
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

643 | P a g e

www.ijacsa.thesai.org

Detecting Threats from Live Videos using Deep

Learning Algorithms

Rawan Aamir Mushabab AlShehri
1
, Abdul Khader Jilani Saudagar

2

Information Systems Department, College of Computer and Information Sciences,

Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia

Abstract—Threat detection is an important area of research,

particularly in security and surveillance applications. The

research is focused on developing a threat detection system using

DL techniques. The system aims to detect potential threats in

real-time video streams, enabling early identification and timely

response to potential security risks. The study uses two state-of-

the-art DL models, MobileNet and YOLOv5, to train the object

detection system. The TensorFlow object detection API is

employed for training and evaluating the models. The results of

the study indicate that MobileNet outperforms YOLOv5 in terms

of detection accuracy, speed, and overall performance. The

justification for selecting MobileNet over YOLOv5 is based on

several factors. First, MobileNet has a lightweight architecture,

making it suitable for real-time applications where processing

speed is critical. Second, it is efficient in terms of memory usage,

enabling it to operate effectively on low-resource devices. Third,

MobileNet provides high accuracy in detecting objects of

different sizes and shapes. The study evaluated the performance

of the threat detection system using various evaluation metrics,

including mean average recall (mAR), mean average precision

(mAP) and Intersection over union (IoU). The results show that

the system achieved high accuracy in detecting threats, with an

overall mAP (mean average precision) of 0.9125, mAR (mean

average recall) of 0.9565 and Intersection over union (IoU) of

0.9045. In this study, researchers present a highly efficient and

successful method for identifying threats through the utilization

of deep learning methods. The research demonstrates the

superiority of MobileNet over YOLOv5 in terms of performance,

and the results obtained validate the effectiveness of the proposed

system in detecting potential threats in real-time video streams.

Keywords— Deep learning; machine learning; object detection;

threat detection

I. INTRODUCTION

Nowadays, technologies are experiencing unprecedented
growth and advancement, particularly in the field of Data
Sciences (DS). DS encompasses a wide range of disciplines,
including Artificial Intelligence (AI), Machine Learning (ML),
and Deep Learning (DL). AI involves the external creation of
intelligence for various systems, enabling them to make
decisions based on insights derived from available data. ML
empowers machines to process data and generate knowledge
and intelligence by integrating applied statistics and
optimization theory. DL is a subfield of ML that specifically
concentrates on constructing, training, and deploying extensive
and intricate neural networks [1]. By leveraging data in
parallel, these neural networks carry out their operations with
the aim of accomplishing their assigned tasks. To develop an
intelligent system for object detection, it is necessary to

identify and categorize moving objects. Object detection
entails the ability of computers and software systems to
identify the presence and location of various objects within an
image, such as vehicles, animals, humans, and more. Deep
convolutional neural networks have gained significant
prominence in tasks like image classification, object
classification, localization, and object detection [2]. DL
technologies have been increasingly applied in image
classification, target tracking, object detection, image
segmentation. These technologies have helped in different
social life events and cases. The focus in this research is to use
these technologies to raise safety and security. Considering the
escalating global crime and terrorism rates, the demand for
automated video surveillance has surged. The combination of
surveillance and detection has become critically significant.
While human detection and tracking are desirable, the
unpredictable nature of human movement presents significant
challenges in effectively tracking and categorizing suspicious
activities. The focus of this research is to identify and detect
potentially threatening objects captured by Close Circuit
Television Cameras (CCTV) [3]. This idea comes out of the
great need for detecting threatening objects to help evaluate
situations or prevent any further crimes. Finally, the idea
behind this research is extracted and built based on the
previous studies in the field of DL techniques. Also, among the
search between the previous studies, there was no use of the
MobileNet model in the field of recognizing and detecting
objects in videos especially threatening objects.

A. Object Detecting Technique

Object detection is a computer vision technique that
empowers software systems to identify, locate, and track
objects within images or videos. One of its notable features is
the ability to classify objects (such as people, tables, chairs,
etc.) and precisely determine their coordinates within the
image. This is achieved by drawing a bounding box around the
object, although the accuracy of the bounding box may vary.
The effectiveness of the detection algorithm is measured by its
capacity to accurately locate objects within the image. An
example of object detection is facing detection.

Object detection algorithms can either be pre-trained or
trained from scratch, with pre-trained weights from existing
models often utilized and fine-tuned to suit specific
requirements or use cases. Object detection is a crucial area of
research in computer vision and finds widespread applications
in various fields, including surveillance, robotics, autonomous
vehicles, and image and video search engines. The objective of
object detection is to enable machines to comprehend and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

644 | P a g e

www.ijacsa.thesai.org

interpret the visual world in a similar manner to humans. Deep
learning techniques, such as convolutional neural networks
(CNNs), are commonly employed in object detection
algorithms to analyze images or videos and identify objects
within them. These algorithms are trained on large datasets
comprising labeled images, where the object's location and
class are annotated. The training process involves adjusting the
weights and biases of the neural network to minimize the error
between predicted and actual object locations and classes.
Once trained, object detection algorithms can be applied to
detect objects in new images or videos. The algorithm typically
outputs a set of bounding boxes corresponding to the detected
objects, accompanied by their class labels and confidence
scores. Post-processing techniques can be further employed to
refine the bounding boxes and enhance the accuracy of the
object detection process.

In recent years, there has been significant progress in object
detection, driven by advances in DL and the availability of
large datasets. State-of-the-art object detection algorithms can
achieve high accuracy and real-time performance on a wide
range of object types and scenarios. In addition to the
traditional object detection methods, there are also several
advanced techniques that have emerged in recent years. Below
are a few examples:

1) One-shot object detection: Traditional object detection

algorithms require a large amount of labeled data during the

training phase. One-shot object detection, on the other hand, is

a technique that can detect objects with only one or a few

examples of each object class during training.

2) Instance segmentation: Instance segmentation is an

extension of object detection that not only detects the objects

in an image but also segments each object instance from the

background. This technique is useful in scenarios

where precise object boundariesare necessary, such as in

medical imaging or autonomous driving.

3) 3D object detection: While traditional object detection

works on 2D images, 3D object detection can detect objects in

3D space. This is important for applications such as robotics

and autonomous vehicles, where the detection of objects in 3D

is necessary for navigation and obstacle avoidance.

4) Few-shot object detection: Similar to one-shot object

detection, few-shot object detection is a technique that can

detect objects with only a few examples of each object class

during training. However, few-shot object detection is more

challenging than one-shot object detection as it requires the

algorithm to generalize to unseen object classes.

B. Object Detecting from Image and Video

Object detection is an important and prominent area of
research that combines deep learning (DL), computer vision,
and image processing. Its primary objective is to identify
specific semantic objects, such as people or animals, in digital
images and videos. Within the field of object detection, there
are well-established areas of study, such as pedestrian detection
and face detection. However, object detection has broader
applications in various DL fields, including image restoration
and video surveillance [4]. To differentiate between different

objects, object detection employs a multi-label classifier,
although it does not determine the specific identity of each
object. This is where Image Localization comes into play, as it
precisely determines the object's location within the image by
providing a bounding box around it. Image Localization
technology has practical applications in image retrieval, with
facial detection being a widely used example. Additionally, it
can assist in pedestrian detection at traffic lights to enhance
traffic flow and aid visually impaired individuals. It also
facilitates Sign Language Detection (SLD) to support
communication with the deaf and mute community. The
process of object detection involves providing an image or
video frame, using algorithm-based models to search for
targeted objects, and assigning specific categories to each
identified target [5]. Object detection algorithms commonly
employ machine learning (ML) and DL techniques to achieve
meaningful results. Furthermore, the ultimate goal of object
detection models is to emulate the rapid comprehension and
recognition of objects by the human brain when observing
images or videos. Training DL algorithms and models to match
the intelligence of the human brain using computer technology
is a challenging yet crucial task, particularly in the context of
detecting potentially threatening objects.

C. Problem Statement

The research focuses on the detection and recognition of
objects using ML and DL techniques, which is a prominent
area of study for DL enthusiasts. The aim is to enable machines
to learn autonomously by simulating the functioning of
neurons in the human brain. While previous works have
explored object detection for various social issues, there is a
lack of research specifically addressing the detection of
threatening objects in videos and evaluating the MobileNet
model for this purpose. This research aims to enhance
community safety and security by improving the detection of
threatening objects, as incidents and accidents often result from
inadequate security measures or delayed responses to
immediate threats. The research seeks to answer two main
questions: is there an efficient way to detect threats from live
videos using DL algorithms, and how accurate and efficient is
the MobileNet model in detecting objects in live videos? The
objectives of the study are to detect threats in live videos to
prevent the criminal use of threatening objects and to assess the
efficiency and accuracy of the MobileNet model in detecting
threatening objects. The research utilizes DL techniques to
identify and detect threats in live video clips or surveillance
videos. The idea for this research originated from the urgent
need for video analysis on the internet, and it builds upon a
review of previous studies in DL and its techniques. The
researchers identified a gap in utilizing the MobileNet model
for identifying and detecting potential shapes and threats in
videos. The MobileNet model will be employed in this
research to detect threatening objects, and the results will be
analyzed in terms of accuracy and quality.

