs with attention mechanisms, aiming to 
identify anomalous sounds in industrial settings. These studies 
collectively underscore the pivotal role of LSTMs in advancing 
the frontier of sequence modeling within the acoustics domain. 

D. ConvLSTM in Image and Video Processing 

Before its foray into acoustic analysis, ConvLSTM made 
waves in the domain of video processing. Researchers in [16] 
introduced ConvLSTM as an extension to the traditional 
LSTM, integrating convolution operations into the recurrent 
updates. Their groundbreaking work in precipitation 
forecasting exhibited ConvLSTM's potential in spatiotemporal 
sequence forecasting. This novel architecture caught the 
attention of many, with [17] later applying it to video 
classification tasks, proving its versatility across multiple 
temporal data types. 

E. Hybrid Models in Sound Detection 

The intersection of diverse neural network architectures has 
given rise to hybrid models, which aim to leverage the unique 
strengths of each constituent network for enhanced 
performance in sound detection tasks. Recognizing the 
potential of such amalgamations, [18] introduced a 
Convolutional Recurrent Neural Network (CRNN) specifically 
tailored for detecting anomalous sounds within varied 
environments. By seamlessly integrating the spatial feature 
extraction capabilities of Convolutional Neural Networks 
(CNNs) [19] with the temporal sequence modeling prowess of 
Recurrent Neural Networks (RNNs) [20], their research set a 
new benchmark in the field. This innovative approach 
highlights the intrinsic benefits of harnessing both spatial and 
temporal dimensions in sound analysis. Hybrid models, as 
delineated by such pioneering works, elucidate the way 
forward, promising enhanced accuracy and adaptability in the 
complex domain of sound detection. 

F. Real-Time Sound Processing 

The necessity for real-time sound processing, particularly 
in urban contexts, is paramount. Early systems, as chronicled 
by [21], relied heavily on handcrafted features and simplistic 
classifiers. However, with the proliferation of deep learning, 
architectures evolved to address real-time demands. Authors in 
[22] presented a sound event detection system employing a 
stacked CNN-LSTM architecture capable of real-time sound 
localization and classification, illuminating the pathway for 
subsequent real-time models. 

G. Challenges in Sound Detection Models 

Navigating the complex domain of hybrid sound detection 
models introduces a myriad of challenges. Firstly, the 
integration of diverse architectures, such as CNNs and RNNs 
[23], presents computational burdens. The enhanced model 
complexity often results in increased training times, demanding 
more computational resources and potentially hindering real-
time deployment. Additionally, the fusion of spatial and 
temporal data streams can lead to overfitting [24], especially 
when training on limited datasets [25], necessitating rigorous 
regularization techniques and data augmentation [26]. 

Another pertinent challenge is the adaptation to diverse 
acoustic environments [27]. Hybrid models, though versatile, 
may struggle with high variability in soundscapes, from 
fluctuating noise levels to the unique acoustic signatures of 
different urban settings [28]. Lastly, the interpretability of these 
hybrid models remains elusive. As the models grow in 
complexity, understanding their decision-making processes 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

625 | P a g e  

www.ijacsa.thesai.org 

becomes intricate, posing challenges for validation and further 
refinement. Addressing these challenges is crucial for the 
successful adoption and efficacy of hybrid models in real-
world sound detection applications. 

In summation, while the corpus of work surrounding urban 
sound detection is extensive, the specific challenge of real-time 
impulsive sound detection and classification in urban settings 
remained a largely unexplored niche. The incorporation of 
ConvLSTM in this context, as embarked upon in this research, 
represents a synthesis of past insights and current innovations, 
promising to further the field's understanding and capabilities. 

