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Abstract—Threat detection is an important area of research, 

particularly in security and surveillance applications. The 

research is focused on developing a threat detection system using 

DL techniques. The system aims to detect potential threats in 

real-time video streams, enabling early identification and timely 

response to potential security risks. The study uses two state-of-

the-art DL models, MobileNet and YOLOv5, to train the object 

detection system. The TensorFlow object detection API is 

employed for training and evaluating the models. The results of 

the study indicate that MobileNet outperforms YOLOv5 in terms 

of detection accuracy, speed, and overall performance. The 

justification for selecting MobileNet over YOLOv5 is based on 

several factors. First, MobileNet has a lightweight architecture, 

making it suitable for real-time applications where processing 

speed is critical. Second, it is efficient in terms of memory usage, 

enabling it to operate effectively on low-resource devices. Third, 

MobileNet provides high accuracy in detecting objects of 

different sizes and shapes. The study evaluated the performance 

of the threat detection system using various evaluation metrics, 

including mean average recall (mAR), mean average precision 

(mAP) and Intersection over union (IoU). The results show that 

the system achieved high accuracy in detecting threats, with an 

overall mAP (mean average precision) of 0.9125, mAR (mean 

average recall) of 0.9565 and Intersection over union (IoU) of 

0.9045. In this study, researchers present a highly efficient and 

successful method for identifying threats through the utilization 

of deep learning methods. The research demonstrates the 

superiority of MobileNet over YOLOv5 in terms of performance, 

and the results obtained validate the effectiveness of the proposed 

system in detecting potential threats in real-time video streams. 
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I. INTRODUCTION 

Nowadays, technologies are experiencing unprecedented 
growth and advancement, particularly in the field of Data 
Sciences (DS). DS encompasses a wide range of disciplines, 
including Artificial Intelligence (AI), Machine Learning (ML), 
and Deep Learning (DL). AI involves the external creation of 
intelligence for various systems, enabling them to make 
decisions based on insights derived from available data. ML 
empowers machines to process data and generate knowledge 
and intelligence by integrating applied statistics and 
optimization theory. DL is a subfield of ML that specifically 
concentrates on constructing, training, and deploying extensive 
and intricate neural networks [1]. By leveraging data in 
parallel, these neural networks carry out their operations with 
the aim of accomplishing their assigned tasks. To develop an 
intelligent system for object detection, it is necessary to 

identify and categorize moving objects. Object detection 
entails the ability of computers and software systems to 
identify the presence and location of various objects within an 
image, such as vehicles, animals, humans, and more. Deep 
convolutional neural networks have gained significant 
prominence in tasks like image classification, object 
classification, localization, and object detection [2]. DL 
technologies have been increasingly applied in image 
classification, target tracking, object detection, image 
segmentation. These technologies have helped in different 
social life events and cases. The focus in this research is to use 
these technologies to raise safety and security. Considering the 
escalating global crime and terrorism rates, the demand for 
automated video surveillance has surged. The combination of 
surveillance and detection has become critically significant. 
While human detection and tracking are desirable, the 
unpredictable nature of human movement presents significant 
challenges in effectively tracking and categorizing suspicious 
activities. The focus of this research is to identify and detect 
potentially threatening objects captured by Close Circuit 
Television Cameras (CCTV) [3]. This idea comes out of the 
great need for detecting threatening objects to help evaluate 
situations or prevent any further crimes. Finally, the idea 
behind this research is extracted and built based on the 
previous studies in the field of DL techniques. Also, among the 
search between the previous studies, there was no use of the 
MobileNet model in the field of recognizing and detecting 
objects in videos especially threatening objects. 

A. Object Detecting Technique 

Object detection is a computer vision technique that 
empowers software systems to identify, locate, and track 
objects within images or videos. One of its notable features is 
the ability to classify objects (such as people, tables, chairs, 
etc.) and precisely determine their coordinates within the 
image. This is achieved by drawing a bounding box around the 
object, although the accuracy of the bounding box may vary. 
The effectiveness of the detection algorithm is measured by its 
capacity to accurately locate objects within the image. An 
example of object detection is facing detection. 

Object detection algorithms can either be pre-trained or 
trained from scratch, with pre-trained weights from existing 
models often utilized and fine-tuned to suit specific 
requirements or use cases. Object detection is a crucial area of 
research in computer vision and finds widespread applications 
in various fields, including surveillance, robotics, autonomous 
vehicles, and image and video search engines. The objective of 
object detection is to enable machines to comprehend and 
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interpret the visual world in a similar manner to humans. Deep 
learning techniques, such as convolutional neural networks 
(CNNs), are commonly employed in object detection 
algorithms to analyze images or videos and identify objects 
within them. These algorithms are trained on large datasets 
comprising labeled images, where the object's location and 
class are annotated. The training process involves adjusting the 
weights and biases of the neural network to minimize the error 
between predicted and actual object locations and classes. 
Once trained, object detection algorithms can be applied to 
detect objects in new images or videos. The algorithm typically 
outputs a set of bounding boxes corresponding to the detected 
objects, accompanied by their class labels and confidence 
scores. Post-processing techniques can be further employed to 
refine the bounding boxes and enhance the accuracy of the 
object detection process. 

In recent years, there has been significant progress in object 
detection, driven by advances in DL and the availability of 
large datasets. State-of-the-art object detection algorithms can 
achieve high accuracy and real-time performance on a wide 
range of object types and scenarios. In addition to the 
traditional object detection methods, there are also several 
advanced techniques that have emerged in recent years. Below 
are a few examples: 

1) One-shot object detection: Traditional object detection 

algorithms require a large amount of labeled data during the 

training phase. One-shot object detection, on the other hand, is 

a technique that can detect objects with only one or a few 

examples of each object class during training. 

2) Instance segmentation: Instance segmentation is an 

extension of object detection that not only detects the objects 

in an image but also segments each object instance from the 

background. This technique is useful in scenarios 

where precise object boundariesare necessary, such as in 

medical imaging or autonomous driving. 

3) 3D object detection: While traditional object detection 

works on 2D images, 3D object detection can detect objects in 

3D space. This is important for applications such as robotics 

and autonomous vehicles, where the detection of objects in 3D 

is necessary for navigation and obstacle avoidance. 

4) Few-shot object detection: Similar to one-shot object 

detection, few-shot object detection is a technique that can 

detect objects with only a few examples of each object class 

during training. However, few-shot object detection is more 

challenging than one-shot object detection as it requires the 

algorithm to generalize to unseen object classes. 

B. Object Detecting from Image and Video 

Object detection is an important and prominent area of 
research that combines deep learning (DL), computer vision, 
and image processing. Its primary objective is to identify 
specific semantic objects, such as people or animals, in digital 
images and videos. Within the field of object detection, there 
are well-established areas of study, such as pedestrian detection 
and face detection. However, object detection has broader 
applications in various DL fields, including image restoration 
and video surveillance [4]. To differentiate between different 

objects, object detection employs a multi-label classifier, 
although it does not determine the specific identity of each 
object. This is where Image Localization comes into play, as it 
precisely determines the object's location within the image by 
providing a bounding box around it. Image Localization 
technology has practical applications in image retrieval, with 
facial detection being a widely used example. Additionally, it 
can assist in pedestrian detection at traffic lights to enhance 
traffic flow and aid visually impaired individuals. It also 
facilitates Sign Language Detection (SLD) to support 
communication with the deaf and mute community. The 
process of object detection involves providing an image or 
video frame, using algorithm-based models to search for 
targeted objects, and assigning specific categories to each 
identified target [5]. Object detection algorithms commonly 
employ machine learning (ML) and DL techniques to achieve 
meaningful results. Furthermore, the ultimate goal of object 
detection models is to emulate the rapid comprehension and 
recognition of objects by the human brain when observing 
images or videos. Training DL algorithms and models to match 
the intelligence of the human brain using computer technology 
is a challenging yet crucial task, particularly in the context of 
detecting potentially threatening objects. 