II. LITERATURE REVIEW

The DL fields are full and rich by the research in this
domain. The related work to this contribution was different in
the model that they used, or they study the same model to
different dataset, or they wanted to detect images instead of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

645 | P a g e

www.ijacsa.thesai.org

video. There are very limited kinds of literature that have
adopted detecting threats by using DL or ML algorithms. This
section presents most of the notable research worked on DL,
ML, and object detection.

A. Object Detection Algorithms

Object Detection is a very trending domain among
researchers. It was thoroughly studied from the beginning of
2010 until the current time [6]. That shows how much this
domain is important and rich. Fig. 1 shows the number of
publications with the keywords of ―Object Detection‖ during
the past 10 years.

Fig. 1. The growing numbers of publications in object detection algorithms.

Object detection plays a crucial role in computer vision
applications, enabling the automatic identification and
localization of objects within images or videos. The researcher
Shaukat Hayat. el at [7], studied a DL framework for object
recognition purposes. The proposed model was further tuned,
and the recognition performance was improved. They use nine
different object classes taken from wide varied image dataset
caltech101 and deploy five layers CNN model. They compared
the proposed model's performance with different classical bag-
of-words (BOW) approaches trained on a novel. This algorithm
achieved an accuracy level of 90.12% is much better than
different classical BOW approaches. While Kanimozhi S. el at
[8], tried to detect and track the object in the sports field to
make the computer learn Deeply, which is none other than the
application of DL. The proposed method increases the
accuracy level in identifying real-time household objects.
Aniruddha Srinivas Joshi, el at [9], adopted the idea of
detecting face masks from video footage. A highly effective
face detection model is applied for obtaining facial images and
cues. A distinct facial classifier is built using DL to determine
the presence of a face mask in the facial images detected. The
proposed method has shown its good effectiveness in
identifying facial masks by achieving high precision, recall,
and accuracy. As for using ML algorithms to detect threats
included in the social media post, Shatha Alajlan. el at [10] has
published research in that domain. She utilized the CNN model
on the TensorFlow platform to classify Instagram content
(images and Arabic comments) for threat detection. The results
of this research showed that the accuracy of the developed
model is 96% for image classification and 99% for comment
classification.

1) Using object detection algorithms: Muhammad

Shakeel. el at [11] have developed a passenger security

screening system that employs DL techniques to detect

potential security threats by rotating the image of a person's

body. However, this method has limitations in identifying the

specific type of threat and precisely locating its position

within the body. Shaoqing Ren. el at [12] have conducted a

study on object classification and detection performance,

achieving a remarkable 5-7 frame rate per second and 73.2%

mean average precision (mAP). Their approach involves

categorizing objects and identifying their precise location,

allowing for the development of an efficient security screening

algorithm that accurately detects threats at specific locations

using an enhanced faster R-CNN model. A comprehensive

analysis of cargo X-ray image analysis automation was carried

out by Jaccard, Nicolas et al. [13]. The review emphasized the

importance of employing image pre-processing techniques,

including image quality enhancement, manipulation, material

discrimination, and segmentation. These techniques play a

crucial role in improving the accuracy of automated image

understanding algorithms and rectifying errors that may arise

during image acquisition.

Moreover, Jaccard's paper proposes an automated threat
detection method to further improve the accuracy in the
analysis of cargo X-ray images. Nicolas Jaccard el at. [13] have
developed a CNN model specifically designed for detecting
threats in X-ray images. Their model was trained using an
augmented dataset that included real threat images, resulting in
a high detection rate of 90% and a low false alarm rate of only
0.8%. The effectiveness of image manipulation and quality
improvement techniques in enhancing the proposed solution is
highlighted in their study. In their study, Akcay, Samet et al.
[14] investigated the potential of convolutional neural networks
(CNNs) for object classification in X-ray baggage images.
Their research focused on utilizing CNNs to improve the
accuracy of object classification in this domain.

On the other hand, Riffo, Vladimir and Flores Sebastian
[15], proposed an innovative automated approach for object
detection in X-ray images, specifically for baggage screening
purposes. Their solution involved the utilization of an adapted
implicit shape model (ASIM), an enhanced version of the
implicit shape model introduced in the research conducted by
Leibe, Bastian et al. [16]. The ASIM approach employed SIFT
descriptors to describe objects using multiple X-ray images
from different perspectives. The visual vocabulary of object
parts was then used to characterize the object, and targets were
detected by searching for similar visual words and spatial
distributions. Although the object detector incorporated pose
estimation and Q-learning computer vision techniques, it may
not be ideal for region-based threat detection.

Furthermore, Nurhopipah, Ade et al. [17] conducted a
study that delved into various aspects of motion detection, face
detection, data training, and face identification. Their research
aimed to explore the complexities associated with these areas
in the context of threat detection. Their utilization of the
Accumulative Differences Images (ADI) approach for motion
segmentation proved successful, with motion detection
reaching a high success rate of 92.655%. The Haar cascade
classifier was employed for face detection, with a success rate
of 76%, and face identification reached 60%. Meanwhile,
Busarin Eamthanakul. el at [18] implemented the background
subtraction method and median filter to compute data and
analyze traffic conditions. Their system was able to detect the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

646 | P a g e

www.ijacsa.thesai.org

number of objects or cars on the road, providing useful data for
traffic management.

Nipunjita Bordoloi. el at [19] developed a security system
that effectively tracks object movement and detects anomaly
motion in real-time. Background subtraction was utilized to
track objects, and the system achieved success in detecting
suspicious activity. Alavudeen Basha. el at [20] also delved
into suspicious activity detection, using a CNN-DBNN
algorithm to detect human activity. The technique of
foundation subtraction was used for human detection, with
larger bounding boxes to enclose individuals. A Discriminative
Deep Belief Network (DDBN) was implemented for activity
classification, with an impressive accuracy rate of 90%. The
research in computer vision systems continues to advance,
providing new and innovative ways to detect and analyze data.

2) Using mobilenet model: MobileNet models offer an

efficient solution for on-device intelligence across various

recognition tasks. Developed specifically for TensorFlow,

MobileNets are a family of computer vision models designed

with a mobile-first approach. These models prioritize accuracy

while considering the limited resources available for on-

device or embedded applications. MobileNets fall under the

category of lightweight deep convolutional neural networks,

significantly smaller in size and faster in performance

compared to many other popular models. Their small

footprint, low latency, and low power consumption make them

well-suited to meet the resource constraints of diverse use

cases. MobileNet models can be leveraged for classification,

detection, embeddings, and segmentation tasks, providing a

versatile framework for on-device intelligent applications.

3) The Gap on the Literatures: This research aims to

complete what other researchers have done by using DL

algorithms and the MobileNet model to detect objects in

images and videos. All the studied and reviewed literature

were specifying different domain of study or different type of

purposes. However, this research focus on Using the

MobileNet model to detect the threatening objects on videos.

According to previous studies, various researchers have

reported high AP values for this model's ability to detect

different classes such as cars, persons, and chairs. Some

research findings suggest that the AP reaches as high as

99.76%, while others claim to achieve a slightly lower value

of 97.76% [21]. Researchers want to approve if the same

percentage would be detected with the same purpose they aim

to study. This action has not been previously investigated by

researchers in the field of object detection by using DL

algorithms.

III. METHODOLOGY

This research aims to investigate the effectiveness of the
MobileNet model in detecting threatening objects. Object
detections a crucial task in computer vision, and it has
numerous applications in various domains, such as security,
surveillance, and autonomous driving. The research is focused
on detecting threatening objects in public places, and the
results could have significant implications for improving public

safety as its none of the research objectives. The research
approach adopted is a qualitative exploratory approach, which
is a suitable method for gaining an in-depth understanding of a
phenomenon.

A. Research Design

A research design serves as a structured framework or
strategy for collecting, measuring, and analyzing data with the
purpose of addressing specific research inquiries [22]. Fig. 2
shows the research scenario that the researcher follows to
answer the research question and fulfill its objectives.

Fig. 2. Research scenario.

