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Abstract—Feature transformation is an essential part of data 

preprocessing to improve the predictive performance of machine 

learning (ML) algorithms. Box-Cox transformation with the goal 

of separability is proven to align with the performance 

improvement of ML algorithms. However, the features mapped 

using Box-Cox transformation preserve the order of the data, so 

it is ineffective when used to improve the separability of 

multimodal distributed features. This research aims to build a 

feature transformation method using quadratic functions to 

improve class separability that can adaptively change the order 

of the data when necessary. Fisher score (Fs) measures the 

separability level by maximizing the Fisher's Criteria of the 

quadratic function. In addition to increasing the Fs value of each 

feature, this method can also make the feature more informative, 

as evidenced by the increasing value of information gain, 

information gain ratio, Gini decrease, ANOVA, Chi-Square, 

reliefF, and FCBF. The increase in Fs is particularly significant 

for bimodally distributed features. Experiments were conducted 

on 11 public datasets with two statistical-based machine learning 

algorithms representing linear and nonlinear ML algorithms to 

validate the success of this method, namely LDA and QDA. The 

experimental results show an improvement in accuracy in almost 

all datasets and ML algorithms, where the highest accuracy 

improvement is 0.268 for LDA and 0.188 for QDA. 

Keywords—Separability; feature transformation; quadratic 
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I. INTRODUCTION 

Machine Learning (ML) is an essential branch of artificial 
intelligence widely used for pattern recognition, image 
processing, text classification, intrusion detection systems, etc. 
[1]. However, the ML algorithm's success depends on the 
features' quality. The resulting model is also good if the 
features are good [2]. Therefore, improving features to suit ML 
algorithms' needs is an essential topic in feature engineering 
[3]. Feature transformation is one of the feature engineering 
techniques that can be used to improve features before being 
input into the ML algorithm [2], [4]. There have been many 
studies that discuss feature improvement through 
transformation techniques, where with the proper feature 
transformation, feature quality can be improved [5], [6]. 

Feature transformations developed to improve feature 
quality are generally grouped into three: first, feature 
transformations that only change the scale (e.g., Min-Max 
normalization, Z-Score normalization) [7], second nonlinear 
feature transformations that do not change the order of the data 
(e.g. log transform [8], square root transform [9], Box-cox 
transform, Yeo-Johnson transform [10]), and third, nonlinear 
feature transformations that can change the order of the data 

(e.g. kernel function in SVM) [11], [12]. Some machine 
learning algorithms are sensitive to scale differences, so 
normalization or standardization is needed to uniform the scale 
of features. Paper in [13] discusses the effect of various data 
normalization methods on support vector machine (SVM) 
algorithms and technical indicators to predict stock index price 
movements. The result is a slight increase in accuracy 
performance. Paper in [6] proposed mixed feature 
transformation methods such as CDF transformation and 
Symmetric log1p transformation, where feature transformation 
can substantially improve the performance of neural ranking 
models compared to directly using raw features. Paper in [14] 
compares the effect of Box-Cox transformation to improve 
two-dimensional images with advanced low-light image 
enhancement techniques. Paper in [15] addresses issues in 
nonlinear stochastic degradation modeling and prognostics 
from the Box-Cox transform (BCT) perspective, where BCT is 
used to transform nonlinear degradation data into near-linear 
data. Adaptive Box-Cox (ABC) transformation was introduced 
by [16], where adaptive parameter tuning is used to normalize 
data in various distributions that cannot be properly normalized 
using conventional data transformation algorithms, including 
log and square root transformations. 

In general, feature transformation aims to change the data 
distribution to be close to Gaussian in order to improve ML 
performance, such as log transformation [8], [17], square root 
transformation [18], Box-Cox transformation [14], [19]–[23], 
and Yeo-Johnson transformation [10], [24]. However, the 
experimental results of Bicego & Baldo, 2016 [20] showed 
different results. Their findings show that ML classification 
accuracy improves when the data distribution is far from 
Gaussian and is more related to the class separability problem. 
This finding is corroborated by [21], [25]–[27], which state 
that, based on the fisher criterion, features with greater class 
separability are considered more informative and can improve 
ML classification performance. Based on these findings, ML 
classification performance can be improved when features have 
large separability. This transformation can improve class 
separability, even in cases where the original dataset is not 
linearly separable. 