C. Problem Statement 

The research focuses on the detection and recognition of 
objects using ML and DL techniques, which is a prominent 
area of study for DL enthusiasts. The aim is to enable machines 
to learn autonomously by simulating the functioning of 
neurons in the human brain. While previous works have 
explored object detection for various social issues, there is a 
lack of research specifically addressing the detection of 
threatening objects in videos and evaluating the MobileNet 
model for this purpose. This research aims to enhance 
community safety and security by improving the detection of 
threatening objects, as incidents and accidents often result from 
inadequate security measures or delayed responses to 
immediate threats. The research seeks to answer two main 
questions: is there an efficient way to detect threats from live 
videos using DL algorithms, and how accurate and efficient is 
the MobileNet model in detecting objects in live videos? The 
objectives of the study are to detect threats in live videos to 
prevent the criminal use of threatening objects and to assess the 
efficiency and accuracy of the MobileNet model in detecting 
threatening objects. The research utilizes DL techniques to 
identify and detect threats in live video clips or surveillance 
videos. The idea for this research originated from the urgent 
need for video analysis on the internet, and it builds upon a 
review of previous studies in DL and its techniques. The 
researchers identified a gap in utilizing the MobileNet model 
for identifying and detecting potential shapes and threats in 
videos. The MobileNet model will be employed in this 
research to detect threatening objects, and the results will be 
analyzed in terms of accuracy and quality. 

II. LITERATURE REVIEW 

The DL fields are full and rich by the research in this 
domain. The related work to this contribution was different in 
the model that they used, or they study the same model to 
different dataset, or they wanted to detect images instead of 
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video. There are very limited kinds of literature that have 
adopted detecting threats by using DL or ML algorithms. This 
section presents most of the notable research worked on DL, 
ML, and object detection. 

A. Object Detection Algorithms 

Object Detection is a very trending domain among 
researchers. It was thoroughly studied from the beginning of 
2010 until the current time [6]. That shows how much this 
domain is important and rich. Fig. 1 shows the number of 
publications with the keywords of ―Object Detection‖ during 
the past 10 years. 

 

Fig. 1. The growing numbers of publications in object detection algorithms. 

Object detection plays a crucial role in computer vision 
applications, enabling the automatic identification and 
localization of objects within images or videos. The researcher 
Shaukat Hayat. el at [7], studied a DL framework for object 
recognition purposes. The proposed model was further tuned, 
and the recognition performance was improved. They use nine 
different object classes taken from wide varied image dataset 
caltech101 and deploy five layers CNN model. They compared 
the proposed model's performance with different classical bag-
of-words (BOW) approaches trained on a novel. This algorithm 
achieved an accuracy level of 90.12% is much better than 
different classical BOW approaches. While Kanimozhi S. el at 
[8], tried to detect and track the object in the sports field to 
make the computer learn Deeply, which is none other than the 
application of DL. The proposed method increases the 
accuracy level in identifying real-time household objects. 
Aniruddha Srinivas Joshi, el at [9], adopted the idea of 
detecting face masks from video footage. A highly effective 
face detection model is applied for obtaining facial images and 
cues. A distinct facial classifier is built using DL to determine 
the presence of a face mask in the facial images detected. The 
proposed method has shown its good effectiveness in 
identifying facial masks by achieving high precision, recall, 
and accuracy. As for using ML algorithms to detect threats 
included in the social media post, Shatha Alajlan. el at [10] has 
published research in that domain. She utilized the CNN model 
on the TensorFlow platform to classify Instagram content 
(images and Arabic comments) for threat detection. The results 
of this research showed that the accuracy of the developed 
model is 96% for image classification and 99% for comment 
classification. 

1) Using object detection algorithms: Muhammad 

Shakeel. el at [11] have developed a passenger security 

screening system that employs DL techniques to detect 

potential security threats by rotating the image of a person's 

body. However, this method has limitations in identifying the 

specific type of threat and precisely locating its position 

within the body. Shaoqing Ren. el at [12] have conducted a 

study on object classification and detection performance, 

achieving a remarkable 5-7 frame rate per second and 73.2% 

mean average precision (mAP). Their approach involves 

categorizing objects and identifying their precise location, 

allowing for the development of an efficient security screening 

algorithm that accurately detects threats at specific locations 

using an enhanced faster R-CNN model. A comprehensive 

analysis of cargo X-ray image analysis automation was carried 

out by Jaccard, Nicolas et al. [13]. The review emphasized the 

importance of employing image pre-processing techniques, 

including image quality enhancement, manipulation, material 

discrimination, and segmentation. These techniques play a 

crucial role in improving the accuracy of automated image 

understanding algorithms and rectifying errors that may arise 

during image acquisition.  

Moreover, Jaccard's paper proposes an automated threat 
detection method to further improve the accuracy in the 
analysis of cargo X-ray images. Nicolas Jaccard el at. [13] have 
developed a CNN model specifically designed for detecting 
threats in X-ray images. Their model was trained using an 
augmented dataset that included real threat images, resulting in 
a high detection rate of 90% and a low false alarm rate of only 
0.8%. The effectiveness of image manipulation and quality 
improvement techniques in enhancing the proposed solution is 
highlighted in their study. In their study, Akcay, Samet et al. 
[14] investigated the potential of convolutional neural networks 
(CNNs) for object classification in X-ray baggage images. 
Their research focused on utilizing CNNs to improve the 
accuracy of object classification in this domain. 

On the other hand, Riffo, Vladimir and Flores Sebastian 
[15], proposed an innovative automated approach for object 
detection in X-ray images, specifically for baggage screening 
purposes. Their solution involved the utilization of an adapted 
implicit shape model (ASIM), an enhanced version of the 
implicit shape model introduced in the research conducted by 
Leibe, Bastian et al. [16]. The ASIM approach employed SIFT 
descriptors to describe objects using multiple X-ray images 
from different perspectives. The visual vocabulary of object 
parts was then used to characterize the object, and targets were 
detected by searching for similar visual words and spatial 
distributions. Although the object detector incorporated pose 
estimation and Q-learning computer vision techniques, it may 
not be ideal for region-based threat detection. 

Furthermore, Nurhopipah, Ade et al. [17] conducted a 
study that delved into various aspects of motion detection, face 
detection, data training, and face identification. Their research 
aimed to explore the complexities associated with these areas 
in the context of threat detection. Their utilization of the 
Accumulative Differences Images (ADI) approach for motion 
segmentation proved successful, with motion detection 
reaching a high success rate of 92.655%. The Haar cascade 
classifier was employed for face detection, with a success rate 
of 76%, and face identification reached 60%. Meanwhile, 
Busarin Eamthanakul. el at [18] implemented the background 
subtraction method and median filter to compute data and 
analyze traffic conditions. Their system was able to detect the 
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number of objects or cars on the road, providing useful data for 
traffic management.  

Nipunjita Bordoloi. el at [19] developed a security system 
that effectively tracks object movement and detects anomaly 
motion in real-time. Background subtraction was utilized to 
track objects, and the system achieved success in detecting 
suspicious activity. Alavudeen Basha. el at [20] also delved 
into suspicious activity detection, using a CNN-DBNN 
algorithm to detect human activity. The technique of 
foundation subtraction was used for human detection, with 
larger bounding boxes to enclose individuals. A Discriminative 
Deep Belief Network (DDBN) was implemented for activity 
classification, with an impressive accuracy rate of 90%. The 
research in computer vision systems continues to advance, 
providing new and innovative ways to detect and analyze data. 

2) Using mobilenet model: MobileNet models offer an 

efficient solution for on-device intelligence across various 

recognition tasks. Developed specifically for TensorFlow, 

MobileNets are a family of computer vision models designed 

with a mobile-first approach. These models prioritize accuracy 

while considering the limited resources available for on-

device or embedded applications. MobileNets fall under the 

category of lightweight deep convolutional neural networks, 

significantly smaller in size and faster in performance 

compared to many other popular models. Their small 

footprint, low latency, and low power consumption make them 

well-suited to meet the resource constraints of diverse use 

cases. MobileNet models can be leveraged for classification, 

detection, embeddings, and segmentation tasks, providing a 

versatile framework for on-device intelligent applications. 

3) The Gap on the Literatures: This research aims to 

complete what other researchers have done by using DL 

algorithms and the MobileNet model to detect objects in 

images and videos. All the studied and reviewed literature 

were specifying different domain of study or different type of 

purposes. However, this research focus on Using the 

MobileNet model to detect the threatening objects on videos. 

According to previous studies, various researchers have 

reported high AP values for this model's ability to detect 

different classes such as cars, persons, and chairs. Some 

research findings suggest that the AP reaches as high as 

99.76%, while others claim to achieve a slightly lower value 

of 97.76% [21]. Researchers want to approve if the same 

percentage would be detected with the same purpose they aim 

to study. This action has not been previously investigated by 

researchers in the field of object detection by using DL 

algorithms. 