B. Data Collection

The dataset used in this study was curated for the purposes
of the study. It was generated and collected by the researcher
from various sources. It consists of five classes of objects that
are considered potentially dangerous or threatening, including:
fire, guns, knives, arrows, and swords. These objects were
chosen due to their prevalence in public safety incidents and
their potential to cause harm. To obtain the data, various
sources were utilized, including YouTube videos that
contained CCTV footage, educational videos for learning
fighting skills, and demo videos. The videos were processed by
extracting frames at a rate of 1 frame per second (1 fps) to
capture the necessary images for the dataset. The use of CCTV
footage is particularly useful as it allows for the collection of
authentic data from public places where security cameras are
commonly used. To annotate the dataset, the RoboFlow tool
was utilized, which is a popular image annotation tool used for
object detection tasks. Annotations provide additional
information about the images, indicating the location and class
of the object within the image. These annotations are essential
for training ML models to accurately detect objects. To
increase the diversity of the dataset, augmentations such as
rotation and contrast difference were applied to the images.
These augmentations help to create variations of the images,
which can improve the performance of ML models by
exposing them to a wider range of data. The purpose behind
curing such dataset is essential for training ML models to
accurately detect these objects within the five mentioned
classes and improve public safety.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

647 | P a g e

www.ijacsa.thesai.org

C. Data Preparation

Object detection from images is a fundamental task
in DL that requires a significant amount of labeled data for
training. The MobileNet SSD model is a popular DL model for
object detection, but it requires a large, labeled dataset for
effective training. In this study, a sufficient amount of data was
obtained by collecting threatening videos and CCTV footage
from online resources such as YouTube. The videos collected
for this study mainly contained real-life activities, such
as ATM robberies and police operations, to ensure that the
dataset reflects real-world scenarios. Additionally, training and
rehearsal-based videos were included to increase the number of
images for each object in the dataset. This was an important
step because having a larger dataset with a balanced
distribution of classes can improve the performance of the
model. To create the labeled dataset, frames were extracted
from the videos at a rate of 30 frames per second (30 FPS)
using the RoboFlow tool. Each frame was manually labeled for
the presence of five different objects, including guns, knives,
swords, arrows, and fire. Manual labeling is a crucial step in
creating a high-quality labeled dataset because it ensures that
the labels are accurate and consistent. The use of real-life video
footage and manual labeling ensures that the dataset is of high
quality and accurately reflects the threatening objects. This can
improve the accuracy and reliability of the model when
detecting threatening objects in real-world scenarios.

1) Data cleaning: After extracting all the images from

videos uninformative and vague frames are discarded for data

cleaning and maintaining data quality. Only frames with clear

object visibility are remained after cleaning that are labelled

manually for five object classes. Data classes are sampled in

such a way that create a balanced number of images per object

in training, validation, and testing.

D. Data Annotation

In this phase, the researcher used the RoboFlow annotation
tool that enabled drawing bounding boxes around the objects of
interest. RoboFlow enables the uploading of videos and
extraction of images with varying FPS rates. Each image is
labeled for its particular class name and bounding box. The
RoboFlow tool allows saving the bounding box values in
different formats, as required by the model. In this case, the
labeling is saved as a CSV file to comply with the MobileNet
SSD file format. The minimum and maximum values for the
bounding box x and y sides are saved to draw the bounding
box rectangle. The RoboFlow interface for image labeling is
depicted in the Fig. 3. When labeling the images using the
RoboFlow tool, a bounding box is drawn around the object of
interest in the image. The bounding box is represented by a
rectangular box with four values: the x-coordinate and y-
coordinate of the top-left corner of the box, and the width and
height of the box. To save the bounding box values in the CSV
file, the RoboFlow tool records the minimum and maximum
values for the x and y coordinates of the top-left corner of the
box, as well as the width and height of the box. These values
are saved in separate columns in the CSV file, along with the
class name of the object in the image. For example, there is an
image containing a gun, and the bounding box around the gun
has a top-left corner coordinate of (100, 150), a width of 50

pixels, and a height of 100 pixels. The RoboFlow tool would
save the following values in the CSV file for this object as
follow:

 Class Name: Gun

 Minimum x-coordinate: 100

 Maximum x-coordinate: 150

 Minimum y-coordinate: 150

 Maximum y-coordinate: 250

To start the annotation step, the researcher opened each
image using the chosen annotation tool. For every image, the
researcher carefully drew bounding boxes around the instances
of the objects that aimed to be detected. For each bounding
box, the researcher assigned the correct class label from the
five mentioned classes which are: fire, gun, knives, arrows, or
swords. This step was done manually to ensure accurate
placements and labels, as these annotations would serve as the
ground truth for the models training phase. With the annotated
dataset in hand, the next step was to integrate it with the
respective training frameworks. The researcher utilized the
annotations they had created to train the object detection
models.

Fig. 3. RoboFlow interface.

1) Dataset quality check: Ensuring data quality is a

critical step before building models for object detection. Poor

data quality can lead to inaccurate and unreliable models.

Below the used methods taken to ensure data quality in object

detection:

 Annotation Quality Control

 Data Cleaning and Preprocessing

 Balanced Class Distribution

 Data Augmentation

 Validation and Anomaly Detection

 Consistent Image Quality

 Real-World Scenario Simulation

 Review Annotations for Ambiguity

 Class Label Consistency

 Cross-Validation

 Continuous Monitoring

 Use External Data Sparingly

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

648 | P a g e

www.ijacsa.thesai.org

 Expert Review

 Feedback Loop

Once reached the confident in the quality of the
annotations, we proceeded to export the annotated dataset from
RoboFlow. The platform typically provided options to export
the data in formats that were compatible with various deep
learning frameworks. Given this scenario, the researchers
ensured that the exported format aligned with the chosen model
architecture, whether it was YOLO or MobileNet SSD.

E. Data preparation and Augmentation

Data preprocessing is applied in order to make it suitable
for effective model training. Images are resized to one scale
416x416 for MobileNet SSD model. Data preprocessing
enhances data quality and decreases training time. Images are
scaled, cropped, and resized to make them in same format
before model training. Data augmentation is also applied to
increase veracity of data so model can learn better with more
data as addressed before. Images are rotated, blurred, and
adjusted contrast and orientation for data augmentation
purposes.

F. Data Limitations and Issues

DL models require a large amount of data to train
effectively, and the more data feed into the model, the better its
performance would be. In this study, the researchers have
around 2000 images for each object after augmentations.
However, the number of images per sample is relatively low,
and the diversity of real scenarios is limited, which are some of
the limitations of this dataset. To improve the performance of
the model, more data can be collected from real-time scenarios.
Furthermore, due to privacy concerns and issues, many
establishments and markets are hesitant to share their camera
recordings. Therefore, more collaboration and support are
needed to collect a diverse range of datasets to improve the
model's performance and deliverables.

G. Model Building

This research focus on two DL models. The YOLOv5 (You
Only Look Once version five) model, which has undergone
thorough scrutiny by researchers, stands out as the initial model
that has gained recognition for its effectiveness in object
detection. This model showcases highly promising accuracy
outcomes based on two key metrics: mAP (mean average
precision) and FPS (frames per second). In a study conducted
by S. Murthy et al. [23], the application of YOLOv5 was
investigated, and it demonstrated superior speed and a 95%
accuracy rate compared to other object detection algorithms
examined in the comparative analysis. Additionally, it achieved
an average precision ranging between 67 and 70, along with a
frames per second rate ranging between 65 and 124. A
thorough comparison of the YOLO model versions in the
below sections. In reference to the Debojit Biswas et al. work
that has been done [24] MobileNet SSD model achieved
92.97% average detection accuracy in the experiment. Sanjay
Kumar et al. confirm in his work that the SSD on MobileNet
has the highest mAP among the models targeted for real-time
processing [25]. That was promising to start the investigation
upon this case.

1) YOLOv1: First object detection network that combines

the problem of identifying class labels and determining

bounding boxes for a set amount of classes, making it a one-

stage detector (rather than two-stage detectors which first

detects the regions of interest, and then classify that region as

a specific class based on given input during training). This is

possible by fully connecting the two important steps of

bounding box prediction and classification of labels to an end-

to-end differentiable network [26].

2) YOLOv2: From it‘s iteration of version one of YOLO,

works have been done too dramatically improve the

performance of the accuracy through the addition of

BatchNorm, improved resolutions, and the use of anchor

boxes [27].

3) YOLOv3: Improvements made from the previous

model included the use of more connections in its backbone

network layers as well as adding a new network that aids in

the model‘s ability to identify smaller objects better (with the

use of feature pyramid network (FPN) that allows the model to

learn objects of different sizes simultaneously). Added an

objectness score for the model‘s bounding box predictions,

which helps determine the bounding box to take for all the

bounding boxes overlapping a specific ground truth object

within an image [26][27].

4) YOLOv4: Additional improvements were introduced

into the YOLO series in YOLOv4 through the introduction of:

 Feature Aggregation which combines the features
extracted from previous layers

 Bag of Freebies - several methodologies and functions
added to improve its performance without affecting the
model‘s inference during production. The main
additions are related to data augmentation such as
rotation, flip, crop, hue, saturation, mosaic, MixUp,
Blur, etc.

 Self-Adversarial Training which allows the model to
find the region of the image that its network relies most
on and subsequently editing the image to remove this
reliance to enable generalisation of the model.

 CIoU loss as the loss function which not only observes
the overlap of bounding boxes with the ground truth
(which is already done for IoU), but also how close the
box was to the ground truth box in terms of the pixel
distances within the image, which is an additional part
of the loss function that is trained so that it enables the
network to pull the predicted bounding box closer to the
ground truth box.

 Using Mish activation as the activation function instead
of ReLU which improves the performance of the model
due to its ability to push the features created by the
model towards its optimal [27][28].