Bicego and Baldo's research above uses the Box-Cox 
transformation, where this transformation is monotonous 
because it cannot change the order of the data [20]. This 
condition causes the Box-Cox transformation not to produce 
maximum separability. In addition, the result of the Box-Cox 
transformation is determined by a parameter that is searched 
using the grid search method so that getting the best parameter 
of each feature associated with the maximum fisher value 
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requires high computational costs [21]. Bicego and Baldo's 
empirical analysis of the behavior of the Box-Cox transform 
for pattern classification opens up opportunities for the analysis 
of different nonlinear data pre-processing methods that can 
improve class separability. 

This research proposes a quadratic feature transformation 
for preprocessing that is directly designed to maximize the 
class separability of each feature. The idea is to optimize the 
quadratic function parameters using Fisher's optimization 
criterion to obtain maximum class separability. In this way, 
each feature is transformed using a quadratic function to have a 
higher fisher score compared to the original feature's fisher 
score. The quadratic transformation process is performed at the 
preprocessing stage, making it flexible to be combined with 
various ML algorithms. Since this technique is directly geared 
towards maximizing the fisher score, while the mean and 
variance of each class can be easily calculated, it has the 
potential to be applied to multi-class data. Various feature 
quality test metrics, such as Information Gain [28]–[30], Gain 
ratio [31], Gini Decrease [32], Anova [33], [34], Chi-Square 
[35], ReliefF [36], [37], and Fast Correlation-Based Feature 
selection (FCBF) [38], [39], are used to test the feature quality 
of the proposed Box-Cox transformation and Quadratic 
transformation, before finally comparing their respective 
performance. 

The classification algorithms used in this study are Linear 
Discriminant Analysis (LDA) and Quadratic Discriminant 
Analysis (QDA), which represent linear and nonlinear ML 
algorithms. Although LDA has proven to be an excellent 
classification and dimensionality reduction algorithm, it 
produces poor vector projections on multimodal data [40]–
[42]. With feature transformation, it is expected that the 
multimodal influence on LDA can be reduced. QDA was 
chosen because it is one of the most commonly used classifiers 
in practice and is quite simple. In addition, QDA has been 
shown to improve performance when paired with the nonlinear 
feature extraction technique quadratic Fisher transformation 
[43]. 

The contributions of this research include: 

1) Development of separability-based feature 

transformation to optimize the classification task of machine 

learning algorithms. 

2) The chosen quadratic transformation is generally able 

to improve feature quality based on fisher score, information 

gain, chi-square, relief, and FCBC values on the dataset 

studied. 

This paper is organized into several sections, starting with 
an introduction in Section I, followed by a brief explanation of 
fisher score and quadratic function in Section II, research 
methodology containing the dataset and the proposed method 
in Section III, results and discussion in Section IV, and then 
closed with a conclusion in Section V. 

II. PRELIMINARY WORKS 

To prepare for a better understanding of this research, some 
feature transformation techniques, fisher score, and quadratic 
function definition and application will be introduced. 

A. Feature Transformation Technique 

In some literature, the use of the term feature 
transformation is often equated with feature engineering, 
feature extraction, and feature construction [44]. However, this 
study consistently uses the term feature transformation as a 
univariate feature engineering technique. 

Feature transformations, which T. Verdonck et.all 2021[2] 
call feature engineering, are grouped into two, namely 
univariate and multivariate feature engineering techniques. 
Univariate feature transformations on continuous variables can 
improve symmetry, normality, or model fit, such as logarithmic 
transformation, Box-Cox transformation, and Yeo-Johnson 
transformation. Multivariate feature transformations aim to 
reduce the dimensionality of the data by creating new features 
that are linear combinations of the original variables, such as 
PCA, LDA, SVD, UV (non-negative) decomposition, and 
tensor decomposition. 

The study of feature transformation has progressed quite 
well. The following studies are related to feature 
transformation. A feature transformation method based on 
Mutual Information (MI) is proposed by [45], where the 
Probability Density Function (PDF) of features in the class is 
assumed to be Gaussian. The gradient descent technique is 
used to maximize the mutual information between features and 
classes. Experimental results show that the proposed MI 
projection consistently outperforms other methods for various 
cases.  Most of these Medical decision support systems 
(MDSS) focus on feature transformation-based methods and 
their integration with machine learning models for the 
prediction of risks associated with Heart failure (HF). 
However, the improvement in accuracy on test data is not 
followed by training data. This study proposes a more robust 
approach that integrates stacked autoencoder grids with neural 
network models to address the problem[46]. Most feature 
engineering in the input space relies on manually defined 
transformation functions. However, research [12] builds 
transformation functions automatically learned through 
autoencoders for latent representation extraction and multi-
layer perceptron (MLP) regressors. The transformation 
function built in this way can also improve the performance of 
LSVM and JST, when embedded as a preprocessing step. A 
random projection-based feature transformation method using 
Metaheuristic Optimization Algorithm [47] is proposed to map 
data points from the original space to a new binary space, 
where the random projection process is formulated as an 
optimization problem. The transformation of features to binary 
space is needed when the system requires coarse quantization 
of measurements. A new guided FT method called minimax 
probabilistic feature transformation (MPFT) was proposed for 
multi-class datasets [48]. The idea of this method is based on 
trying to control the probability of correct classification of 
future test points as large as possible in the transformed feature 
space. Past tax default prediction by applying diverse feature 
transformation techniques and advanced machine learning 
approaches was proposed by [49]. A combination of feature 
transformations, such as logarithmic and square root 
transformations, is able to improve tax default prediction 
performance. A feature transformation method to improve 
classification performance referred to as weight-matrix 
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learning (WML), was proposed by[50]. The way this method 
works is that WML is identified as an off-center technique with 
a center of 0.5 similarity. 