III. METHODOLOGY 

This research aims to investigate the effectiveness of the 
MobileNet model in detecting threatening objects. Object 
detections a crucial task in computer vision, and it has 
numerous applications in various domains, such as security, 
surveillance, and autonomous driving. The research is focused 
on detecting threatening objects in public places, and the 
results could have significant implications for improving public 

safety as its none of the research objectives. The research 
approach adopted is a qualitative exploratory approach, which 
is a suitable method for gaining an in-depth understanding of a 
phenomenon. 

A. Research Design 

A research design serves as a structured framework or 
strategy for collecting, measuring, and analyzing data with the 
purpose of addressing specific research inquiries [22]. Fig. 2 
shows the research scenario that the researcher follows to 
answer the research question and fulfill its objectives. 

 

Fig. 2. Research scenario. 

B. Data Collection 

The dataset used in this study was curated for the purposes 
of the study. It was generated and collected by the researcher 
from various sources. It consists of five classes of objects that 
are considered potentially dangerous or threatening, including: 
fire, guns, knives, arrows, and swords. These objects were 
chosen due to their prevalence in public safety incidents and 
their potential to cause harm. To obtain the data, various 
sources were utilized, including YouTube videos that 
contained CCTV footage, educational videos for learning 
fighting skills, and demo videos. The videos were processed by 
extracting frames at a rate of 1 frame per second (1 fps) to 
capture the necessary images for the dataset. The use of CCTV 
footage is particularly useful as it allows for the collection of 
authentic data from public places where security cameras are 
commonly used. To annotate the dataset, the RoboFlow tool 
was utilized, which is a popular image annotation tool used for 
object detection tasks. Annotations provide additional 
information about the images, indicating the location and class 
of the object within the image. These annotations are essential 
for training ML models to accurately detect objects. To 
increase the diversity of the dataset, augmentations such as 
rotation and contrast difference were applied to the images. 
These augmentations help to create variations of the images, 
which can improve the performance of ML models by 
exposing them to a wider range of data. The purpose behind 
curing such dataset is essential for training ML models to 
accurately detect these objects within the five mentioned 
classes and improve public safety. 
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C. Data Preparation 

Object detection from images is a fundamental task 
in DL that requires a significant amount of labeled data for 
training. The MobileNet SSD model is a popular DL model for 
object detection, but it requires a large, labeled dataset for 
effective training. In this study, a sufficient amount of data was 
obtained by collecting threatening videos and CCTV footage 
from online resources such as YouTube. The videos collected 
for this study mainly contained real-life activities, such 
as ATM robberies and police operations, to ensure that the 
dataset reflects real-world scenarios. Additionally, training and 
rehearsal-based videos were included to increase the number of 
images for each object in the dataset. This was an important 
step because having a larger dataset with a balanced 
distribution of classes can improve the performance of the 
model. To create the labeled dataset, frames were extracted 
from the videos at a rate of 30 frames per second (30 FPS) 
using the RoboFlow tool. Each frame was manually labeled for 
the presence of five different objects, including guns, knives, 
swords, arrows, and fire. Manual labeling is a crucial step in 
creating a high-quality labeled dataset because it ensures that 
the labels are accurate and consistent. The use of real-life video 
footage and manual labeling ensures that the dataset is of high 
quality and accurately reflects the threatening objects. This can 
improve the accuracy and reliability of the model when 
detecting threatening objects in real-world scenarios. 

1) Data cleaning: After extracting all the images from 

videos uninformative and vague frames are discarded for data 

cleaning and maintaining data quality. Only frames with clear 

object visibility are remained after cleaning that are labelled 

manually for five object classes. Data classes are sampled in 

such a way that create a balanced number of images per object 

in training, validation, and testing. 

D. Data Annotation 

In this phase, the researcher used the RoboFlow annotation 
tool that enabled drawing bounding boxes around the objects of 
interest. RoboFlow enables the uploading of videos and 
extraction of images with varying FPS rates. Each image is 
labeled for its particular class name and bounding box. The 
RoboFlow tool allows saving the bounding box values in 
different formats, as required by the model. In this case, the 
labeling is saved as a CSV file to comply with the MobileNet 
SSD file format. The minimum and maximum values for the 
bounding box x and y sides are saved to draw the bounding 
box rectangle. The RoboFlow interface for image labeling is 
depicted in the Fig. 3. When labeling the images using the 
RoboFlow tool, a bounding box is drawn around the object of 
interest in the image. The bounding box is represented by a 
rectangular box with four values: the x-coordinate and y-
coordinate of the top-left corner of the box, and the width and 
height of the box. To save the bounding box values in the CSV 
file, the RoboFlow tool records the minimum and maximum 
values for the x and y coordinates of the top-left corner of the 
box, as well as the width and height of the box. These values 
are saved in separate columns in the CSV file, along with the 
class name of the object in the image. For example, there is an 
image containing a gun, and the bounding box around the gun 
has a top-left corner coordinate of (100, 150), a width of 50 

pixels, and a height of 100 pixels. The RoboFlow tool would 
save the following values in the CSV file for this object as 
follow:  

 Class Name: Gun  

 Minimum x-coordinate: 100  

 Maximum x-coordinate: 150  

 Minimum y-coordinate: 150  

 Maximum y-coordinate: 250 

To start the annotation step, the researcher opened each 
image using the chosen annotation tool. For every image, the 
researcher carefully drew bounding boxes around the instances 
of the objects that aimed to be detected. For each bounding 
box, the researcher assigned the correct class label from the 
five mentioned classes which are: fire, gun, knives, arrows, or 
swords. This step was done manually to ensure accurate 
placements and labels, as these annotations would serve as the 
ground truth for the models training phase. With the annotated 
dataset in hand, the next step was to integrate it with the 
respective training frameworks. The researcher utilized the 
annotations they had created to train the object detection 
models. 

 

Fig. 3. RoboFlow interface. 

1) Dataset quality check: Ensuring data quality is a 

critical step before building models for object detection. Poor 

data quality can lead to inaccurate and unreliable models. 

Below the used methods taken to ensure data quality in object 

detection: 

 Annotation Quality Control 

 Data Cleaning and Preprocessing 

 Balanced Class Distribution 

 Data Augmentation 

 Validation and Anomaly Detection 

 Consistent Image Quality 

 Real-World Scenario Simulation 

 Review Annotations for Ambiguity 

 Class Label Consistency 

 Cross-Validation 

 Continuous Monitoring 

 Use External Data Sparingly 
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 Expert Review 

 Feedback Loop 

Once reached the confident in the quality of the 
annotations, we proceeded to export the annotated dataset from 
RoboFlow. The platform typically provided options to export 
the data in formats that were compatible with various deep 
learning frameworks. Given this scenario, the researchers 
ensured that the exported format aligned with the chosen model 
architecture, whether it was YOLO or MobileNet SSD. 

E. Data preparation and Augmentation 

Data preprocessing is applied in order to make it suitable 
for effective model training. Images are resized to one scale 
416x416 for MobileNet SSD model. Data preprocessing 
enhances data quality and decreases training time. Images are 
scaled, cropped, and resized to make them in same format 
before model training. Data augmentation is also applied to 
increase veracity of data so model can learn better with more 
data as addressed before. Images are rotated, blurred, and 
adjusted contrast and orientation for data augmentation 
purposes. 

F. Data Limitations and Issues 

DL models require a large amount of data to train 
effectively, and the more data feed into the model, the better its 
performance would be. In this study, the researchers have 
around 2000 images for each object after augmentations. 
However, the number of images per sample is relatively low, 
and the diversity of real scenarios is limited, which are some of 
the limitations of this dataset. To improve the performance of 
the model, more data can be collected from real-time scenarios. 
Furthermore, due to privacy concerns and issues, many 
establishments and markets are hesitant to share their camera 
recordings. Therefore, more collaboration and support are 
needed to collect a diverse range of datasets to improve the 
model's performance and deliverables. 