5) YOLOv5: YOLOv5 represents the most recent iteration

of the YOLO (You Only Look Once) series of object detection

models, originally introduced in 2016. Developed by

Ultralytics, a reputable computer vision research company,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

649 | P a g e

www.ijacsa.thesai.org

YOLOv5 offers notable advancements in both accuracy and

speed when compared to its predecessors. It attains state-of-

the-art performance across multiple benchmark datasets while

preserving real-time inference speeds on modern GPUs. This

algorithm employs a single convolutional neural network

(CNN) to predict object classes and bounding boxes by

dividing the input image into a grid and making predictions

based on each grid cell. This approach enables faster inference

times and improved accuracy compared to region-based CNNs

used in other object detection models. YOLOv5 has gained

significant traction within the computer vision community and

finds applications in various domains, including autonomous

vehicles, robotics, security, and more [26]. YOLOv5 contains

three layers as an object detection model: Backbone as the

feature extractor, the Neck which combines and mixes

different features extracted from the Backbone, and the Head

which takes the outputs from the Neck and predicts bounding

boxes and classification. The Backbone that mentioned in

Fig. 4 was CSPDarknet. CSPDarknet is a neural network that

contains a set of convolutional layers which are useful for

consolidating images and extracting useful features which can

be learnt from the model. As shown in Fig. 4, the Backbone

consists of a set of BottleNeckCSP (Cross Stage Partial)

blocks and a Spatial Pyramid Pooling (SPP) block. The

bottleneck part of BottleNeckCSP helps reduce the number of

feature maps, which in turn reduces the model size and

computation. The cross stage partial part of BottleNeckCSP

also aids in reducing the model size and computation required

by reducing the amount of gradient information during

optimization within the network while maintaining good

accuracy for the model. It does this by splitting the base layer

into two parts (one as the base layer, the other is partitioned

into multiple blocks) and merging them back together again

through a cross-stage hierarchy strategy. The SPP block

performs pooling of the features from the previous CSP block

to generate fixed-length outputs. This avoids the need to do

any cropping, warping or preprocessing at the start of the

input to the neck and is done through pooling which is an

information aggregation function [30].

After the Backbone, the feature mixing and combining
model used was Path Aggregation Network (PANet). PANet is
a network architecture with a bottoms-up approach, where
there is a feature hierarchy which aggregates and passes the
information of multiple convolutional layers at different stages,
enhancing the signals between lower layers and upper layers.
Linking different feature levels together to allow the model to
accurately detect both larger and small objects when
performing object detection.

As shown in Fig. 4, there are several concatenation blocks
which combine the lower and higher-level features together to
be fed into the final head layers. The final layer is a set of 1x1
convolutional layers that takes in the input of the Neck
(PANet) to pass into the regression that detects the bounding
boxes and classifies them, and these are then used for training
and inference/prediction [28]. During training, YOLOv5 will
see the images inputted from the training dataset, use the

Backbone (CSPDarknet) to extract out relevant features,
thereafter, utilizing the PANet to concatenate lower and higher-
level features together, and these are finally passed to output
the bounding boxes and classes for different region of the
image as predictions. This will be trained using the training
dataset and can be used for inference after enough training is
done for the model [29].

Fig. 4. YOLOv5 model architecture.

6) MobileNet Single Shot MultiBox Detector (SSD): The

MobileNet Single Shot MultiBox Detector (SSD) is an object

detection algorithm that combines the Single Shot Detector

(SSD) framework with the MobileNet architecture. This

algorithm was developed by Wei Liu et al. in 2016 [31].

MobileNet is specifically designed for mobile and embedded

devices, offering a lightweight convolutional neural network

architecture that utilizes depth-wise separable convolutions.

These convolutions help reduce computational requirements

while maintaining high accuracy. On the other hand, the SSD

framework is a popular approach for object detection that

utilizes a single convolutional neural network to predict object

classes and bounding boxes [31]. MobileNet SSD enables

real-time object detection on devices with limited

computational resources, such as mobile devices and robotics.

It is particularly beneficial for applications that require real-

time object detection, including autonomous vehicles and

surveillance. Despite its efficiency, MobileNet SSD achieves

high accuracy on benchmark datasets like PASCAL VOC and

COCO, all while maintaining fast inference times. As a result,

it has gained significant adoption within the computer vision

community and finds applications in various domains such as

security, surveillance, and robotics [15][24]. MobileNet SSD

comprises two key layers: a backbone model used to extract

relevant features (in this case, VGG-16 was employed as the

feature extractor), and the detector head, which outputs crucial

information for object detection.

The VGG-16 model, proposed by researchers at the
University of Oxford in 2014, serves as the backbone for many
computer vision tasks. It is a convolutional neural network
architecture comprising 16 layers, including 13 convolutional
layers, 5 max pooling layers, and 3 fully connected layers. The

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

650 | P a g e

www.ijacsa.thesai.org

primary purpose of the convolutional layers is to extract
meaningful features from the input image, enabling the model
to capture relevant patterns and structures. On the other hand,
the pooling layers play a crucial role in reducing the spatial
dimensionality of the extracted features. By down sampling the
feature maps, these pooling layers enhance computational
efficiency during subsequent processing stages. Together, the
combination of convolutional and pooling layers in the VGG-
16 architecture enables effective feature extraction and
representation for a wide range of computer vision
applications. Finally, the fully connected layers learn to
classify the extracted features into their corresponding
categories. The detector head consists of several convolutional
blocks that link to the detection block, as well as a post-
processing step called Non-Maximum Suppression (NMS) as
shown in Fig. 5. The purpose of the convolutional blocks that
are linked at different levels to the detection head is to extract
features at multiple levels, which enables the model to detect
both small and large objects by extracting features for them.
Subsequently, the NMS block will take the bounding boxes
that are outputted from the model and pick out the bounding
box that is closest to the ground truth bounding box using
Intersection-over-Union (IoU) as the metric. NMS is only used
during training. As an overview for the methodology of
MobileNet SSD, the model will be fed the images from the
training dataset, which goes through a feature extraction
process in VGG-16 as the backbone. These feature extractors
are then further convoluted, and features at different levels of
convolutions are passed to the detection head for bounding box
and classification prediction. For training, there is an additional
process of NMS which choose the most prominent bounding
box for each ground truth box. The pretrained SSD MobileNet
v1 FPN with dimension of 640x640 were used for detecting the
objects. it is an object detection model based on a single-shot
detection (SSD) architecture with a feature pyramid network
(FPN) and uses the MobileNet V1 neural network as a base
feature extractor. This model is designed to detect objects in
images of size 640x640 pixels. The SSD architecture is a
popular object detection approach that predicts object
categories and bounding boxes in a single forward pass through
the neural network. The SSD MobileNet v1 FPN 640x640
model consists of a base network, feature pyramid network,
and detection network.

Fig. 5. MobileNet Single Shot Multi box Detector (SSD).

 Base Network: The base network of the model is the
MobileNet V1 neural network. It is a lightweight deep
neural network architecture that uses depth wise
separable convolutions to reduce the number of
parameters and improve computational efficiency. The
MobileNet V1 architecture consists of a sequence of
depth wise separable convolutional layers followed by

standard convolutional layers, which are used to extract
feature maps from the input image.

 Feature Pyramid Network: The feature pyramid
network (FPN) is used to combine feature maps from
different levels of the MobileNet V1 base network. The
FPN is a top-down architecture that aggregates high-
resolution feature maps from the lower levels of the
base network with lower-resolution feature maps from
the higher levels of the network. This creates a pyramid
of feature maps with rich semantic information at
multiple scales, which is useful for detecting objects of
varying sizes in the input image.

 Detection Network: The detection network is used to
predict the bounding boxes and object categories in the
input image. The detection network consists of a set of
convolutional layers that process the feature maps
generated by the FPN. These layers are used to predict
the locations and class scores of the objects in the input
image. The SSD MobileNet V1 FPN 640x640 model
uses a set of default anchor boxes at different scales and
aspect ratios to generate object proposals. These
proposals are then refined by the detection network to
improve the accuracy of the final object detection
results.

The SSD MobileNet V1 FPN 640x640 is a powerful object
detection model that combines the strengths of the MobileNet
v1 architecture, the feature pyramid network, and the single
shot detection approach to achieve high accuracy and
computational efficiency.

a) Parameters of the MobileNet SSD Model

The parameters for this model are as follows:

 Backbone architecture: This model uses a MobileNet
V1 architecture as the backbone. MobileNet is a
lightweight convolutional neural network architecture
designed for mobile devices, which makes it suitable
for real-time object detection on low-power devices.

 Feature Pyramid Network (FPN): This model uses a
Feature Pyramid Network (FPN) to generate a multi-
scale feature map. FPN is a technique used to extract
features from images at different scales, which helps
improve the accuracy of object detection.

 Input size: The input size for this model is 640x640
pixels. This means that the model can detect objects in
images up to 640x640 pixels in size.

 Batch size: The batch size is the number of images that
are processed simultaneously. The batch size of 8 was
used for training the model.

 Learning rate: The learning rate is a hyperparameter
that controls how much the model adjusts its parameters
during training.

 Number of classes: The number of classes is the
number of object categories that the model can detect.
In this case it was five classes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

651 | P a g e

www.ijacsa.thesai.org

 Anchor boxes: Anchor boxes are a set of predefined
bounding boxes of different sizes and aspect ratios that
the model uses to detect objects.

 NMS threshold: The Non-Maximum Suppression
(NMS) threshold is a parameter that controls how much
overlapping bounding boxes are merged into a single
detection. The default NMS threshold for this model is
0.6, but it can be changed depending on the specific use
case.

b) Model Architecture

The details of model architecture with parameter setting for
threat detection is given as:

 Number of classes: This specifies the number of classes
or object categories that the model will detect. In this
case, the model is trained to detect five classes.