B. Fisher Score (Fs) 

Fs belongs to the classical supervised feature selection filter 
method, which aims to score features based on the ratio of data 
scatter between classes and data scatter within classes. Fs is 
used to measure the class discriminant properties of each 
feature independently. Features with higher Fisher scores are 
more discriminant than features with lower scores [51]. Fisher 
score has been widely used for feature selection on gene 
microarray data [52]–[57]. This study uses the fisher score as a 
basis for improving separability because it is conceptually easy 
to understand, easy to implement on various functions, and Fs 
is an efficient approach to data dimensionality reduction [58]. 
Fisher score Fs(k) is used to measure the separability of classes 
at the kth feature of a dataset. Mathematically, Fs(k) is 
calculated using Eq. (1)[52]. 
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where ,c ,N in , 
k

i , 
k , and 

k

i  respectively are the 

number of classes, the total number of samples, the number of 
samples of the i-th class, the mean value of the k-th feature of 
the i-th class, the mean value of the k-th feature for the whole 
class, and the variance of the k-th feature of the i-th class. 

C. Quadratic Function 

Throughout the literature review, no quadratic functions 
were found to be used for the purpose of increasing the 
separability of classes in features. However, there are many 
uses of quadratic functions for different purposes.  Quadratic 
kernel-free non-linear support vector machine (QSVM) uses 
quadratic functions as decision boundaries that are able to 
separate data in a non-linear manner. The decision boundary is 
built from a multivariate quadratic function that can replace the 
kernel trick in SVM when faced with problems that cannot be 
separated linearly [59]. The QSVM method was successfully 
used for credit scoring models [60] and improved accuracy and 
efficiency. This method, called Quadratic Fisher Discriminant 
Analysis (QFDA), uses linear and quadratic basis functions to 
improve classification accuracy by considering data variance. 
This method aims to maximize the fisher criterion in the 
transformation space using a transformation matrix[61]. Before 
the transformation, each feature is squared, and the features are 
multiplied, resulting in a significant increase in the number of 
features and high computational cost. One disadvantage of the 
QFDA method is that it may only work well if the class mean 

values are equal or if the vital information for classification lies 
in the variance of the data rather than the mean value. 

From a mathematical point of view, a quadratic function is 
a polynomial of degree 2. Its highest exponent on the 
independent variable (i.e., x) is 2. The general form of the 
parabolic quadratic function, as shown in Eq. (5), is defined as 
follows [62]. 

Definition (General form). For fixed constants b, c ∈ R and 
nonzero a ∈ R, the function f : R → R given by 

2( )f x ax bx c  
   (3) 

is a (real) quadratic function written in general form. 

Quadratic functions are capable of transforming data to be 
closer for data in the same group and further away for data 
from different groups. This ability is the basis for using 
quadratic functions for feature transformation. 

III. RESEARCH METHODOLOGY 

A. Datasets 

This study used 11 datasets, which are presented in Table I. 
Ten datasets were downloaded from the Keel data repository 
(https://sci2s.ugr.es/keel/category.php?cat=clas), including 
Sonar, WDBC, Ringnorm, New Thyroid, Wisconsin, 
Parkinson's, Splice, Balance, Spectf, and Hayes Roth. One 
Hungarian dataset was downloaded from 
https://www.openml.org/. Table I consists of five columns 
containing dataset information (code, dataset, features, 
samples, and class) and one column containing different 
methods using the same data. The number of features is 
between 4 and 60, the sample size is between 160 and 7400, 
and the targets consist of two classes and three classes. The 
data type varies from numeric, categorical, binary, and there 
are no missing values in all datasets. The data information is 
summarized in Table I. 