III. MATERIALS AND METHODS 

This segment delineates the methodologies and resources 
employed throughout this investigation. It encompasses the 
dataset curated for discerning perilous urban acoustics, coupled 
with detailed insights into data assimilation, preparatory 
phases, and the construction of an intricate neural network 
model targeting the identification of hazardous urban noises. 
Fig. 1 provides a schematic representation of the devised 
framework, emphasizing real-time perilous urban acoustic 
detection. Subsequent subsections offer a comprehensive 
breakdown of the utilized resources and techniques, 
encapsulating the datasets engaged, the data assimilation 
paradigm, model conceptualization, challenges associated with 
impulsive acoustic detection, and a detailed exposition of the 
integrated CNN-LSTM architecture. 

A. Data 

At the study's inception, data acquisition was prioritized, 
recognizing the necessity of comprehensive information for 
robust research outcomes. An assortment of expansive datasets 
was engaged to scrutinize the sounds termed as "hazardous." 
The Environmental Sound Classification (ESC-50) dataset [29] 
emerged as the preferred choice for program evaluation. From 
its vast repertoire of 2,000 auditory samples, a curated subset 
of approximately 300 sounds was employed. The ESC-50's 
categorization encompassed: 

 Faunal Acoustics (e.g., canines, felines, bovines, 
swine). 

 Natural Phenomena (e.g., precipitation, oceanic waves, 
avian calls, electrical discharges). 

 Human-Origin Sounds (e.g., neonatal distress, 
ambulatory noises, respiratory patterns). 

 Domestic and Mundane Noises (e.g., door interactions, 
digital keystrokes, time alerts, vitreous fractures). 

 Hazardous Acoustics (e.g., emergency vehicular alerts, 
rail transit, motor operations, timber-cutting equipment, 
aerial transport, pyrotechnics, detonations, canine alerts, 
ballistic discharges, and other precarious impulsive 
acoustics). 

 

Fig. 1. Architecture of the proposed framework. 
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Despite the extensive nature of the ESC-50, this 
investigation was particularly centered on the hazardous 
acoustics subset, eschewing the remainder. A comparative 
analysis between the bespoke dataset's technical parameters 
and the ESC-50's original specifications can be referenced in 
Table I. 

TABLE I.  TECHNICAL PARAMETERS OF THE DEVELOPED DATASET 

Characteristics Accuracy 

Overall size 661 MB 

Size after preprocessing 45 MB 

Number of files 2000 

Number of files after preprocessing 301 

Extension of files .ogg 

Within the observed region, incidents characterized by 
gunshots, vocal distress, and fragmented glass were identified 
as anomalous or "atypical." Consequently, the efficacy of the 
proposed framework was scrutinized, targeting its applicability 
in automated monitoring systems. 

In pursuit of this objective, the research synthesized a 
dataset amalgamating diverse audio samples recorded across 
multifaceted environments within railway stations. This 
curated dataset encompassed 8,000 distinct perilous urban 
sound manifestations distributed across eight categorizations. 
The dataset's intention lies in facilitating the training and 
validation of both machine learning and advanced deep 
learning architectures in discerning and classifying hazardous 
urban acoustics. 

Predominantly, the dataset resonated with ambient auditory 
elements, notably picks, gunshots, and glass rupture cues. To 
encapsulate the nuances of diverse operational environments, 
ambient acoustics were assimilated from both indoor and 
outdoor milieus. 

For analytical rigor, the acoustic cues were partitioned into 
segments lasting one second—reflecting the typical duration of 
the identified events of significance. Each of these segments 
was further dissected into 200 MS frames, exhibiting a 50% 
overlap. To elucidate, each one-second segment was articulated 
into nine distinct frames. 

Table II offers a meticulous breakdown of the dataset, 
elucidating the composition of signals, frames, and segmented 
intervals. This tabulated exposition illuminates the 
heterogeneity of perilous urban acoustics, with an emphasis on 
their respective spectrograms. The table furnishes insights into 
the spectrographic analysis of varied impulsive acoustics, 
encompassing phenomena like vehicular glass rupture, canine 
alerts, emergency vehicular signals, infantile distress, security 
alarms, and various fire warning systems. This tabulation 
underscores the salience of the curated dataset and the 
pioneering CNN-LSTM deep learning paradigm. 