 Image resizer: This defines how the input image is
resized to fit the input size of the model. Here, a fixed
shape resizer is used with a height and width of 640
pixels.

 Feature extractor: This defines the feature extraction
backbone of the model. In this case, the SSD MobileNet
V1 FPN Keras architecture is used. The depth
multiplier is set to 1.0, and the minimum depth of the
network is set to 16. The conv hyperparams section
specifies the hyperparameters used for the
convolutional layers of the feature extractor, including
the L2 regularization weight, random normal weight
initializer, and batch normalization parameters.

 Override base feature extractor hyperparams: This
indicates that the hyperparameters specified in this
pipeline config file will be used to override the default
hyperparameters of the base feature extractor.

 FPN: This specifies the Feature Pyramid Network used
for multi-scale feature extraction. The minimum and
maximum levels of the feature pyramid are set to 3 and
7, respectively.

 Box Coder: In object detection, the box coder is used to
encode and decode the predicted boxes, which is
necessary because the predicted boxes are in a relative
format and need to be converted back to the absolute
coordinates of the image. The box coder section
specifies the method used to encode and decode boxes.
In this particular case, the box coder is using the faster
R-CNN box coder method, which encodes boxes using
their center coordinates, width, and height. The y scale
and x scale values specify the scaling factors for the
center coordinates, while the height scale and width
scale values specify the scaling factors for the height
and width. These scaling factors are used to normalize
the box coordinates to a similar range.

 Matcher: The matcher section specifies the method used
to match predicted boxes to ground truth boxes. In this
case, the argmax matcher method is used, which
matches predicted boxes to ground truth boxes based on
their maximum intersection-over-union (IoU) overlap.

The matched threshold value specifies the minimum
IoU overlap required for a predicted box to be
considered a match, while the unmatched threshold
value specifies the maximum IoU overlap allowed for a
predicted box to be considered unmatched.

 Similarity Calculator: It specifies the method used to
calculate the similarity between predicted boxes and
ground truth boxes. In this case, the IoU similarity
method is used, which calculates the IoU overlap
between two boxes.

 Box Predictor: In the SSD MobileNet V1 FPN 640x640
model, the box predictor is responsible for predicting
the bounding boxes for the detected objects. The weight
shared convolutional box predictor is used as the box
predictor, which shares weights between the class
prediction and box prediction layers. This helps to
reduce the number of parameters in the model. The
depth parameter specifies the number of filters in each
convolutional layer of the box predictor. In this model,
it is set to 256.

 Number of layers before Predictor: this parameter
specifies the number of convolutional layers before the
predictor layers. In this model, four convolutional
layers are used before the predictor.

 Kernel Size: It specifies the size of the convolutional
kernel used in the predictor layers. In this model, a
kernel size of 3 is used.

 Class prediction Bias init: It initializes the bias for the
class prediction layer. In this model, it is initialized to -
4.599999904632568.

 Convolutional Hyperparameters: It specifies the
hyperparameters for the convolutional layers in the box
predictor. It includes the regularizer, initializer,
activation function, and batch normalization
parameters.

 L2 Regularizer: It applies L2 regularization to the
convolutional layers to prevent overfitting. The weight
value provided is 3.9999998989515007e-05.

 Random Normal Initializer: This parameter initializes
the weights of the convolutional layers using a normal
distribution with a mean of 0 and a standard deviation
of 0.009999999776482582.

 Activation: The activation parameter specifies the
activation function used in the convolutional layers. In
this model, the RELU_6 activation function is used.

 Batch Normalization: It applies batch normalization to
the convolutional layers to improve the training process.
It includes the decay rate, scale, and epsilon values. In
this model, the decay rate is set to 0.996999979019165,
the scale is set to true, and the epsilon is set to
0.0010000000474974513.

 Anchor boxes: In object detection, anchor boxes are
pre-defined bounding boxes of various sizes and aspect
ratios that are used to identify objects in an image.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

652 | P a g e

www.ijacsa.thesai.org

 Anchor Generator: It specifies how these anchor boxes
should be generated. In the SSD MobileNet V1 FPN
640x640 model, the anchor generator uses the
multiscale anchor generator which generates anchors at
multiple scales and aspect ratios. The values provided
in the multiscale anchor generator section is the
following:

o Min level and max level: These specify the minimum and
maximum levels of feature maps in the FPN.

In this case, the feature maps are generated at levels 3 to 7.

 Anchor Scale: This specifies the base size of the anchor
boxes. The size of the anchor boxes is proportional to
the square root of the area of the feature map.

 Aspect Ratios: These specify the aspect ratios of the
anchor boxes. In this case, three aspect ratios are used:
1.0, 2.0, and 0.5.

 Scales per Octave: This specifies the number of scales
to be used per octave. In this case, two scales are used
per octave.

 Score Threshold: minimum confidence score for
detections to be considered. Value is
9.99999993922529e-09.

 IoU Threshold: intersection over union (IoU) threshold
used for non-maximum suppression. Value is
0.6000000238418579.

 Max Detections per Class: maximum number of
detections to keep per class after non-maximum
suppression. Value is 100.

 Maximum total Detections: maximum number of
detections to keep over all classes after non-maximum
suppression. Value is 100.

 Use Static Shapes: whether to use static shapes for the
output tensor shapes. Value is false.

 Score Converter: method for converting scores. Value is
SIGMOID.

 Normalize loss by number of Matches: whether to
normalize the total loss by the number of matched
ground truth boxes. Value is true.

 Localization Loss: weighted_smooth_l1: the
localization loss function. No values provided, uses
default parameters.

 Freeze Batch norm: whether to freeze the batch
normalization parameters during training. Value is
false.

 Batch Size: The number of images that are fed into the
network at once during training. In this case, the batch
size is set to 8.

 Data Augmentation Options: A list of data
augmentation options to apply to the input images
during training. In this case, two types of data

augmentation are used: random horizontal flips and
random crops.

 Sync Replicas: A Boolean variable that controls
whether to use synchronous gradient updates during
training. When set to true, the gradients are computed
and averaged across all replicas before the weights are
updated. This can lead to better convergence but
requires more memory and communication.

 Optimizer: Specifies the optimizer used during training.
In this case, the momentum optimizer is used with a
cosine learning rate schedule.

 Learning Rate: The learning rate schedule used during
training. The learning rate is decreased according to a
cosine schedule that decreases the learning rate from a
base value of 0.04 to a final value of 0 over 25,000
steps. The learning rate is also gradually increased from
a warmup value of 0.0133 over 2,000 steps.

 Momentum Optimizer Value: The momentum value
used by the optimizer. In this case, the momentum is set
to 0.9.

 Use Moving Average: A Boolean variable that controls
whether to use a moving average of the model weights
during training. When set to false, the raw weights are
used. When set to true, the moving average of the
weights is used instead, which can improve the
robustness of the model.

7) Python: Model implementation, training and evaluation

is done in python programing using several libraries as listed

below:
 PyTorch: PyTorch is a python library, a deep learning

framework for building and training neural networks,
widely used for research and production in machine
learning programming language and the Torch library.
Torch is an open-source ML library used for creating
deep neural networks and is written in the Lua scripting
language. It's one of the preferred platforms for deep
learning research. Outcome of PyTorch is a model file
that can be loaded in mobile device and can be used for
prediction. The researchers used PyTorch for
MobileNet and yolov5 implementation, training, and
evaluation.

 TensorFlow: An open-source machine learning
framework for developing and deploying machine
learning models, including deep learning models. Both
yolov5 and MobileNet SSD models can be
implemented in PyTorch and TensorFlow these are just
two standard libraries for implementing neural
networks. Researchers tried TensorFlow for
implementation, but PyTorch was more user friendly,
so PyTorch was adopted.

 OpenCV: An open-source computer vision library
offering tools for image and video processing, including
object detection and analysis processing. OpenCV
supports a wide variety of programming languages like
Python, C++, Java, etc. It can process images and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

653 | P a g e

www.ijacsa.thesai.org

videos to identify objects, faces, or even the
handwriting of a human. Researchers have used
OpenCV for reading images and applying
preprocessing steps like scaling and normalization of
images.

 RoboFlow: A platform for managing, annotating, and
preprocessing data for computer vision projects,
assisting in training machine learning models.

 Matplotlib: A Python plotting library used for creating
static, interactive, and animated visualizations in data
analysis and model output visualization. Matplotlib is
also used for evaluation and analysis of results like
building confusion metrics after prediction is done
through this library. Outcome of matplot lib is plots and
charts generated as images that can be used for
visualization of training loss and accuracy with each
epoch.

 Seaborn: A statistical data visualization library built on
top of Matplotlib, designed to generate informative and
attractive statistical graphics. Seaborn is also used for
plotting various analysis charts of training loss and
accuracy values.

H. Model Evaluation

1) Model evaluation metrics: Mean Average Precision

(MAP) is the universal standard metric used to compare

performance between object detection models created by

different authors [32]. This metric is specifically derived from

Average Precision (AP). Since classification is performed

during object detection for different bounding boxes along

with the provision of the ground truths, the fundamentals of

the confusion matrix apply. The matrix enables computations

to be made with accuracy, precision, and recall. It consists of

the True Positive (TP), True Negative (TN), False Positive

(FP) and False Negative (FN) values [32]. In the context of

object detection:

 True Positive: Detection made correctly by the model.