TABLE I.  PROFILE DATASET AND ACCURACY PERFORMANCE OF STATE-
OF-THE-ART METHODS 

Code Dataset Features Samples Class Method 

d-1 SONAR 60 208 2 2DCSCA[47] 

d-2 WDBC 30 569 2 Hybrid GPFC[63] 

d-3 Ringnorm 20 7400 2 EIDA[64] 

d-4 
New 

Thyroid 
5 215 2 Hybrid GPFC[63] 

d-5 Wisconsin 9 683 2 SSDA[65] 

d-6 Parkinson 22 195 2 2DCSCA[47] 

d-7 Hungarian 11 1190 2 RFSA -MCC[51] 

d-8 Splice 60 3190 2 RMB-SSVM[66] 

d-9 Balance 4 625 3 GPMO[67] 

d-10 Spectf 44 267 2 RFSA -MCC[51] 

d-11 
Hayes-

Roth 
4 160 3 SSDA[65] 
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B. Proposed Method 

The proposed method can find the best parameters of the 
quadratic function in Eq. (3) generated by maximizing the 
Fisher score [68], [69], which is the ratio of variance between 
classes and variance within classes. The result of maximizing 
the Fisher score is a closed-form solution of the quadratic 
function parameters described in Section III (B) (1), while the 
feature transformation procedure is described in Section III (B) 
(2). 

1) Separability-based quadratic feature transformation: 

Based on the Fisher Score function of Eq. (1) and the 

quadratic function of Eq. (3), Eq. (4) is generated as the basis 

for obtaining the best parameters. 
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Arg_max(Fs(k)) Eq. (4) yields the optimal parameters a, b, 
and c formulated in Eq. (7) to Eq. (9). 
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The Squared variance of kth feature, i-th class 
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2) Transformation procedure: Each feature is separately 

parameterized using Eq. (7) to Eq. (9). The following 

procedure is used for feature transformation: 

a) Select the kth feature for which parameters are to be 

calculated. 

b) Split the feature into training and testing data. 

c) Square each element of the feature (
kx ) and add it 

as a new feature (
kx )

2
. 

d) Using the training data, calculate the mean of the kth 

feature of the i-th class, the average of the kth feature, the 

variance of the kth feature of the i-th class, the squared 

variance of the kth feature of the i-th class, the covariance 

between 
k

ix   and 2( )k

ix   of the kth feature of the i-th class, 

respectively, using Eq. (2), (14), (15), and (16) to obtain the 

optimal parameters, b, and c in Eq. (7) to Eq. (9). 

e) Transform each feature element 
k

ix  , both training 

and testing, using Eq. (3). 

C. Experimental Design 

All 11 datasets were preprocessed, which included 
converting categorical data types to numerical and 
standardizing the datasets in the range between 1 and 2 [19]. 
Fig. 1 presents the experimental design where the data is split 
into training and testing using the Cross-validation technique 
with k = 10. The training data was used to obtain the quadratic 
function parameters as described in detail in Section III (B) (2), 
and the Box-Cox transformation parameter λ in the range of -5 
to +5 as in Bicego and Baldo's study, which chose the best λ 
based on the highest fisher score.  These parameters are used to 
transform training and testing data features based on quadratic 
and Box-Cox functions. The quality of the transformed training 
data features was measured using the Fisher score, Information 
gain, Gain ratio, Gini Decrease, Anova, Chi-square, ReliefF, 
and FCBF to ensure they were good inputs for training the two 
statistical machine learning algorithms LDA [70] and 
QDA[71]. The resulting ML model was tested with the 
transformed testing data to evaluate model performance. Model 
performance is measured by the accuracy (Acc) metric using 
Eq. (17). 

*100
Tp Tn

Acc
Tp Tn Fp Fn

 
  

     (17) 
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Fig. 1. Experimental design of quadratic and Box-Cox transformations. 

where Tp, Tn, Fp, and Fn are components in the confusion 
matrix that respectively show the number of true positives, true 
negatives, false positives, and false negatives. 

This study compares feature quality and ML performance 
before and after transformation to assess the efficacy of the 
proposed transformation, as well as comparisons with ML 
performance by other researchers. Seven metrics compare 
feature quality before and after transforming using quadratic 
and Box-Cox functions. The algorithm is trained using 
transformed training data and then tested using transformed 
testing data to determine ML performance. The results are 
compared with the performance before transformation. The 
accuracy of the proposed method is compared with the results 
of other researchers for the same dataset, including Huan Wan, 
et al 2018 [65], Jinsong Wang, et al 2020 [72], R Ksantini et al 
2012 [73], Eslam Hamouda, et al 2021[47], Syed Muhammad 
Saqlain, et al 2019 [51], Jianbin Ma, et al 2019 [63], and Min 
Gan, et al 2021[74], and Peiyang Li, et al 2018 [75]. 