B. Model Overview 

Subsequent to initial preparations, the focus shifted towards 
logic programming. Central to this phase was the objective of 
formulating methodologies for comprehensive audio detection. 

The intricacies of discerning potentially alarming acoustic 
events can be bifurcated into two specific sub-endeavors: 

TABLE II.  SAMPLES OF IMPULSIVE SOUNDS IN THE DEVELOPED DATASET 

Sound Time (sec) Spectrograms 

Automobile 

glass 

shattering 

3.84 

 

Dog barking 22.15 

 

Police siren 24.19 

 

Ambulance 

siren 
15.41 

 

Constant 
wail from 

police siren 

56.87 

 

Single 

gunshot 
3.84 

 

Explosion 7.78 

 

Baby crying 6.66 

 

Burglar 

alarm 
11.13 

 

Fire alarm 
beeping 

1.41 

 

Fire alarm 

bell 
1.59 

 

Smoke alarm 0.99 

 

Fire alarm 

yelp 
2.3 
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 Firstly, within the continuous audio data stream, there is 
a need to detect and isolate discrete pulse signals, 
ensuring their distinction from ambient auditory noise. 

 Secondly, once extracted, the signal must then be 
classified, ascertaining its alignment with one of the 
multiple predefined acoustic events. 

C. Detection of Impulsive Sound Events 

The quantification of power for a series of consecutive, 
non-overlapping audio signal blocks serves as a cornerstone for 
various methodologies [9]. The computational approach to 
ascertain the power of the kth signal block, comprising N 
samples, is articulated by Eq. (1): 
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Consider, for instance, an auditory manifestation of a 
gunshot, registered at approximately 4.6 seconds. For blocks 
consisting of N = 4,000 entries, corresponding to each block's 
duration, the power value span equates to roughly 90 
milliseconds. The identification of blocks autonomously, 
especially in the context of transient pulse noises, can be 
executed via several distinct strategies, contingent upon the 
chosen approach: 

 Grounded in the standard deviation of data that's been 
calibrated in terms of power metrics; 

 Through the application of the median value from a 
median filter operating on the power units; 

 By setting adaptive thresholds pertinent to the power 
units. 

A deeper analysis reveals that this methodology 
predominantly leans on the standard deviation of power units' 
normalized values. Further examinations have deduced that 
normalized power block values situated within the interval [0, 
1] stand as a pivotal element in this analytical schema. 
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Following the initial processes, the focus transitioned to 
evaluating the standard deviation, commonly referred to as 
variance, for a specified set of data points: 
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In scenarios characterized by the presence of ambient noise, 
block powers generally exhibit a uniform distribution within 
the interval [0,1] (as illustrated on the left). Upon recalibrating 
the power value for an audio segment to fit within this defined 
range, any significant deviation above the established power 
levels of background units triggers the automatic detection of a 
pulse signal. Gradual alterations in signals can be discerned by 
observing the average value of normalized power metrics. 
Notably, this methodology displays resilience in the face of 
fluctuations in ambient noise intensity. 

D. Proposed Model 

In the present research, a synergistic architecture has been 
postulated, integrating Convolutional Neural Networks (CNN) 
with Recurrent Neural Networks (RNN). In this structure, the 
RNN does not function as a recursive layer within the CNN. 
Instead, it operates independently, employing a Rectified 
Linear Unit (ReLU) activation for information processing. The 
RNN dimension is set at 128. A detailed representation of this 
integrated architecture can be viewed in Fig. 2. 

E. Feature Extraction 

In this investigation, the process of feature extraction from 
auditory signals spanned approximately 90 minutes, given that 
the dataset under scrutiny amounted to 6.6 GB. This specific 
size was selected intentionally, with the research aiming to 
assess methodologies on a comparatively modest dataset. In 
subsequent phases, the established techniques will be applied 
to data in a singular pass. Following the comprehensive 
analysis of the auditory files, a resultant set of 8,674 sounds, 
equating to a cumulative duration of 5,439 seconds or 90.65 
minutes, was obtained. A closer examination of the feature 
extraction component can be understood by referring to the 
coding segment, and the entire process is graphically 
represented in Fig. 3. 
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Fig. 2. Architecture of the proposed model. 