 True Negative: Background region correctly detected
by the model (where there are no objects)

 False Positive: Wrongly detected regions made by the
model.

 False Negative: Regions where the ground truths are
missed by model.

Intersection-over-Union (IoU) is the next metric used to
determine whether bounding boxes are TP, TN, FP or FN. IoU
is defined as the area of overlap between the bounding box
predictions and the ground truth, divided by the area of union
between them [33]. An IoU of 1 means the bounding boxes
predicted match exactly the ground truth boxes, whereas an
IoU of 0 depicts no overlap between the two bounding boxes
[34]. Fig. 6 shows the IoU equation.

A threshold is a hyperparameter predetermined to decide
between TP, TN, FP or FN. For example, with a threshold of
0.5 for a ground truth bounding box, if the predicted bounding

box has an IoU greater than 0.5 for that particular ground truth,
it is considered a TP. Whereas an IoU lower than 0.5 means the
predicted bounding box is a FP. Through the IoU, we are able
to determine the confusion matrix (TP, TN, FP, FN) for every
bounding box, and subsequently calculate the precision and
recall.

Fig. 6. Intersection over union equation.

 Precision: of the positive classes that are correctly
detected, how many are actually positive? This follows
the following Eq. (1) [33]:

Precision = TP / TP+FP (1)

 Recall: of all positive classes, how much can we predict
the class correctly? It is preferred that this measure is as
high as possible. It follows the following Eq. (2) [33]:

Recall = TP / TP +FN (2)

We also, calculate the accuracy that measure considers the
correct classification out of all classes, where a high value of
accuracy if preferred. This factor is explained in the following
Eq. (4) [33]:

Accuracy = TP + TN / TP + FP +TN +FN (3)

AP uses precision and recall creating an Area Under the
Curve graph (AUC-PR) for the model. For every threshold,
there is a different precision since the object detector will
output a confidence score, which is then determined by the
threshold on whether each bounding box is TP, TN, FP or FN.
AP will take the precision and recall at every threshold, graph
out a precision-recall plot, and thereafter take the area under
the curve. The closer AUC is to 1, the better the model, and
vice versa. It is better to have a high AUC as the model is good
at predicting and distinguishing between classes it calculated
based on the TPR (y-axis) versus the FPR (x-axis). AP is done
separately for each class within the object detection model.
Also, F1-measure that measure mainly computes the harmonic
mean of precision and recall measuring them at the same time
[33]. It has the below Eq. (4):

F1-measure = 2 x Recall x Precision / Recall + Precision (4)

To consolidate all these scores into one metric, mAP was
introduced. mAP will take all the AP of each class (will have n
number of scores for n number of classes) and take the mean of
those AP to obtain one score. This score is the metric used to
determine the overall performance of the object detection
model.

2) Model validation: Model validation refers to the

procedures and actions conducted to verify that a model is

functioning as intended and aligns with its objectives and

intended business applications. Typically, the validation

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

654 | P a g e

www.ijacsa.thesai.org

process involves the assessment performed by individuals who

are not the model developers or owners, as their impartial

perspective is valuable due to their non-technical background

[31]. In the context of machine learning, validation may

involve ML experts evaluating the labeling process to ensure

its accuracy and reliability.

IV. RESULTS AND DISCUSSION

This section aims particularly to answer the research
questions which is: is there any efficient way to detect threats
from live videos using DL algorithms? The other question was
how accurate and efficient is using the MobileNet model to
detect objects from live videos? The analysis has been
conducted according to detailed steps that will be mentioned on
the analysis Section 4.3. Comparison is done based on mean
average precision (mAP) and frames per second (FPS) on the
datasets collected as a part of research findings.

A. Data Preparation

1) Dataset collection: For the purpose of this study, a

carefully curated dataset was created to support the research

objectives. The dataset was generated and collected by the

researcher from various sources, specifically chosen to include

objects that are considered potentially dangerous or

threatening. The dataset comprises five classes of objects: fire,

guns, knives, arrows, and swords. These object classes were

selected due to their relevance in public safety incidents and

their potential to cause harm.

To obtain the necessary data, a range of sources was
utilized. This included gathering footage from YouTube videos
that contained CCTV recordings, educational videos
demonstrating fighting skills, and demo videos. By extracting
frames from these videos at a rate of 1 frame per second (1fps),
the required images for the dataset were captured. The
inclusion of CCTV footage is particularly valuable as it
provides authentic data from public places where security
cameras are commonly employed.

To annotate the dataset with the necessary information for
object detection, the researcher employed the RoboFlow tool.
RoboFlow is a widely used image annotation tool specifically
designed for object detection tasks. Annotations provide
crucial additional details about the images, such as the precise
location and class of the object within each image. These
annotations are vital for training machine learning models to
accurately detect and classify objects. To enhance the diversity
of the dataset and improve the performance of the machine
learning models, various augmentations were applied to the
images. Techniques such as rotation and contrast adjustment
were employed to create variations of the original images.

By introducing these augmentations, the models were
exposed to a wider range of data, enabling them to better
handle different image conditions and variations. The careful
curation of this dataset, encompassing the five specified object
classes, serves as a crucial foundation for training machine
learning models to accurately detect these objects and
contribute to public safety improvements.

2) Data cleaning: In this research, the process of data

cleaning and maintaining data quality played a crucial role in

preparing the dataset for object detection models. After

extracting images from videos, uninformative and vague

frames were carefully discarded to ensure that only relevant

and clear frames were included in the dataset. This step aimed

to eliminate any noise or ambiguity that could hinder the

performance of the models. The remaining frames with clear

object visibility were then subjected to manual labeling for

five object classes. Manual labeling involves human

annotators carefully marking the objects of interest in each

frame, providing accurate ground truth annotations. To ensure

a balanced distribution of images per object class in the

training, validation, and testing sets, the data classes were

sampled strategically. This sampling process helps prevent

bias towards specific object classes and ensures that the

models are exposed to a diverse range of objects during

training and evaluation. By performing data cleaning, manual

labeling, and strategic sampling, the researchers improved the

overall quality and representativeness of the dataset. This, in

turn, enhances the reliability and generalizability of the object

detection models, allowing them to effectively detect and

classify objects in various real-world scenarios.

3) Data preprocessing: To ensure effective model

training, data preprocessing techniques were applied to the

dataset. One of the key preprocessing steps involved resizing

the images to a standardized scale of 416x416 pixels, which is

suitable for the MobileNet SSD model input. This resizing

step helps to ensure consistency in the input size across all

images, facilitating efficient model training. Data

preprocessing serves to enhance the quality of the data and

reduce training time. In addition to resizing, other

preprocessing operations were applied to make the images

compatible with the model requirements. These operations

included scaling, cropping, and further resizing to bring all

images into a consistent format prior to model training. By

standardizing the images, the model can effectively process

and analyze them. Data augmentation techniques were also

employed to increase the diversity and veracity of the data,

thereby enabling the model to learn better. Data augmentation

involves applying various transformations to the images to

create additional training samples. These transformations

include rotation, blurring, and adjustments in contrast and

orientation. By introducing such variations, the model

becomes more robust and capable of handling different image

conditions and variations that may be encountered in real-

world scenarios. The combination of data preprocessing,

including resizing and standardizing the images, along with

data augmentation techniques, enhances the quality, variety,

and quantity of the training data. This, in turn, contributes to

the overall performance and generalization capabilities of the

object detection model during training and subsequent

inference tasks.

4) Data annotation: During this phase, the researcher

utilized the RoboFlow annotation tool to facilitate the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

655 | P a g e

www.ijacsa.thesai.org

annotation process for object detection. This tool allowed for

the drawing of bounding boxes around the objects of interest

in the images. By uploading videos into RoboFlow, images

with varying frames per second (FPS) rates were extracted.

Each image was then labeled with its corresponding class

name and bounding box. For each image, bounding boxes

were manually drawn around the instances of the objects to be

detected. The researcher carefully assigned the correct class

label from the predefined set of five classes: fire, gun, knives,

arrows, or swords. This manual annotation process ensured

accurate placement of the bounding boxes and correct

labeling, as these annotations served as the ground truth for

the subsequent model training phase. Once the dataset was

annotated, the next step involved integrating it with the

respective training frameworks. The annotations created by

the researcher were utilized as the training data for the object

detection models. These annotations, combined with the

corresponding images, formed a labeled dataset that could be

used to train the models and enable them to detect and classify

objects accurately.

a) Data Quality Check

Below is the explanation of the used methods and steps
taken to ensure data quality in object detection:

 Annotation Quality Control: Ensure accurate and
consistent annotation of bounding boxes and class
labels in the dataset. Annotators should follow clear
guidelines and have a solid understanding of the objects
of interest. This research has five object types (guns,
swords, knives, arrows, and fire) in the dataset.
Researchers have annotated each object carefully using
RoboFlow. Bounding boxes were created with extreme
care.

 Data Cleaning and Preprocessing: researchers removed
duplicate images after annotations to build a good
model. Also, we have eliminated corrupted images or
annotations that might negatively impact training.