IV. RESULTS AND DISCUSSION 

A. Comparison of Feature Quality Before and After 

Transformation 

The success of feature transformation is measured by 
comparing the quality of features before and after 
transformation. This research uses eight widely used feature 
quality measurement methods. 

1) Fisher score: Since class separability is the basis for 

transforming features in this research, the higher the Fs, the 

better the feature quality. Fig. 2 presents the Fs of each feature 

from the d-3 (Ringnorm) dataset consisting of 20 features 

before and after transformation. As shown in Fig. 2, the Box-

Cox and Quadratic transformations produce features with 

larger Fs than the original features, and the quadratic 

transformation produces better Fs improvement than the Box-

Cox transformation on all features. Except for d-6 and d-9 

datasets, the superiority of the quadratic transformation also 

occurs in other datasets, namely superiority in 41 out of 60 

features, 25 out of 30 features, 3 out of 5 features, 9 out of 9 

features, 8 out of 11 features, 38 out of 60 features, 37 out of 

44 features, and 4 out of 4 features, respectively for d-1, d-2, 

d-4, d-5, d-7, d-8, d-10, and d-11. For the d-6 dataset of 22 

features, the quadratic transform outperforms the Box-Cox in 

11 features and vice versa in the other 11 features. For dataset 

d-9, the Box-Cox transform outperformed the quadratic 

transform for all features. In general, the quadratic transform 

produces more features with higher Fs for the whole dataset. 

 
Fig. 2. Comparison of fisher score for d-3 (Ringnorm) dataset. 

2) Information gain: Information Gain measurements for 

all datasets show that the Box-Cox transformation does not 

change the information gain value, meaning that the Box-Cox 

transformation does not increase the information gain value. 

On the other hand, except for datasets d-9 and d-11, the 

quadratic transformation generally produces features with 

greater information gain values, although this is not the case 

for every feature. Fig. 3 presents the information gain value of 

each feature for the d-3 (Ringnorm) dataset, which consists of 

20 features. The increase in information gain in this dataset is 

observed for all features. An extreme case occurs in datasets 

d-9 and d-11, where the quadratic transformation does not 

increase the information gain value of each feature. 

 
Fig. 3. Comparison of gain information for d-3 (Ringnorm) dataset. 

3) Gain ratio: The Gain Ratio measurement shows similar 

results to the Information Gain, where the Box-Cox 

transformation does not change the Gain Ratio value. Except 

for d-9 and d-11 datasets that did not experience an increase in 

gain ratio in all features, the quadratic transformation 

generally increased the gain ratio value of a number of 

features in other datasets. The number of features that have 
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increased gain ratio values is different for each dataset, 

namely 29 out of 60, 13 out of 30, 20 out of 20, 2 out of 5, 4 

out of 9, 8 out of 22, 3 out of 11, 15 out of 60, 18 out of 44 

features, respectively for datasets d-1, d-2, d-3, d-4, d-5, d-6, 

d-7, d-8, d-10. Fig. 4 presents the Gain Ratio value of each 

feature for dataset d-3 (Ringnorm). It can be seen that the 

quadratic transformation increases the gain ratio of each 

feature. 

 
Fig. 4. Comparison of gain ratio for d-3 (Ringnorm) dataset. 

4) Gini decrease: The Gini decrease measurement shows 

similar results to the Information Gain and Gain ratio, where 

the Box-Cox transformation does not change the Gini decrease 

value. Except for d-9 and d-11 datasets that did not experience 

an increase in gain ratio across all features, the quadratic 

transformation generally increased the Gini decrease value of 

a number of features in the other datasets. The number of 

features that have increased gain ratio values is different for 

each dataset, namely 27 out of 60, 13 out of 30, 20 out of 20, 2 

out of 5, 5 out of 9, 9 out of 22, 5 out of 11, 15 out of 60, 17 

out of 44 features, respectively for datasets d-1, d-2, d-3, d-4, 

d-5, d-6, d-7, d-8, d-10.  Fig. 5 presents the Gini decrease 

value of each feature for dataset d-3 (Ringnorm). It can be 

seen that the quadratic transformation results in an increase in 

Gini decrease for all features. 

 

Fig. 5. Comparison of gini decreases for d-3 (Ringnorm) dataset. 