 
Fig. 3. The proposed framework. 

Within the scope of this research, four distinct functions 
were delineated. Among them, three were explicitly designated 
for the extraction of features and subsequent data preservation. 
To elaborate: 

1) The load_files_and_save() function invoked 

load_data(). This latter function systematically iterated over 

the dataset to acquire individual sound samples. 

2) Following this, get_features_from() was summoned for 

each sound sample to extract its pertinent features. 

3) Post-extraction, these attributes, along with their 

corresponding labels, were committed to persistent storage in 

two separate .npy formatted files. 

Subsequent to the storage phase, data retrieval was 
facilitated by the load_featured_files() function. This prepared 
the dataset for the training phase, utilizing the integrated RNN-
CNN model previously delineated in Fig. 2. This model's 
architecture encompassed two convolutional layers: one 
derived from a global maximum pooling mechanism and the 
other from a global average pooling paradigm. 

IV. EXPERIMENTAL RESULTS 

This segment elucidates the empirical outcomes derived 
from employing the synergized CNN-LSTM model for the 
identification of hazardous urban auditory events. Initially, the 
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metrics tailored for appraising the efficacy of the 
aforementioned deep learning model are delineated. This is 
succeeded by a presentation of the results from both training 
and testing phases, encompassing model accuracy, associated 
losses, the distinct confusion matrices, and AUC-ROC curve 
impulsive sound classification. 

A. Evaluation Metrics 

The efficacy of any machine learning or deep learning 
model, especially in contexts like hazardous urban sound 
detection, necessitates a rigorous and comprehensive 
evaluation strategy. This section elucidates the primary metrics 
employed to assess the proposed CNN-LSTM model's 
performance: 

Accuracy: This is the most fundamental metric, 
representing the ratio of correctly predicted instances to the 
total instances in the dataset [30]. It provides a broad 
understanding of the model's effectiveness, encapsulating its 
capacity to correctly identify both dangerous and non-
dangerous sounds. 

 NP

TNTP
accuracy






 

Precision: Precision ascertains the proportion of true 
positive predictions in the pool of all positive predictions [31]. 
In the realm of urban sound detection, high precision denotes 
that the sounds flagged as 'dangerous' by the model are indeed 
perilous with minimal false alarms. 

 FPTP

TP
preision




 

Recall (or Sensitivity): This metric quantifies the model's 
ability to correctly identify all potential hazards [32]. In 
essence, recall measures the fraction of actual dangerous 
sounds that were rightly detected by the model. 

 FNTP

TP
recall




 

F-score: Harmonizing precision and recall, the F-score is 
the harmonic mean of these two metrics [33]. It assists in 
providing a balanced measure, especially when the class 
distribution is skewed. An optimal model would strive for a 
high F-score, indicating both robust precision and recall. 

 recallprecision

recallprecision
F






2
1

 

Utilizing these metrics provides a holistic understanding of 
the model's capabilities, ensuring it is adept at identifying 
genuine threats while minimizing false alarms. 

B. Results 

This section offers a comprehensive assessment of the 
experimental results emanating from the dangerous urban 
sound detection exercises. The results of the CNN-LSTM 
model's endeavor at discerning impulsive sounds are visually 
illustrated in Fig. 4 and Fig. 5. 

 
Fig. 4. Model training accuracy. 

Fig. 4 specifically delineates the performance metrics 
during both training and testing phases for the inaugural dataset 
furnished by the research team. Notably, the CNN-LSTM 
model exhibited an impressive proficiency, registering an 
accuracy rate of 95% during its training phase. This was 
achieved over an approximate span of 80 epochs. Diving 
deeper into the model’s architecture, it was observed to have 
approximately 87,822 parameters. 

 

Fig. 5. Model training loss. 

Furthermore, the duration of the training phase offers 
insight into the model’s computational efficiency. The entire 
training process was completed in roughly 267 seconds, 
translating to slightly more than four minutes. This timeline 
underscores not only the model's accuracy but also its 
expedient processing capabilities. 