 Balanced Class Distribution: researchers ensured that
the dataset has a balanced distribution of objects across
classes to prevent bias towards dominant classes and
improves the model's ability to detect all classes
accurately. Normal videos are recorded at 30 fps, means
30 frames per second can be extracted and in this case,
1 frame/sec was extracted. There were some images
that do not have any object, such images were deleted,
and remaining images were annotated accurately. Exact
number of samples before augmentation for all objects
is provided in Table I below:

 Data Augmentation: researchers have applied data
augmentation techniques such as random rotation
between -15 degree to + 15 degree to increase the
number of data samples.

TABLE I. CLASSES SAMPLES

Classes Train Test Valid

Arrow 1286 186 360

Gun 1362 209 379

Sword 1370 221 394

Fire 1297 197 353

Knife 1312 198 369

 Validation and Anomaly Detection: researchers have
eliminated images that have no object or object is not
clearly visible, etc.

 Consistent Image Quality: researchers have ensured that
images are of consistent quality and resolution. They
have applied resizing for all images to be 416x416.

 Real-World Scenario Simulation: researchers have
collected videos from demos, CCTV videos and social
media to collect diverse and real-world scenarios to
train a good model.

 Review Annotations for Ambiguity: researchers have
reviewed annotations that are ambiguous or challenging
for the model to detect, such as partially occluded
objects or objects in cluttered scenes.

 Class Label Consistency: researchers have verified that
class labels are consistent across annotations. With
every annotation object name was specified with that
annotation to make sure that each object has its correct
name.

 Cross-Validation: Divide the dataset into training,
validation, and test sets. Cross-validation can help
assess how well the model generalizes by training on
one subset and testing on another.

 Continuous Monitoring: Continuously monitor and
update the dataset as needed. Over time, as the model's
requirements change or new challenges arise, the
dataset should evolve accordingly.

 Use External Data Sparingly: When using external data
sources like stock images or online datasets, ensure that
they are relevant and high-quality. External data should
complement the dataset without introducing noise.

 Expert Review: researchers engaged experts‘ volunteers
to review and validate the quality of the dataset,
ensuring that the annotations and data align with the
real-world scenarios.

 Feedback Loop: Establish a feedback loop with
annotators to address questions, provide clarification on
guidelines, and continually improve annotation quality.

5) Model evaluation

a) Results of Performance Metrics Comparison

In Table II researchers indicate the difference across
different aspects. These results are achieved after training both
models on same dataset. A dataset is divided into three parts
which are: training, validation, and testing. For each class 70%,
20% and 10% images are used for train, valid test, respectively.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

656 | P a g e

www.ijacsa.thesai.org

 Train set is provided to the model during training so
model can learn pattern from this data.

 Validation set is used to evaluate model during training,
this is unseen for model but during training results are
analyzed through this unseen data. If model is not
learning correctly then we tune the parameters of model
to see if is performing good on train data and validation
data.

 Test set is totally unseen that is used after correct
training of model, it depicts the real-world testing of
model on unseen data. If a model performs as good on
testing data as it is for training, then model is
considered to be reliable for that task.

TABLE II. PERFORMANCE METRICS RESULTS

Performance Metrics MobileNet SSD YOLOv5

mAR (Mean Average

Recall)
0.9565 0.8450

mAP (Mean Average

Precision)
0.9125 0.7549

IoU (Intersection over

Union)
0.9045 0.8020

False Positive Rate 0.053 0.078

False Negative Rate 0.053 0.078

Inference Speed
~ 18ms/image

(CPU)

~ 41ms/image

(CPU)

Memory Usage 1.3 GB 7 GB

Model Size 6.6 mbs 15 mbs

Class-wise

Performance
90% 83%

F1 score 0.92 0.81

To evaluate and measure the model performance AUC
method were used. This method is used to check the ability of
the model to detect accurately among the different classes. The
higher the AUC, the better the performance of the model is.
Fig. 7 illustrates the AUCs of the MobileNet model.

Fig. 7. ROC AUC curve.

The graph in Fig. 7 provides the following results:

 Since AUC = 0.91, the model is able to distinguish
perfectly between all positive and negative class points.

The graph in Fig. 8 and 9 illustrate the results of the
confusion matrix. The confusion matrix plot shows the
predicted vs. true labels, and the values in each cell represent
the percentage of the correct and incorrect classifications.
Diagonal values are high as they show values for correct
classification and off diagonal values are incorrect
classification. As per the graphs the MobileNet model prove
that it detects the classes efficiently over the Yolov5 model.

Fig. 8. Confusion matrix for mobilenet SSD model.

Fig. 9. Confusion matrix for YOLO model.

6) Model validation: In this research, the model validation

was a meticulous process that contributed significantly to the

success of the object detection models. The researcher

dedicated time and efforts to ensure the annotations were

accurate and comprehensive, as this foundation would directly

impact the performance of the models in real-world scenarios.

This validation step is carried out by ML experts who as their

impartiality is crucial as the context of the labeling process, a

ML expert is often involved in performing this step to validate

the accuracy and quality of the labels assigned to the data [31].

There were experts in ML who volunteering to examine the

validity of the model. The feedback from the experts were that

all the dataset was accurately labeled since it was at first a

manual step that takes a lot of time and efforts.

For the validity of the model, Table II examines the success
rates, encompassing accuracy and F1-measure outcomes. The
MobileNet SSD model exhibits an impressive success score of
0.92. Moreover, it achieves an accuracy rating of 96.5%. These
findings collectively validate the superior performance of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

657 | P a g e

www.ijacsa.thesai.org

MobileNet model over the YOLO model in detecting
threatening objects.

7) Discussion: In conclusion, MobileNetSSD performs

better than YOLOv5 in the scenarios of detecting threatening

objects due to its fast inference speed, memory efficiency,

optimization for small objects, and training strategy as shown

in Table II. Below are additional reasons why MobileNet

model preferable over YOLO5 model. Certainly, here's the list

of scenarios tailored to the context of the problem, considering

the involvement of detection for five classes including: fire,

gun, knives, arrows, and swords with a dataset of 2000 images

per and a deployment on a mobile platform:

a) Mobile-Optimized Inference Speed: MobileNet

SSD's fast inference speed is crucial for mobile deployments.

It ensures that objects are detected rapidly on the mobile

device, enhancing real-time detection capabilities.

b) Memory Efficiency for Mobile Devices: Deploying

on mobile devices demands efficient memory usage.

MobileNet SSD's architecture reduces memory requirements,

allowing smooth operation on resource-constrained mobile

platforms.

c) Real-Time Threat Detection on Mobile: MobileNet

SSD's quick detection of objects like guns and knives is vital

for real-time threat detection scenarios on mobile devices,

such as identifying potential weapons in public spaces.

d) Streaming Video Analysis on Mobile: MobileNet

SSD's fast inference speed aligns well with streaming video

analysis on mobile devices. This is valuable for continuous

monitoring using mobile cameras.

e) Optimization for Small Objects on Mobile:

MobileNet SSD's specialization in detecting small objects,

like arrows or knives, is advantageous for accurate detection

on mobile screens, where these objects might appear relatively

small.

f) Responsive Fire Detection on Mobile: Fast detection

of fire instances using MobileNet SSD on mobile devices is

critical for timely response to fire incidents, aiding firefighting

efforts and safety protocols.

g) Edge Computing for Mobile: Deploying MobileNet

SSD on mobile platforms extends the benefits of edge

computing. The model's lightweight architecture is suitable for

processing data on the device, reducing latency.

h) Mobile Surveillance Solutions: MobileNet SSD's

deployment on mobile devices allows for portable surveillance

solutions. Users can leverage their mobile phones for security

monitoring, quickly detecting threats like fires or intruders.

i) Accurate Object Detection on Mobile: MobileNet

SSD's optimization for small object detection ensures accurate

identification of objects like arrows or swords on mobile

screens, where details matter.

j) Reduced Data Transmission: MobileNet SSD's on-

device detection reduces the need for transmitting sensitive

data to remote servers, maintaining user privacy and

potentially reducing data costs.

k) User-Friendly Mobile Applications: The combination

of fast detection and accuracy makes MobileNet SSD suitable

for developing user-friendly mobile apps that offer intuitive

and effective object detection functionalities.

l) Cost-Effective Mobile Deployments: MobileNet

SSD's low computational demands align with mobile

platforms, making it a cost-effective choice for deploying

object detection capabilities on mobile devices

V. RECOMMENDATIONS FOR FUTURE WORK

Several recommendations can be made for future study that
will extend the present study‘s findings. Below are some
possible recommendations for future studies:

1) Expand the scope of the study: The current study may

have focused on a specific aspect or application of the topic.

Future studies could expand the scope of the research to

include other related areas, applications, or datasets.

2) Improve the performance of the model: The current

study may have achieved good results with the model used,

but, there may be other models or techniques that could

improve performance further. Future studies could explore

alternative models or techniques for the task and compare

their performance.

3) The current study may have some limitations due to the

dataset used. Future studies could address these limitations by

using different datasets, models, or evaluation metrics.

4) Explore ethical considerations: The current study may

not have explicitly addressed the ethical implications of the

research. Future studies could explore the ethical

considerations of the research and investigate ways to ensure

that the technology is used ethically and responsibly.