G. Model Building 

This research focus on two DL models. The YOLOv5 (You 
Only Look Once version five) model, which has undergone 
thorough scrutiny by researchers, stands out as the initial model 
that has gained recognition for its effectiveness in object 
detection. This model showcases highly promising accuracy 
outcomes based on two key metrics: mAP (mean average 
precision) and FPS (frames per second). In a study conducted 
by S. Murthy et al. [23], the application of YOLOv5 was 
investigated, and it demonstrated superior speed and a 95% 
accuracy rate compared to other object detection algorithms 
examined in the comparative analysis. Additionally, it achieved 
an average precision ranging between 67 and 70, along with a 
frames per second rate ranging between 65 and 124. A 
thorough comparison of the YOLO model versions in the 
below sections. In reference to the Debojit Biswas et al. work 
that has been done [24] MobileNet SSD model achieved 
92.97% average detection accuracy in the experiment. Sanjay 
Kumar et al. confirm in his work that the SSD on MobileNet 
has the highest mAP among the models targeted for real-time 
processing [25]. That was promising to start the investigation 
upon this case. 

1) YOLOv1: First object detection network that combines 

the problem of identifying class labels and determining 

bounding boxes for a set amount of classes, making it a one-

stage detector (rather than two-stage detectors which first 

detects the regions of interest, and then classify that region as 

a specific class based on given input during training). This is 

possible by fully connecting the two important steps of 

bounding box prediction and classification of labels to an end-

to-end differentiable network [26]. 

2) YOLOv2: From it‘s iteration of version one of YOLO, 

works have been done too dramatically improve the 

performance of the accuracy through the addition of 

BatchNorm, improved resolutions, and the use of anchor 

boxes [27]. 

3) YOLOv3: Improvements made from the previous 

model included the use of more connections in its backbone 

network layers as well as adding a new network that aids in 

the model‘s ability to identify smaller objects better (with the 

use of feature pyramid network (FPN) that allows the model to 

learn objects of different sizes simultaneously). Added an 

objectness score for the model‘s bounding box predictions, 

which helps determine the bounding box to take for all the 

bounding boxes overlapping a specific ground truth object 

within an image [26][27]. 

4) YOLOv4: Additional improvements were introduced 

into the YOLO series in YOLOv4 through the introduction of: 

 Feature Aggregation which combines the features 
extracted from previous layers 

 Bag of Freebies - several methodologies and functions 
added to improve its performance without affecting the 
model‘s inference during production. The main 
additions are related to data augmentation such as 
rotation, flip, crop, hue, saturation, mosaic, MixUp, 
Blur, etc. 

 Self-Adversarial Training which allows the model to 
find the region of the image that its network relies most 
on and subsequently editing the image to remove this 
reliance to enable generalisation of the model. 

 CIoU loss as the loss function which not only observes 
the overlap of bounding boxes with the ground truth 
(which is already done for IoU), but also how close the 
box was to the ground truth box in terms of the pixel 
distances within the image, which is an additional part 
of the loss function that is trained so that it enables the 
network to pull the predicted bounding box closer to the 
ground truth box. 

 Using Mish activation as the activation function instead 
of ReLU which improves the performance of the model 
due to its ability to push the features created by the 
model towards its optimal [27][28]. 

5) YOLOv5: YOLOv5 represents the most recent iteration 

of the YOLO (You Only Look Once) series of object detection 

models, originally introduced in 2016. Developed by 

Ultralytics, a reputable computer vision research company, 
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YOLOv5 offers notable advancements in both accuracy and 

speed when compared to its predecessors. It attains state-of-

the-art performance across multiple benchmark datasets while 

preserving real-time inference speeds on modern GPUs. This 

algorithm employs a single convolutional neural network 

(CNN) to predict object classes and bounding boxes by 

dividing the input image into a grid and making predictions 

based on each grid cell. This approach enables faster inference 

times and improved accuracy compared to region-based CNNs 

used in other object detection models. YOLOv5 has gained 

significant traction within the computer vision community and 

finds applications in various domains, including autonomous 

vehicles, robotics, security, and more [26]. YOLOv5 contains 

three layers as an object detection model: Backbone as the 

feature extractor, the Neck which combines and mixes 

different features extracted from the Backbone, and the Head 

which takes the outputs from the Neck and predicts bounding 

boxes and classification. The Backbone that mentioned in 

Fig. 4 was CSPDarknet. CSPDarknet is a neural network that 

contains a set of convolutional layers which are useful for 

consolidating images and extracting useful features which can 

be learnt from the model. As shown in Fig. 4, the Backbone 

consists of a set of BottleNeckCSP (Cross Stage Partial) 

blocks and a Spatial Pyramid Pooling (SPP) block. The 

bottleneck part of BottleNeckCSP helps reduce the number of 

feature maps, which in turn reduces the model size and 

computation. The cross stage partial part of BottleNeckCSP 

also aids in reducing the model size and computation required 

by reducing the amount of gradient information during 

optimization within the network while maintaining good 

accuracy for the model. It does this by splitting the base layer 

into two parts (one as the base layer, the other is partitioned 

into multiple blocks) and merging them back together again 

through a cross-stage hierarchy strategy. The SPP block 

performs pooling of the features from the previous CSP block 

to generate fixed-length outputs. This avoids the need to do 

any cropping, warping or preprocessing at the start of the 

input to the neck and is done through pooling which is an 

information aggregation function [30]. 

After the Backbone, the feature mixing and combining 
model used was Path Aggregation Network (PANet). PANet is 
a network architecture with a bottoms-up approach, where 
there is a feature hierarchy which aggregates and passes the 
information of multiple convolutional layers at different stages, 
enhancing the signals between lower layers and upper layers. 
Linking different feature levels together to allow the model to 
accurately detect both larger and small objects when 
performing object detection.  

As shown in Fig. 4, there are several concatenation blocks 
which combine the lower and higher-level features together to 
be fed into the final head layers. The final layer is a set of 1x1 
convolutional layers that takes in the input of the Neck 
(PANet) to pass into the regression that detects the bounding 
boxes and classifies them, and these are then used for training 
and inference/prediction [28]. During training, YOLOv5 will 
see the images inputted from the training dataset, use the 

Backbone (CSPDarknet) to extract out relevant features, 
thereafter, utilizing the PANet to concatenate lower and higher-
level features together, and these are finally passed to output 
the bounding boxes and classes for different region of the 
image as predictions. This will be trained using the training 
dataset and can be used for inference after enough training is 
done for the model [29]. 

 

Fig. 4. YOLOv5 model architecture. 

6) MobileNet Single Shot MultiBox Detector (SSD): The 

MobileNet Single Shot MultiBox Detector (SSD) is an object 

detection algorithm that combines the Single Shot Detector 

(SSD) framework with the MobileNet architecture. This 

algorithm was developed by Wei Liu et al. in 2016 [31]. 

MobileNet is specifically designed for mobile and embedded 

devices, offering a lightweight convolutional neural network 

architecture that utilizes depth-wise separable convolutions. 

These convolutions help reduce computational requirements 

while maintaining high accuracy. On the other hand, the SSD 

framework is a popular approach for object detection that 

utilizes a single convolutional neural network to predict object 

classes and bounding boxes [31]. MobileNet SSD enables 

real-time object detection on devices with limited 

computational resources, such as mobile devices and robotics. 

It is particularly beneficial for applications that require real-

time object detection, including autonomous vehicles and 

surveillance. Despite its efficiency, MobileNet SSD achieves 

high accuracy on benchmark datasets like PASCAL VOC and 

COCO, all while maintaining fast inference times. As a result, 

it has gained significant adoption within the computer vision 

community and finds applications in various domains such as 

security, surveillance, and robotics [15][24]. MobileNet SSD 

comprises two key layers: a backbone model used to extract 

relevant features (in this case, VGG-16 was employed as the 

feature extractor), and the detector head, which outputs crucial 

information for object detection. 