5) Analysis of Variance (ANOVA): Except for the 

Hungarian and Balance datasets, ANOVA measurements 

show that the Box-Cox transformation improves most of the 

features in most datasets. The improvement in ANOVA values 

by Box-Cox transformation occurs in 58 out of 60, 25 out of 

30, 20 out of 20, 3 out of 5, 7 out of 9, 19 out of 22, 60 out of 

60, 31 out of 44, 4 out of 4 features for datasets d-1, d-2, d-3, 

d-4, d-5, d-6, d-8, d-10, d-11 respectively. The quadratic 

transformation gives slightly better ANOVA measurement 

results than the Box-Cox transformation. Except for dataset d-

7, most datasets have an increase in ANOVA values. Even an 

increase in ANOVA values in each feature is observed in 

datasets d-3, d-8, d-9, and d-11. In the other six datasets, the 

increase in ANOVA values occurred in 59 out of 60, 27 out of 

30, 3 out of 5, 8 out of 9, 19 out of 22, 30 out of 44 features, 

for datasets d-1, d-2, d-4, d-5, d-6, d-10, respectively. Fig. 6 

presents the ANOVA values of each feature for dataset d-3 

(Ringnorm) before and after undergoing Box-Cox and 

Quadratic transformations. It can be seen that the Quadratic 

transformation generally improves the ANOVA value better 

than the Box-Cox transformation. 

 
Fig. 6. Comparison of ANOVA for d-3 (Ringnorm) dataset. 

6) Chi-Square: In Chi Square measurement in Box-Cox 

transformation, none of the features experienced changes in 

Chi Square value as produced by Information gain, Gain ratio, 

and Gini Decrease. For the quadratic transformation, except d-

9 and d-11, the increase in Chi Square value occurred for 36 

out of 60, 19 out of 30, 20 out of 20, 3 out of 5, 6 out of 9, 12 

out of 22, 5 out of 11, 49 out of 60, 24 out of 44 features, 

respectively for datasets d-1, d-2, d-3, d-4, d-5, d-6, d-7, d-8, 

d-10.  Fig. 7 presents the results of measuring the Chi-Square 

value of each feature for dataset d-3 (Ringnorm). It can be 

seen that the quadratic transformation results in an increase in 

the Chi-Square value of all features. 

 
Fig. 7. Comparison of chi square for d-3 (Ringnorm) dataset. 
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7) ReliefF: Measurements using the ReliefF method 

provide varied results for both Box-Cox and Quadratic 

transformations, where in each dataset, features experience an 

increase in their ReliefF value. In Box-Cox transformation, the 

increase in reliefF value occurs in 35 out of 60, 28 out of 30, 2 

out of 20, 3 out of 5, 8 out of 9, 19 out of 22, 4 out of 11, 29 

out of 60, 2 out of 4, 25 out of 44, 3 out of 4 features, 

respectively for datasets d-1, d-2, d-4, d-5, d-6, d-7, d-8, d-9, 

d-10, d-11. The quadratic transformation generally gives 

slightly better ReliefF measurement results than the Box-Cox 

transformation. However, compared to the Box-Cox 

transformation, the number of features that have improved 

ReliefF values is less for datasets d-2, d-8, and d-10. However, 

the number of features that have improved ReliefF values is 

more in five datasets and the same in three other datasets. The 

increase in ReliefF value by Quadratic transformation occurs 

in 37 out of 60, 26 out of 30, 10 out of 20, 4 out of 5, 8 out of 

9, 19 out of 22, 6 out of 11, 28 out of 60, 4 out of 4, 24 out of 

44, 3 out of 4 features, respectively for datasets d-1, d-2, d-4, 

d-5, d-6, d-7, d-8, d-9, d-10, d-11. Fig. 8 presents the ReliefF 

value of each feature for dataset d-3 (Ringnorm) before and 

after undergoing Box-Cox and Quadratic transformations. On 

the d-3 dataset, the Quadratic transformation appears to 

increase the ReliefF value on ten features and decrease it on 

ten other features. In comparison, the Box-Cox transformation 

increases the ReliefF value on two features and decreases it on 

the other 18 features. 

 
Fig. 8. Comparison of reliefF for d-3 (Ringnorm) dataset. 