ACKNOWLEDGMENT

My deepest gratitude and sincere appreciation go to all
those who have contributed to the completion of this thesis. My
supervisor, my family, and my friends. Their unwavering
support, guidance, and encouragement have been invaluable
throughout this academic journey. This thesis stands as a
testament to the collective efforts and unwavering support from
each and every one of you. Thank you for being a part of this
remarkable journey and for helping me reach this significant
milestone in my academic career. This research stands as a
testament to the collective efforts and unwavering support from
each and every one of you. Thank you for being a part of this
remarkable journey and for helping me reach this significant
milestone in my academic career.

REFERENCES

[1] Z.-Q. Zhao, P. Zheng, S. Xu, and X. Wu, ―Object detection with deep
learning: A review,‖ IEEE Trans. neural networks Learn. Syst., vol. 30,
no. 11, pp. 3212–3232, 2019.

[2] Suharto, A. P. Widodo, and E. A. Sarwoko, ―The use of mobilenet v1
for identifying various types of freshwater fish,‖ in Journal of Physics:
Conference Series, 2020, vol. 1524, no. 1, p. 12105.

[3] Z. Lin and W. Guo, ―Cotton stand counting from unmanned aerial
system imagery using mobilenet and centernet deep learning models,‖
Remote Sens., vol. 13, no. 14, p. 2822, 2021.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

658 | P a g e

www.ijacsa.thesai.org

[4] S. Ren, K. He, R. Girshick, and J. Sun, ―Faster r-cnn: Towards real-time
object detection with region proposal networks,‖ Adv. Neural Inf.
Process. Syst., vol. 28, 2015.

[5] N. Jaccard, T. W. Rogers, E. J. Morton, and L. D. Griffin, ―Detection of
concealed cars in complex cargo X-ray imagery using deep learning,‖ J.
Xray. Sci. Technol., vol. 25, no. 3, pp. 323– 339, 2017.

[6] Zeng, K. et al. (2022) ‗FPGA-based accelerator for object detection: A
comprehensive survey‘, The Journal of Supercomputing, 78(12), pp.
14096–14136. doi:10.1007/s11227-022- 04415-5.

[7] Hayat, S. et al. (2018) ‗A deep learning framework using convolutional
neural network for multi-class object recognition‘, 2018 IEEE 3rd
International Conference on Image, Vision and Computing
(ICIVC) [Preprint]. doi:10.1109/icivc.2018.8492777.

[8] Kanimozhi, S. et al. (2021) ‗Key Object Classification for action
recognition in tennis using cognitive mask RCNN‘, Proceedings of
International Conference on Data Science and Applications, pp. 121–
128. doi:10.1007/978-981-16-5348-3_9.

[9] Joshi, A.S. et al. (2020) ‗Deep Learning Framework to detect face masks
from video footage‘, 2020 12th International Conference on
Computational Intelligence and Communication Networks
(CICN) [Preprint]. doi:10.1109/cicn49253.2020.9242625.

[10] AlAjlan, S.A. and Saudagar, A.K. (2020) ‗Machine Learning Approach
for threat detection on social media posts containing Arabic
text‘, Evolutionary Intelligence, 14(2), pp. 811–822.
doi:10.1007/s12065-020-00458-w.

[11] M. F. Shakeel, N. A. Bajwa, A. M. Anwaar, A. Sohail, and A. Khan,
―Detecting driver drowsiness in real time through deep learning based
object detection,‖ in Advances in Computational Intelligence: 15th
International Work-Conference on Artificial Neural Networks, IWANN
2019, Gran Canaria, Spain, June 12-14, 2019, Proceedings, Part I 15,
2019, pp. 283–296.

[12] Ren, S. et al. (2017) ‗Faster R-CNN: Towards real-time object detection
with region proposal networks‘, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39(6), pp. 1137–1149.
doi:10.1109/tpami.2016.2577031.

[13] N. Jaccard, T. W. Rogers, E. J. Morton, and L. D. Griffin, ―Detection of
concealed cars in complex cargo X-ray imagery using deep learning,‖ J.
Xray. Sci. Technol., vol. 25, no. 3, pp. 323– 339, 2017.

[14] d S. Akcay, M. E. Kundegorski, C. G. Willcocks, and T. P. Breckon,
―Using deep convolutional neural network architectures for object
classification and detection within x-ray baggage security imagery,‖
IEEE Trans. Inf. forensics Secur., vol. 13, no. 9, pp. 2203–2215, 2018.

[15] V. Riffo and D. Mery, ―Automated detection of threat objects using
adapted implicit shape model,‖ IEEE Trans. Syst. Man, Cybern. Syst.,
vol. 46, no. 4, pp. 472–482, 2015.

[16] B. Leibe, A. Leonardis, and B. Schiele, ―Robust object detection with
interleaved categorization and segmentation,‖ Int. J. Comput. Vis., vol.
77, pp. 259–289, 2008.

[17] A. Nurhopipah and A. Harjoko, ―Motion Detection and Face
Recognition for CCTV Surveillance System,‖ IJCCS (Indonesian J.
Comput. Cybern. Syst., vol. 12, no. 2, pp. 107–118, 2018.

[18] B. Eamthanakul, M. Ketcham, and N. Chumuang, ―The traffic
congestion investigating system by image processing from CCTV
camera,‖ in 2017 International Conference on Digital Arts, Media and
Technology (ICDAMT), 2017, pp. 240–245.

[19] N. Bordoloi, A. K. Talukdar, and K. K. Sarma, ―Suspicious Activity
Detection from Videos using YOLOv3,‖ in 2020 IEEE 17th India
Council International Conference (INDICON), 2020, pp. 1–5.

[20] A., A.B., P., P. and S., V. (2019) ‗Detection of suspicious human
activity based on CNN-DBNN algorithm for Video Surveillance
Applications‘, 2019 Innovations in Power and Advanced Computing
Technologies (i-PACT) [Preprint]. doi:10.1109/i-
pact44901.2019.8960085.

[21] A. Younis, L. Shixin, S. Jn, and Z. Hai, ―Real-time object detection
using pre-trained deep learning models MobileNet-SSD,‖ in Proceedings
of 2020 the 6th international conference on computing and data
engineering, 2020, pp. 44–48.

[22] Kumar, C.R. (2012) Research methodology. New Delhi: APH
Publishing Corporation. page 366.

[23] Murthy, J.S. et al. (2022) ‗ObjectDetect: A real-time object detection
framework for advanced driver assistant systems using yolov5‘,
Wireless Communications and Mobile Computing, 2022, pp. 1–10.
doi:10.1155/2022/9444360.

[24] D. Biswas, H. Su, C. Wang, A. Stevanovic, and W. Wang, ―An
automatic traffic density estimation using Single Shot Detection (SSD)
and MobileNet-SSD,‖ Phys. Chem. Earth, Parts A/B/C, vol. 110, pp.
176–184, 2019.

[25] Sanjay Kumar, K.K. et al. (2020) ‗A mobile-based framework for
detecting objects using SSD-mobilenet in indoor environment‘,
Intelligence in Big Data Technologies—Beyond the Hype, pp. 65–76.
doi:10.1007/978-981-15-5285-4_6.

[26] Atik et al., (2022). Comparison of YOLO Versions for Object Detection
from Aerial Images, International Journal of Environment and
Geoinformatics (IJEGEO), 9(2):087-093 doi. 10.30897/ijegeo.1010741

[27] Diwan, T., Anirudh, G. and Tembhurne, J.V. (2022) ‗Object detection
using yolo: Challenges, architectural successors, datasets and
applications‘, Multimedia Tools and Applications, 82(6), pp. 9243–
9275. doi:10.1007/s11042-022-13644-y.

[28] Jiang, P. et al. (2022) ‗A review of Yolo algorithm developments‘,
Procedia Computer Science, 199, pp. 1066–1073.
doi:10.1016/j.procs.2022.01.135.

[29] Yar, H. et al. (2023) ‗A modified Yolov5 architecture for efficient fire
detection in smart cities‘, Expert Systems with Applications, 231, p.
120465. doi:10.1016/j.eswa.2023.120465.

[30] Thuan, D. (2021) Evolution of YOLO Algorithm and Yolov5: The
State-Of- The-Art Object Detection Algorithm.

[31] Liu, Wei & Anguelov, Dragomir & Erhan, Dumitru & Szegedy,
Christian & Reed, Scott & Fu, Cheng-Yang & Berg, Alexander. (2016).
SSD: Single Shot MultiBox Detector. 9905. 21-37. 10.1007/978-3-319-
46448-0_2.

[32] Khurana, Y., 2019. Difference between Model Validation and Model
Evaluation? [WWW Document]. Medium. URL
https://medium.com/yogesh-khuranas- blogs/difference- between-model-
validation-and-model-evaluation- 1a931d908240

[33] Narkhede, S., 2021a. Understanding Confusion Matrix [WWW
Document]. Medium. URL https://towardsdatascience.com/
understanding-confusion-matrix- a9ad42dcfd62

[34] Rezatofighi, H. et al. (2019) ‗Generalized intersection over union: A
metric and a loss for bounding box regression‘, 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
[Preprint]. doi:10.1109/cvpr.2019.00075.