The VGG-16 model, proposed by researchers at the 
University of Oxford in 2014, serves as the backbone for many 
computer vision tasks. It is a convolutional neural network 
architecture comprising 16 layers, including 13 convolutional 
layers, 5 max pooling layers, and 3 fully connected layers. The 
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primary purpose of the convolutional layers is to extract 
meaningful features from the input image, enabling the model 
to capture relevant patterns and structures. On the other hand, 
the pooling layers play a crucial role in reducing the spatial 
dimensionality of the extracted features. By down sampling the 
feature maps, these pooling layers enhance computational 
efficiency during subsequent processing stages. Together, the 
combination of convolutional and pooling layers in the VGG-
16 architecture enables effective feature extraction and 
representation for a wide range of computer vision 
applications. Finally, the fully connected layers learn to 
classify the extracted features into their corresponding 
categories. The detector head consists of several convolutional 
blocks that link to the detection block, as well as a post-
processing step called Non-Maximum Suppression (NMS) as 
shown in Fig. 5. The purpose of the convolutional blocks that 
are linked at different levels to the detection head is to extract 
features at multiple levels, which enables the model to detect 
both small and large objects by extracting features for them. 
Subsequently, the NMS block will take the bounding boxes 
that are outputted from the model and pick out the bounding 
box that is closest to the ground truth bounding box using 
Intersection-over-Union (IoU) as the metric. NMS is only used 
during training. As an overview for the methodology of 
MobileNet SSD, the model will be fed the images from the 
training dataset, which goes through a feature extraction 
process in VGG-16 as the backbone. These feature extractors 
are then further convoluted, and features at different levels of 
convolutions are passed to the detection head for bounding box 
and classification prediction. For training, there is an additional 
process of NMS which choose the most prominent bounding 
box for each ground truth box. The pretrained SSD MobileNet 
v1 FPN with dimension of 640x640 were used for detecting the 
objects. it is an object detection model based on a single-shot 
detection (SSD) architecture with a feature pyramid network 
(FPN) and uses the MobileNet V1 neural network as a base 
feature extractor. This model is designed to detect objects in 
images of size 640x640 pixels. The SSD architecture is a 
popular object detection approach that predicts object 
categories and bounding boxes in a single forward pass through 
the neural network. The SSD MobileNet v1 FPN 640x640 
model consists of a base network, feature pyramid network, 
and detection network. 

 

Fig. 5. MobileNet Single Shot Multi box Detector (SSD). 

 Base Network: The base network of the model is the 
MobileNet V1 neural network. It is a lightweight deep 
neural network architecture that uses depth wise 
separable convolutions to reduce the number of 
parameters and improve computational efficiency. The 
MobileNet V1 architecture consists of a sequence of 
depth wise separable convolutional layers followed by 

standard convolutional layers, which are used to extract 
feature maps from the input image. 

 Feature Pyramid Network: The feature pyramid 
network (FPN) is used to combine feature maps from 
different levels of the MobileNet V1 base network. The 
FPN is a top-down architecture that aggregates high-
resolution feature maps from the lower levels of the 
base network with lower-resolution feature maps from 
the higher levels of the network. This creates a pyramid 
of feature maps with rich semantic information at 
multiple scales, which is useful for detecting objects of 
varying sizes in the input image. 

 Detection Network: The detection network is used to 
predict the bounding boxes and object categories in the 
input image. The detection network consists of a set of 
convolutional layers that process the feature maps 
generated by the FPN. These layers are used to predict 
the locations and class scores of the objects in the input 
image. The SSD MobileNet V1 FPN 640x640 model 
uses a set of default anchor boxes at different scales and 
aspect ratios to generate object proposals. These 
proposals are then refined by the detection network to 
improve the accuracy of the final object detection 
results. 

The SSD MobileNet V1 FPN 640x640 is a powerful object 
detection model that combines the strengths of the MobileNet 
v1 architecture, the feature pyramid network, and the single 
shot detection approach to achieve high accuracy and 
computational efficiency. 

a) Parameters of the MobileNet SSD Model 

The parameters for this model are as follows: 

 Backbone architecture: This model uses a MobileNet 
V1 architecture as the backbone. MobileNet is a 
lightweight convolutional neural network architecture 
designed for mobile devices, which makes it suitable 
for real-time object detection on low-power devices. 

 Feature Pyramid Network (FPN): This model uses a 
Feature Pyramid Network (FPN) to generate a multi-
scale feature map. FPN is a technique used to extract 
features from images at different scales, which helps 
improve the accuracy of object detection. 

 Input size: The input size for this model is 640x640 
pixels. This means that the model can detect objects in 
images up to 640x640 pixels in size. 

 Batch size: The batch size is the number of images that 
are processed simultaneously. The batch size of 8 was 
used for training the model. 

 Learning rate: The learning rate is a hyperparameter 
that controls how much the model adjusts its parameters 
during training.  

 Number of classes: The number of classes is the 
number of object categories that the model can detect. 
In this case it was five classes.  
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 Anchor boxes: Anchor boxes are a set of predefined 
bounding boxes of different sizes and aspect ratios that 
the model uses to detect objects.  

 NMS threshold: The Non-Maximum Suppression 
(NMS) threshold is a parameter that controls how much 
overlapping bounding boxes are merged into a single 
detection. The default NMS threshold for this model is 
0.6, but it can be changed depending on the specific use 
case. 

b) Model Architecture 

The details of model architecture with parameter setting for 
threat detection is given as: 

 Number of classes: This specifies the number of classes 
or object categories that the model will detect. In this 
case, the model is trained to detect five classes. 

 Image resizer: This defines how the input image is 
resized to fit the input size of the model. Here, a fixed 
shape resizer is used with a height and width of 640 
pixels. 

 Feature extractor: This defines the feature extraction 
backbone of the model. In this case, the SSD MobileNet 
V1 FPN Keras architecture is used. The depth 
multiplier is set to 1.0, and the minimum depth of the 
network is set to 16. The conv hyperparams section 
specifies the hyperparameters used for the 
convolutional layers of the feature extractor, including 
the L2 regularization weight, random normal weight 
initializer, and batch normalization parameters. 

 Override base feature extractor hyperparams: This 
indicates that the hyperparameters specified in this 
pipeline config file will be used to override the default 
hyperparameters of the base feature extractor. 

 FPN: This specifies the Feature Pyramid Network used 
for multi-scale feature extraction. The minimum and 
maximum levels of the feature pyramid are set to 3 and 
7, respectively. 

 Box Coder: In object detection, the box coder is used to 
encode and decode the predicted boxes, which is 
necessary because the predicted boxes are in a relative 
format and need to be converted back to the absolute 
coordinates of the image. The box coder section 
specifies the method used to encode and decode boxes. 
In this particular case, the box coder is using the faster 
R-CNN box coder method, which encodes boxes using 
their center coordinates, width, and height. The y scale 
and x scale values specify the scaling factors for the 
center coordinates, while the height scale and width 
scale values specify the scaling factors for the height 
and width. These scaling factors are used to normalize 
the box coordinates to a similar range. 

 Matcher: The matcher section specifies the method used 
to match predicted boxes to ground truth boxes. In this 
case, the argmax matcher method is used, which 
matches predicted boxes to ground truth boxes based on 
their maximum intersection-over-union (IoU) overlap. 

The matched threshold value specifies the minimum 
IoU overlap required for a predicted box to be 
considered a match, while the unmatched threshold 
value specifies the maximum IoU overlap allowed for a 
predicted box to be considered unmatched. 

 Similarity Calculator: It specifies the method used to 
calculate the similarity between predicted boxes and 
ground truth boxes. In this case, the IoU similarity 
method is used, which calculates the IoU overlap 
between two boxes. 

 Box Predictor: In the SSD MobileNet V1 FPN 640x640 
model, the box predictor is responsible for predicting 
the bounding boxes for the detected objects. The weight 
shared convolutional box predictor is used as the box 
predictor, which shares weights between the class 
prediction and box prediction layers. This helps to 
reduce the number of parameters in the model. The 
depth parameter specifies the number of filters in each 
convolutional layer of the box predictor. In this model, 
it is set to 256. 

 Number of layers before Predictor: this parameter 
specifies the number of convolutional layers before the 
predictor layers. In this model, four convolutional 
layers are used before the predictor. 

 Kernel Size: It specifies the size of the convolutional 
kernel used in the predictor layers. In this model, a 
kernel size of 3 is used. 

 Class prediction Bias init: It initializes the bias for the 
class prediction layer. In this model, it is initialized to -
4.599999904632568. 

 Convolutional Hyperparameters: It specifies the 
hyperparameters for the convolutional layers in the box 
predictor. It includes the regularizer, initializer, 
activation function, and batch normalization 
parameters. 

 L2 Regularizer: It applies L2 regularization to the 
convolutional layers to prevent overfitting. The weight 
value provided is 3.9999998989515007e-05. 

 Random Normal Initializer: This parameter initializes 
the weights of the convolutional layers using a normal 
distribution with a mean of 0 and a standard deviation 
of 0.009999999776482582. 

 Activation: The activation parameter specifies the 
activation function used in the convolutional layers. In 
this model, the RELU_6 activation function is used. 

 Batch Normalization: It applies batch normalization to 
the convolutional layers to improve the training process. 
It includes the decay rate, scale, and epsilon values. In 
this model, the decay rate is set to 0.996999979019165, 
the scale is set to true, and the epsilon is set to 
0.0010000000474974513. 