8) Fast Correlation Based Filter (FCBF): Measurement 

using FCBF gives very different results where Quadratic is 

better than Box-Cox regarding the number of features that 

have increased FCBF value. In quadratic transformation, out 

of 11 datasets, there are 10 datasets whose number of features 

has increased, where the increase in FCBF value occurs in 28 

out of 60, 13 out of 30, 20 out of 20, 2 out of 5, 8 out of 9, 8 

out of 22, 9 out of 11, 20 out of 60, 20 out of 44, 3 out of 4 

features, respectively for datasets d-1, d-2, d-3, d-4, d-5, d-6, 

d-7, d-8, d-10, d-11. Except for datasets d-3, d-7, and d-11, the 

FCBF value from Box-Cox transformation has slightly 

increased in the other 8 datasets. The increase occurs in 2 out 

of 60, 3 out of 30, 3 out of 5, 1 out of 9, 2 out of 22, 2 out of 

60, 4 out of 4, 1 out of 44 features, respectively, for datasets d-

1, d-2, d-4, d-5, d-6, d-8, d-10. Fig. 9 presents the 

measurement results of each feature on dataset d-3 

(Ringnorm), where all features have increased from 20 

features. 

 
Fig. 9. Comparison of FCBF for d-3 (Ringnorm) dataset. 

B. Effects of Quadratic and Box-Cox Transformations on ML 

Performance 

This study uses two statistical-based machine learning 
algorithms, LDA and QDA. The performance results of each 
algorithm are presented in Tables II and III. Table II shows the 
comparison of LDA accuracy performance before and after 
Box-Cox and Quadratic transformations on 11 datasets. 
Experimental results on all datasets before and after quadratic 
transformation show an increase in accuracy performance. The 
highest increase in accuracy occurred on the Hayes Roth 
dataset, which was 0.268, and the lowest occurred on the 
Wisconsin dataset, which was 0.015. Experimental results on 
all datasets before and after the Box-Cox transformation also 
experienced an increase in accuracy performance. The highest 
increase in accuracy of 0.115 occurred on the Ringnorm 
dataset, and the lowest occurred on the WDBC dataset of 
0.002. Compared to Box-Cox, Quadratic transformation 
generally produces a more significant increase in accuracy, 
ranging from 1.56% to 49.26%. 

TABLE II.  COMPARISON OF ACCURACY ALGORITHMS LDA BEFORE AND 

AFTER BOX-COX AND QUADRATIC TRANSFORMATION 

dataset Original Box-Cox Quadratic 

Sonar 0.751 0.785 0.834 

WDBC 0.956 0.958 0.974 

Ringnorm 0.763 0.878 0.941 

New Thyroid 0.934 0.939 0.954 

Wisconsin 0.959 0.972 0.974 

Parkinson 0.883 0.898 0.908 

Hungarian 0.830 0.840 0.848 

Splice 0.804 0.856 0.884 

Balance 0.864 0.874 0.912 

Spectf 0.746 0.765 0.780 

Hayes Roth 0.544 0.606 0.812 

Table III shows the comparison of QDA accuracy 
performance before and after Box-Cox and Quadratic 
transformations. Except for Ringnorm and Spectf datasets, 
where the accuracy is more or less the same, quadratic 
transformation improves QDA accuracy for all datasets. In 
comparison, Box-Cox transformation increases the accuracy on 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

684 | P a g e  

www.ijacsa.thesai.org 

seven datasets and decreases the accuracy on four datasets, 
namely Ringnorm, Balance, Spectf, and Hayes Roth. In 
general, both Box-Cox and Quadratic transformations improve 
accuracy on most datasets, whereas quadratic transformation 
improves accuracy on more datasets. Concurrent improvement 
in accuracy by Box-Cox and Quadratic transformations was 
observed in seven datasets, namely Sonar, WDBC, New 
Thyroid, Wisconsin, Parkinson, Hungarian, and Splice. On the 
Balance, Spectf, and Hayes-roth datasets, the Box-Cox 
transformation is shown to decrease accuracy, while the 
Quadratic transformation increases accuracy. 

TABLE III.  COMPARISON OF ACCURACY ALGORITHMS QDA BEFORE AND 

AFTER BOX-COX AND QUADRATIC TRANSFORMATION 

dataset Original Box-Cox Quadratic 

Sonar 0.779 0.809 0.818 

WDBC 0.956 0.961 0.965 

Ringnorm 0.979 0.964 0.971 

New Thyroid 0.967 0.985 0.986 

Wisconsin 0.958 0.972 0.968 

Parkinson 0.882 0.918 0.923 

Hungarian 0.825 0.838 0.844 

Splice 0.846 0.859 0.889 

Balance 0.918 0.837 0.963 

Spectf 0.794 0.791 0.794 

Hayes Roth 0.649 0.609 0.837 

C. Performance of LDA and QDA Based on Quadratic 

Transformation Compared to Other Methods 

Table IV presents the performance comparison between 

LDA and QDA with methods from other researchers. It shows 

that the LDA algorithm in the 2nd column, six datasets have 

higher accuracy than other methods (OM) as listed in the 4th 

column of Table IV; they are Sonar, WDBC, Wisconsin, 

Parkinson, Hungarian, and Splice datasets. Compared to 

QDA, as shown in the 3rd column of Table 4, it indicates that 

QDA excels on seven datasets: Sonar, Ringnorm, New 

Thyroid, Parkinson, Splice, Balance, and Hayes Roth. 