In tandem, precision, recall, and F-score – though not 
explicitly detailed in the current dataset visualizations – remain 
paramount for comprehensive model assessment. These 
metrics, when considered in conjunction, ensure a holistic 
appreciation of the model's true capability, especially in real-
world urban soundscapes. 

In this section, we turn our focus to the findings from the 
second dataset, sourced from an open repository, and their 
implications as demonstrated in Fig. 6. 
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Fig. 6. Model test accuracy. 

The CNN-LSTM model's performance on the second 
dataset is showcased in Fig. 7, providing invaluable insights 
into its adaptability and precision. Over a span of 
approximately 110 epochs, the model achieved an accuracy of 
92%. This underscores its consistent performance, even when 
confronted with potentially disparate sound data from varied 
sources. 

 
Fig. 7. Model test loss. 

In the post-training phase, the model's performance was 
quantified using a confusion matrix, providing clarity on its 
precision across various classifications—specifically 
delineating true positives, true negatives, false positives, and 
false negatives, in the context of diverse urban acoustics. Fig. 8 
presents a graphical representation of this matrix, elucidating 
the categorization efficacy for impulsive sounds. The 
implemented CNN model facilitated the differentiation of eight 
distinct hazardous urban auditory signals. 

Fig. 9 depicts the AUC-ROC curve pertinent to the 
detection of perilous auditory events. The curve provides 
insights into the model's sensitivity to variations within the 
training dataset. The outcomes suggest that the integrated 
CNN-LSTM framework adeptly discerns hazardous acoustic 
events with commendable precision. Observations from the 
graph indicate a consistent performance, signifying the model's 
robust training tailored specifically for the identification of 
hazardous acoustical scenarios. 

 
Fig. 8. Confusion matrix. 

 
Fig. 9. ROC-AUC curve. 

Consequently, the introduced deep neural network exhibits 
superior efficacy in consistently detecting hazardous urban 
sounds across all evaluation metrics. The success of the 
proposed methodology may be attributed to the utilization of 
the advanced RNN-CNN for weight and bias adjustments, 
coupled with an optimized training duration. The findings 
indicate that the presented deep neural network can be readily 
adapted to cater to both concise and extensive auditory inputs 
in contemporary applications. 

V. DISCUSSION 

The task of detecting and classifying dangerous urban 
sounds using deep learning architectures has garnered 
considerable attention given the importance of public safety 
and efficient urban management. This study presented a novel 
Convolutional LSTM (CNN-LSTM) network specifically 
tailored for real-time impulsive sound detection and 
classification in urban settings. The outcome of this research 
offers significant insights and implications, which are 
discussed in this section. 

A. Comparative Performance of the Proposed Model 

The CNN-LSTM architecture, as revealed by the results, 
showcases a notable advancement over previously proposed 
models for urban sound detection. In comparison to standard 
CNN architectures, the introduction of RNN allows the model 
to effectively process temporal sequences in the auditory data, 
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proving its prowess in capturing the temporal dynamics 
inherent in sound samples [34]. Not only does this substantiate 
the architectural choices made in this research but it also 
suggests potential avenues for further refining and expanding 
the hybrid deep learning models in auditory signal processing. 

B. Efficacy in Hazardous Sound Detection 

A pivotal achievement of this study is the high 
classification accuracy for sounds that have immediate safety 
implications, such as gunshots, alarms, and screams [35]. 
Precision in detecting these sounds is crucial for real-time 
monitoring systems that aim to promptly respond to 
emergencies. The proposed model's ability to discern these 
sounds from a cacophony of urban noises, with significant 
accuracy, positions it as a strong candidate for deployment in 
urban surveillance systems. 