 Anchor boxes: In object detection, anchor boxes are 
pre-defined bounding boxes of various sizes and aspect 
ratios that are used to identify objects in an image.  
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 Anchor Generator: It specifies how these anchor boxes 
should be generated. In the SSD MobileNet V1 FPN 
640x640 model, the anchor generator uses the 
multiscale anchor generator which generates anchors at 
multiple scales and aspect ratios. The values provided 
in the multiscale anchor generator section is the 
following: 

o Min level and max level: These specify the minimum and 
maximum levels of feature maps in the FPN.  

In this case, the feature maps are generated at levels 3 to 7. 

 Anchor Scale: This specifies the base size of the anchor 
boxes. The size of the anchor boxes is proportional to 
the square root of the area of the feature map. 

 Aspect Ratios: These specify the aspect ratios of the 
anchor boxes. In this case, three aspect ratios are used: 
1.0, 2.0, and 0.5. 

 Scales per Octave: This specifies the number of scales 
to be used per octave. In this case, two scales are used 
per octave. 

 Score Threshold: minimum confidence score for 
detections to be considered. Value is 
9.99999993922529e-09. 

 IoU Threshold: intersection over union (IoU) threshold 
used for non-maximum suppression. Value is 
0.6000000238418579. 

 Max Detections per Class: maximum number of 
detections to keep per class after non-maximum 
suppression. Value is 100. 

 Maximum total Detections: maximum number of 
detections to keep over all classes after non-maximum 
suppression. Value is 100. 

 Use Static Shapes: whether to use static shapes for the 
output tensor shapes. Value is false. 

 Score Converter: method for converting scores. Value is 
SIGMOID. 

 Normalize loss by number of Matches: whether to 
normalize the total loss by the number of matched 
ground truth boxes. Value is true. 

 Localization Loss: weighted_smooth_l1: the 
localization loss function. No values provided, uses 
default parameters. 

 Freeze Batch norm: whether to freeze the batch 
normalization parameters during training. Value is 
false. 

 Batch Size: The number of images that are fed into the 
network at once during training. In this case, the batch 
size is set to 8. 

 Data Augmentation Options: A list of data 
augmentation options to apply to the input images 
during training. In this case, two types of data 

augmentation are used: random horizontal flips and 
random crops. 

 Sync Replicas: A Boolean variable that controls 
whether to use synchronous gradient updates during 
training. When set to true, the gradients are computed 
and averaged across all replicas before the weights are 
updated. This can lead to better convergence but 
requires more memory and communication. 

 Optimizer: Specifies the optimizer used during training. 
In this case, the momentum optimizer is used with a 
cosine learning rate schedule. 

 Learning Rate: The learning rate schedule used during 
training. The learning rate is decreased according to a 
cosine schedule that decreases the learning rate from a 
base value of 0.04 to a final value of 0 over 25,000 
steps. The learning rate is also gradually increased from 
a warmup value of 0.0133 over 2,000 steps. 

 Momentum Optimizer Value: The momentum value 
used by the optimizer. In this case, the momentum is set 
to 0.9. 

 Use Moving Average: A Boolean variable that controls 
whether to use a moving average of the model weights 
during training. When set to false, the raw weights are 
used. When set to true, the moving average of the 
weights is used instead, which can improve the 
robustness of the model. 

7) Python: Model implementation, training and evaluation 

is done in python programing using several libraries as listed 

below: 
 PyTorch: PyTorch is a python library, a deep learning 

framework for building and training neural networks, 
widely used for research and production in machine 
learning programming language and the Torch library. 
Torch is an open-source ML library used for creating 
deep neural networks and is written in the Lua scripting 
language. It's one of the preferred platforms for deep 
learning research. Outcome of PyTorch is a model file 
that can be loaded in mobile device and can be used for 
prediction. The researchers used PyTorch for 
MobileNet and yolov5 implementation, training, and 
evaluation. 

 TensorFlow: An open-source machine learning 
framework for developing and deploying machine 
learning models, including deep learning models. Both 
yolov5 and MobileNet SSD models can be 
implemented in PyTorch and TensorFlow these are just 
two standard libraries for implementing neural 
networks. Researchers tried TensorFlow for 
implementation, but PyTorch was more user friendly, 
so PyTorch was adopted. 

 OpenCV: An open-source computer vision library 
offering tools for image and video processing, including 
object detection and analysis processing. OpenCV 
supports a wide variety of programming languages like 
Python, C++, Java, etc. It can process images and 
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videos to identify objects, faces, or even the 
handwriting of a human. Researchers have used 
OpenCV for reading images and applying 
preprocessing steps like scaling and normalization of 
images. 

 RoboFlow: A platform for managing, annotating, and 
preprocessing data for computer vision projects, 
assisting in training machine learning models. 

 Matplotlib: A Python plotting library used for creating 
static, interactive, and animated visualizations in data 
analysis and model output visualization. Matplotlib is 
also used for evaluation and analysis of results like 
building confusion metrics after prediction is done 
through this library. Outcome of matplot lib is plots and 
charts generated as images that can be used for 
visualization of training loss and accuracy with each 
epoch. 

 Seaborn: A statistical data visualization library built on 
top of Matplotlib, designed to generate informative and 
attractive statistical graphics. Seaborn is also used for 
plotting various analysis charts of training loss and 
accuracy values. 

H. Model Evaluation 

1) Model evaluation metrics: Mean Average Precision 

(MAP) is the universal standard metric used to compare 

performance between object detection models created by 

different authors [32]. This metric is specifically derived from 

Average Precision (AP). Since classification is performed 

during object detection for different bounding boxes along 

with the provision of the ground truths, the fundamentals of 

the confusion matrix apply. The matrix enables computations 

to be made with accuracy, precision, and recall. It consists of 

the True Positive (TP), True Negative (TN), False Positive 

(FP) and False Negative (FN) values [32]. In the context of 

object detection: 

 True Positive: Detection made correctly by the model. 

 True Negative: Background region correctly detected 
by the model (where there are no objects)  

 False Positive: Wrongly detected regions made by the 
model. 

 False Negative: Regions where the ground truths are 
missed by model. 

Intersection-over-Union (IoU) is the next metric used to 
determine whether bounding boxes are TP, TN, FP or FN. IoU 
is defined as the area of overlap between the bounding box 
predictions and the ground truth, divided by the area of union 
between them [33]. An IoU of 1 means the bounding boxes 
predicted match exactly the ground truth boxes, whereas an 
IoU of 0 depicts no overlap between the two bounding boxes 
[34]. Fig. 6 shows the IoU equation. 

A threshold is a hyperparameter predetermined to decide 
between TP, TN, FP or FN. For example, with a threshold of 
0.5 for a ground truth bounding box, if the predicted bounding 

box has an IoU greater than 0.5 for that particular ground truth, 
it is considered a TP. Whereas an IoU lower than 0.5 means the 
predicted bounding box is a FP. Through the IoU, we are able 
to determine the confusion matrix (TP, TN, FP, FN) for every 
bounding box, and subsequently calculate the precision and 
recall. 

 

Fig. 6. Intersection over union equation. 

 

 Precision: of the positive classes that are correctly 
detected, how many are actually positive? This follows 
the following Eq. (1) [33]: 

Precision = TP / TP+FP  (1) 

 Recall: of all positive classes, how much can we predict 
the class correctly? It is preferred that this measure is as 
high as possible. It follows the following Eq. (2) [33]: 

Recall = TP / TP +FN  (2) 

We also, calculate the accuracy that measure considers the 
correct classification out of all classes, where a high value of 
accuracy if preferred. This factor is explained in the following 
Eq. (4) [33]: 

Accuracy = TP + TN / TP + FP +TN +FN (3) 

AP uses precision and recall creating an Area Under the 
Curve graph (AUC-PR) for the model. For every threshold, 
there is a different precision since the object detector will 
output a confidence score, which is then determined by the 
threshold on whether each bounding box is TP, TN, FP or FN. 
AP will take the precision and recall at every threshold, graph 
out a precision-recall plot, and thereafter take the area under 
the curve. The closer AUC is to 1, the better the model, and 
vice versa. It is better to have a high AUC as the model is good 
at predicting and distinguishing between classes it calculated 
based on the TPR (y-axis) versus the FPR (x-axis). AP is done 
separately for each class within the object detection model. 
Also, F1-measure that measure mainly computes the harmonic 
mean of precision and recall measuring them at the same time 
[33]. It has the below Eq. (4): 

F1-measure = 2 x Recall x Precision / Recall + Precision   (4) 

To consolidate all these scores into one metric, mAP was 
introduced. mAP will take all the AP of each class (will have n 
number of scores for n number of classes) and take the mean of 
those AP to obtain one score. This score is the metric used to 
determine the overall performance of the object detection 
model. 

2) Model validation: Model validation refers to the 

procedures and actions conducted to verify that a model is 

functioning as intended and aligns with its objectives and 

intended business applications. Typically, the validation 
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process involves the assessment performed by individuals who 

are not the model developers or owners, as their impartial 

perspective is valuable due to their non-technical background 

[31]. In the context of machine learning, validation may 

involve ML experts evaluating the labeling process to ensure 

its accuracy and reliability. 

IV. RESULTS AND DISCUSSION 

This section aims particularly to answer the research 
questions which is: is there any efficient way to detect threats 
from live videos using DL algorithms? The other question was 
how accurate and efficient is using the MobileNet model to 
detect objects from live videos? The analysis has been 
conducted according to detailed steps that will be mentioned on 
the analysis Section 4.3. Comparison is done based on mean 
average precision (mAP) and frames per second (FPS) on the 
datasets collected as a part of research findings. 

A. Data Preparation 

1) Dataset collection: For the purpose of this study, a 

carefully curated dataset was created to support the research 

objectives. The dataset was generated and collected by the 

researcher from various sources, specifically chosen to include 

objects that are considered potentially dangerous or 

threatening. The dataset comprises five classes of objects: fire, 

guns, knives, arrows, and swords. These object classes were 

selected due to their relevance in public safety incidents and 

their potential to cause harm.  

To obtain the necessary data, a range of sources was 
utilized. This included gathering footage from YouTube videos 
that contained CCTV recordings, educational videos 
demonstrating fighting skills, and demo videos. By extracting 
frames from these videos at a rate of 1 frame per second (1fps), 
the required images for the dataset were captured. The 
inclusion of CCTV footage is particularly valuable as it 
provides authentic data from public places where security 
cameras are commonly employed.  

To annotate the dataset with the necessary information for 
object detection, the researcher employed the RoboFlow tool. 
RoboFlow is a widely used image annotation tool specifically 
designed for object detection tasks. Annotations provide 
crucial additional details about the images, such as the precise 
location and class of the object within each image. These 
annotations are vital for training machine learning models to 
accurately detect and classify objects. To enhance the diversity 
of the dataset and improve the performance of the machine 
learning models, various augmentations were applied to the 
images. Techniques such as rotation and contrast adjustment 
were employed to create variations of the original images.  

By introducing these augmentations, the models were 
exposed to a wider range of data, enabling them to better 
handle different image conditions and variations. The careful 
curation of this dataset, encompassing the five specified object 
classes, serves as a crucial foundation for training machine 
learning models to accurately detect these objects and 
contribute to public safety improvements. 

2) Data cleaning: In this research, the process of data 

cleaning and maintaining data quality played a crucial role in 

preparing the dataset for object detection models. After 

extracting images from videos, uninformative and vague 

frames were carefully discarded to ensure that only relevant 

and clear frames were included in the dataset. This step aimed 

to eliminate any noise or ambiguity that could hinder the 

performance of the models. The remaining frames with clear 

object visibility were then subjected to manual labeling for 

five object classes. Manual labeling involves human 

annotators carefully marking the objects of interest in each 

frame, providing accurate ground truth annotations. To ensure 

a balanced distribution of images per object class in the 

training, validation, and testing sets, the data classes were 

sampled strategically. This sampling process helps prevent 

bias towards specific object classes and ensures that the 

models are exposed to a diverse range of objects during 

training and evaluation. By performing data cleaning, manual 

labeling, and strategic sampling, the researchers improved the 

overall quality and representativeness of the dataset. This, in 

turn, enhances the reliability and generalizability of the object 

detection models, allowing them to effectively detect and 

classify objects in various real-world scenarios. 

3) Data preprocessing: To ensure effective model 

training, data preprocessing techniques were applied to the 

dataset. One of the key preprocessing steps involved resizing 

the images to a standardized scale of 416x416 pixels, which is 

suitable for the MobileNet SSD model input. This resizing 

step helps to ensure consistency in the input size across all 

images, facilitating efficient model training. Data 

preprocessing serves to enhance the quality of the data and 

reduce training time. In addition to resizing, other 

preprocessing operations were applied to make the images 

compatible with the model requirements. These operations 

included scaling, cropping, and further resizing to bring all 

images into a consistent format prior to model training. By 

standardizing the images, the model can effectively process 

and analyze them. Data augmentation techniques were also 

employed to increase the diversity and veracity of the data, 

thereby enabling the model to learn better. Data augmentation 

involves applying various transformations to the images to 

create additional training samples. These transformations 

include rotation, blurring, and adjustments in contrast and 

orientation. By introducing such variations, the model 

becomes more robust and capable of handling different image 

conditions and variations that may be encountered in real-

world scenarios. The combination of data preprocessing, 

including resizing and standardizing the images, along with 

data augmentation techniques, enhances the quality, variety, 

and quantity of the training data. This, in turn, contributes to 

the overall performance and generalization capabilities of the 

object detection model during training and subsequent 

inference tasks. 

4) Data annotation: During this phase, the researcher 

utilized the RoboFlow annotation tool to facilitate the 
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annotation process for object detection. This tool allowed for 

the drawing of bounding boxes around the objects of interest 

in the images. By uploading videos into RoboFlow, images 

with varying frames per second (FPS) rates were extracted. 

Each image was then labeled with its corresponding class 

name and bounding box. For each image, bounding boxes 

were manually drawn around the instances of the objects to be 

detected. The researcher carefully assigned the correct class 

label from the predefined set of five classes: fire, gun, knives, 

arrows, or swords. This manual annotation process ensured 

accurate placement of the bounding boxes and correct 

labeling, as these annotations served as the ground truth for 

the subsequent model training phase. Once the dataset was 

annotated, the next step involved integrating it with the 

respective training frameworks. The annotations created by 

the researcher were utilized as the training data for the object 

detection models. These annotations, combined with the 

corresponding images, formed a labeled dataset that could be 

used to train the models and enable them to detect and classify 

objects accurately. 

a) Data Quality Check 

Below is the explanation of the used methods and steps 
taken to ensure data quality in object detection: 

 Annotation Quality Control: Ensure accurate and 
consistent annotation of bounding boxes and class 
labels in the dataset. Annotators should follow clear 
guidelines and have a solid understanding of the objects 
of interest. This research has five object types (guns, 
swords, knives, arrows, and fire) in the dataset. 
Researchers have annotated each object carefully using 
RoboFlow. Bounding boxes were created with extreme 
care. 

 Data Cleaning and Preprocessing: researchers removed 
duplicate images after annotations to build a good 
model. Also, we have eliminated corrupted images or 
annotations that might negatively impact training. 

 Balanced Class Distribution: researchers ensured that 
the dataset has a balanced distribution of objects across 
classes to prevent bias towards dominant classes and 
improves the model's ability to detect all classes 
accurately. Normal videos are recorded at 30 fps, means 
30 frames per second can be extracted and in this case, 
1 frame/sec was extracted. There were some images 
that do not have any object, such images were deleted, 
and remaining images were annotated accurately. Exact 
number of samples before augmentation for all objects 
is provided in Table I below: 

 Data Augmentation: researchers have applied data 
augmentation techniques such as random rotation 
between -15 degree to + 15 degree to increase the 
number of data samples. 

TABLE I. CLASSES SAMPLES 

Classes Train Test Valid 

Arrow 1286 186 360 

Gun 1362 209 379 

Sword 1370 221 394 

Fire 1297 197 353 

Knife 1312 198 369 

 Validation and Anomaly Detection: researchers have 
eliminated images that have no object or object is not 
clearly visible, etc. 

 Consistent Image Quality: researchers have ensured that 
images are of consistent quality and resolution. They 
have applied resizing for all images to be 416x416. 

 Real-World Scenario Simulation: researchers have 
collected videos from demos, CCTV videos and social 
media to collect diverse and real-world scenarios to 
train a good model. 