C. Model Generalizability and Robustness 

Another salient point worth discussing is the model's 
performance across diverse datasets [36]. Its consistent results, 
even with different datasets including open-source ones, 
indicate robustness and generalizability. The implications here 
are two-fold: First, the model appears to be resilient to 
overfitting [37], a frequent pitfall in deep learning paradigms. 
Second, its generalizability suggests that with minor 
modifications [38], the proposed architecture could potentially 
be employed in varied urban environments, extending beyond 
the specific settings of this study. 

D. Computational Efficiency and Real-time Implementation 

The study indicates that the model's training lasted a mere 
few minutes, emphasizing the computational efficiency of the 
CNN-LSTM architecture. This is crucial for scaling up the 
approach and integrating it into real-time surveillance systems, 
where rapid model training and updating are of essence. Given 
the emergent nature of urban sounds and the ever-evolving 
urban landscape, the ability to quickly train and retrain models 
can be a game-changer. 

E. Challenges and Limitations 

While the findings are promising, it is essential to 
acknowledge certain challenges. Ambient noises, characteristic 
of dynamic urban settings [39], can sometimes interfere with 
the accurate detection of impulsive sounds. Furthermore, while 
the model has been tested on selected datasets, its performance 
in other global urban contexts – each with its unique 
soundscapes – remains to be evaluated. 

F. Future Research Directions 

Several prospective avenues emerge from this study: 

 Data Augmentation: Experimenting with more 
extensive and diverse datasets, inclusive of global urban 
soundscapes, could further test and improve the model's 
robustness. 

 Model Refinements: While the CNN-LSTM 
architecture demonstrates efficacy, the integration of 
attention mechanisms might enhance its ability to focus 
on critical sound segments, thereby potentially 
improving accuracy. 

 Transfer Learning: Given the computational efficiency 
of the proposed model, it would be intriguing to 
investigate the benefits of transfer learning, applying 
knowledge from pre-trained models to expedite the 
training process even further. 

 Integration with Visual Surveillance: A holistic urban 
surveillance system could combine auditory cues from 
the CNN-LSTM model with visual data from CCTV 
cameras, enhancing the accuracy and response time of 
emergency systems. 

In conclusion, the CNN-LSTM model's performance in 
detecting dangerous urban sounds signals a promising step 
forward in urban surveillance and safety systems. Its 
computational efficiency, robustness, and high accuracy across 
datasets underpin its potential for real-world applications. 
Nevertheless, like all research, it sets the stage for further 
inquiries, refinements, and innovations in this domain. 

VI. CONCLUSION 

The paramount importance of ensuring urban safety cannot 
be overstated, and the deployment of advanced technological 
measures is crucial in these endeavors. This research aimed to 
bridge the extant gaps in urban sound detection by proposing a 
novel Convolutional LSTM (CNN-LSTM) architecture tailored 
for real-time impulsive sound detection and classification. The 
results, as delineated in the study, highlight the efficacy of this 
hybrid model in discerning and classifying hazardous urban 
sounds amidst the complex soundscape of urban environments. 

The model's comparative performance, evidenced by its 
high classification accuracy, demonstrates its potential utility 
for urban surveillance systems. Especially noteworthy is its 
ability to accurately detect sounds of immediate safety concern, 
such as alarms, screams, and gunshots. Moreover, the 
robustness and generalizability of the model, as indicated by its 
consistent performance across diverse datasets, fortify its 
position as a leading contender for wide-scale implementation 
in urban settings globally. 

However, while the findings undoubtedly underscore the 
potential of the CNN-LSTM architecture, they also pave the 
way for future research. There remains a vast expanse of 
uncharted territory in this domain, especially concerning model 
refinements, transfer learning, and the integration of auditory 
and visual surveillance cues. Such advancements could further 
refine detection accuracy and foster comprehensive urban 
safety measures. 

In sum, this study serves as a testament to the untapped 
potential of deep learning paradigms in enhancing urban 
security. The proposed CNN-LSTM model, with its impressive 
results, sets a foundational precedent for further innovations 
and refinements. As urban centers continue to grow and 
evolve, it is our sincere hope that the fruits of this research 
contribute to safer, more secure, and harmonious urban living 
experiences for all. 
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