 Review Annotations for Ambiguity: researchers have 
reviewed annotations that are ambiguous or challenging 
for the model to detect, such as partially occluded 
objects or objects in cluttered scenes. 

 Class Label Consistency: researchers have verified that 
class labels are consistent across annotations. With 
every annotation object name was specified with that 
annotation to make sure that each object has its correct 
name. 

 Cross-Validation: Divide the dataset into training, 
validation, and test sets. Cross-validation can help 
assess how well the model generalizes by training on 
one subset and testing on another. 

 Continuous Monitoring: Continuously monitor and 
update the dataset as needed. Over time, as the model's 
requirements change or new challenges arise, the 
dataset should evolve accordingly. 

 Use External Data Sparingly: When using external data 
sources like stock images or online datasets, ensure that 
they are relevant and high-quality. External data should 
complement the dataset without introducing noise. 

 Expert Review: researchers engaged experts‘ volunteers 
to review and validate the quality of the dataset, 
ensuring that the annotations and data align with the 
real-world scenarios. 

 Feedback Loop: Establish a feedback loop with 
annotators to address questions, provide clarification on 
guidelines, and continually improve annotation quality. 

5) Model evaluation 

a) Results of Performance Metrics Comparison  

In Table II researchers indicate the difference across 
different aspects. These results are achieved after training both 
models on same dataset. A dataset is divided into three parts 
which are: training, validation, and testing. For each class 70%, 
20% and 10% images are used for train, valid test, respectively. 
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 Train set is provided to the model during training so 
model can learn pattern from this data. 

 Validation set is used to evaluate model during training, 
this is unseen for model but during training results are 
analyzed through this unseen data. If model is not 
learning correctly then we tune the parameters of model 
to see if is performing good on train data and validation 
data. 

 Test set is totally unseen that is used after correct 
training of model, it depicts the real-world testing of 
model on unseen data. If a model performs as good on 
testing data as it is for training, then model is 
considered to be reliable for that task. 

TABLE II. PERFORMANCE METRICS RESULTS 

Performance Metrics MobileNet SSD YOLOv5 

mAR (Mean Average 

Recall) 
0.9565 0.8450 

mAP (Mean Average 

Precision) 
0.9125 0.7549 

IoU (Intersection over 

Union) 
0.9045 0.8020 

False Positive Rate 0.053 0.078 

False Negative Rate 0.053 0.078 

Inference Speed 
~ 18ms/image 

(CPU) 

~ 41ms/image 

(CPU) 

Memory Usage 1.3 GB 7 GB 

Model Size 6.6 mbs 15 mbs 

Class-wise 

Performance 
90% 83% 

F1 score 0.92 0.81 

To evaluate and measure the model performance AUC 
method were used. This method is used to check the ability of 
the model to detect accurately among the different classes. The 
higher the AUC, the better the performance of the model is. 
Fig. 7 illustrates the AUCs of the MobileNet model. 

 

Fig. 7. ROC AUC curve. 

The graph in Fig. 7 provides the following results: 

 Since AUC = 0.91, the model is able to distinguish 
perfectly between all positive and negative class points. 

The graph in Fig. 8 and 9 illustrate the results of the 
confusion matrix. The confusion matrix plot shows the 
predicted vs. true labels, and the values in each cell represent 
the percentage of the correct and incorrect classifications. 
Diagonal values are high as they show values for correct 
classification and off diagonal values are incorrect 
classification. As per the graphs the MobileNet model prove 
that it detects the classes efficiently over the Yolov5 model. 

 

Fig. 8. Confusion matrix for mobilenet SSD model. 

 

Fig. 9. Confusion matrix for YOLO model. 

6) Model validation: In this research, the model validation 

was a meticulous process that contributed significantly to the 

success of the object detection models. The researcher 

dedicated time and efforts to ensure the annotations were 

accurate and comprehensive, as this foundation would directly 

impact the performance of the models in real-world scenarios. 

This validation step is carried out by ML experts who as their 

impartiality is crucial as the context of the labeling process, a 

ML expert is often involved in performing this step to validate 

the accuracy and quality of the labels assigned to the data [31]. 

There were experts in ML who volunteering to examine the 

validity of the model. The feedback from the experts were that 

all the dataset was accurately labeled since it was at first a 

manual step that takes a lot of time and efforts. 

For the validity of the model, Table II examines the success 
rates, encompassing accuracy and F1-measure outcomes. The 
MobileNet SSD model exhibits an impressive success score of 
0.92. Moreover, it achieves an accuracy rating of 96.5%. These 
findings collectively validate the superior performance of the 
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MobileNet model over the YOLO model in detecting 
threatening objects. 

7) Discussion: In conclusion, MobileNetSSD performs 

better than YOLOv5 in the scenarios of detecting threatening 

objects due to its fast inference speed, memory efficiency, 

optimization for small objects, and training strategy as shown 

in Table II. Below are additional reasons why MobileNet 

model preferable over YOLO5 model. Certainly, here's the list 

of scenarios tailored to the context of the problem, considering  

the involvement of detection for five classes including: fire, 

gun, knives, arrows, and swords with a dataset of 2000 images 

per and a deployment on a mobile platform: 

a) Mobile-Optimized Inference Speed: MobileNet 

SSD's fast inference speed is crucial for mobile deployments. 

It ensures that objects are detected rapidly on the mobile 

device, enhancing real-time detection capabilities. 

b) Memory Efficiency for Mobile Devices: Deploying 

on mobile devices demands efficient memory usage. 

MobileNet SSD's architecture reduces memory requirements, 

allowing smooth operation on resource-constrained mobile 

platforms. 

c) Real-Time Threat Detection on Mobile: MobileNet 

SSD's quick detection of objects like guns and knives is vital 

for real-time threat detection scenarios on mobile devices, 

such as identifying potential weapons in public spaces. 

d) Streaming Video Analysis on Mobile: MobileNet 

SSD's fast inference speed aligns well with streaming video 

analysis on mobile devices. This is valuable for continuous 

monitoring using mobile cameras. 

e) Optimization for Small Objects on Mobile: 

MobileNet SSD's specialization in detecting small objects, 

like arrows or knives, is advantageous for accurate detection 

on mobile screens, where these objects might appear relatively 

small. 

f) Responsive Fire Detection on Mobile: Fast detection 

of fire instances using MobileNet SSD on mobile devices is 

critical for timely response to fire incidents, aiding firefighting 

efforts and safety protocols. 

g) Edge Computing for Mobile: Deploying MobileNet 

SSD on mobile platforms extends the benefits of edge 

computing. The model's lightweight architecture is suitable for 

processing data on the device, reducing latency. 

h) Mobile Surveillance Solutions: MobileNet SSD's 

deployment on mobile devices allows for portable surveillance 

solutions. Users can leverage their mobile phones for security 

monitoring, quickly detecting threats like fires or intruders. 

i) Accurate Object Detection on Mobile: MobileNet 

SSD's optimization for small object detection ensures accurate 

identification of objects like arrows or swords on mobile 

screens, where details matter. 

j) Reduced Data Transmission: MobileNet SSD's on-

device detection reduces the need for transmitting sensitive 

data to remote servers, maintaining user privacy and 

potentially reducing data costs. 

k) User-Friendly Mobile Applications: The combination 

of fast detection and accuracy makes MobileNet SSD suitable 

for developing user-friendly mobile apps that offer intuitive 

and effective object detection functionalities. 

l) Cost-Effective Mobile Deployments: MobileNet 

SSD's low computational demands align with mobile 

platforms, making it a cost-effective choice for deploying 

object detection capabilities on mobile devices 

V. RECOMMENDATIONS FOR FUTURE WORK 

Several recommendations can be made for future study that 
will extend the present study‘s findings. Below are some 
possible recommendations for future studies: 

1) Expand the scope of the study: The current study may 

have focused on a specific aspect or application of the topic. 

Future studies could expand the scope of the research to 

include other related areas, applications, or datasets. 

2) Improve the performance of the model: The current 

study may have achieved good results with the model used, 

but, there may be other models or techniques that could 

improve performance further. Future studies could explore 

alternative models or techniques for the task and compare 

their performance. 

3) The current study may have some limitations due to the 

dataset used. Future studies could address these limitations by 

using different datasets, models, or evaluation metrics. 

4) Explore ethical considerations: The current study may 

not have explicitly addressed the ethical implications of the 

research. Future studies could explore the ethical 

considerations of the research and investigate ways to ensure 

that the technology is used ethically and responsibly. 
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