TABLE IV.  COMPARISON OF THE OTHERS METHODS (OM) ACCURACY 

WITH QUADRATIC TRANSFORMATION 

Dataset LDA QDA OM 

Sonar 0.834 0.818 0.768 

WDBC 0.974 0.965 0.967 

Ringnorm 0.941 0.971 0.953 

New Thyroid 0.954 0.986 0.972 

Wisconsin 0.974 0.968 0.970 

Parkinson 0.908 0.923 0.862 

Hungarian 0.848 0.844 0.845 

Splice 0.884 0.889 0.868 

Balance 0.912 0.963 0.939 

Spectf 0.780 0.794 0.827 

Hayes Roth 0.812 0.837 0.818 

LDA and QDA outperformed other methods only on Sonar, 
Parkinson, and Splice datasets. 

D. Discussion 

The results of separability measurement using the Fisher 
score on each feature of the dataset before and after quadratic 
and Box-Cox transformation show that all features have 
increased separability. This result proves the success of the 
proposed method that aims to improve class separability. 
Compared to Box-Cox, the improvement in class separability 
of quadratic transformation is generally better. It happens 
because the quadratic transformation can change the order of 
the data that the Box-Cox does not have [20]. 

The results of measuring seven metrics show that the Box-
Cox transformation cannot improve the quality of features in 4 
matrices, namely Information gain, Gain ratio, Gini decrease, 
and Chi-Square. This finding indicates a relationship between 
transformations that do not change the order of the data and the 
ability of these transformations to improve the quality of the 
features of the four metrics above. This finding is reinforced by 
the results of the quadratic transformation on features that do 
not change the order of the data, where the feature quality also 
does not change. Thus, Box-Cox transformation is unsuitable 
for Information gain-based ML such as decision Tree and 
Random Fores. In contrast, quadratic transformation still has 
the opportunity to improve ML performance. 

The quadratic transformation has been shown to improve 
separability, which in turn improves the performance of the 
LDA and QDA algorithms. Although the performance 
improvement varies for each dataset and algorithm used, it 
shows that the dataset's characteristics play a role. Likewise, 
the algorithm used where LDA provides a significant increase 
in accuracy compared to the QDA algorithm. It shows that the 
linear ML algorithm has an advantage over the QDA 
algorithm. 

The quadratic transformation can work like the Box-Cox 
transformation in terms of transforming features to be more 
linearly separable between data groups, as shown by Bicego 
and Baldo. In some instances, the quadratic transformation can 
change the order of the data, which helps handle bimodal 
features, which Box-Cox lacks. The closed-form formulation to 
obtain the optimal quadratic parameters can be determined 
deterministically, whereas in Box-cox the optimal parameters 
are determined using Maximum Likelihood (MLE) or Grid 
search [14], [21]. It is clear that the computation time of the 
quadratic transform is more efficient. 

Our research supports the findings of Bicego and Baldo 
that accuracy performance is more related to class separability 
than Gaussianity. We emphasize that from experimental 
results, using the quadratic transform where the separability 
effect is higher than Box-Cox also results in better accuracy. 
This result adds to the finding that Baldo's statement applies 
not only to the Box-Cox transform but also to the quadratic 
transform. 

Based on the experimental results, we recommend the 
following for future research, namely: 

 Quadratic transformation can detect the presence of 
bimodal distributed features by measuring the degree of 
change in the fisher score of features before and after 
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transformation. However, it needs to be researched 
more deeply on how much the right level of change is. 

 Quadratic transformation can improve the Fisher score's 
ability to assess informative features. 

 Overlapping features have a low Fisher score value. If 
this feature is transformed using a quadratic function, 
the new feature formed will also has a low Fisher score. 

 Informative features with a high fisher score, when 
transformed using a quadratic function, the Fs value 
will not experience significant changes. 

V. CONCLUSION 

Feature engineering through quadratic transformation can 
be used to improve class separability. It can also be used to 
transform bimodal distributed data into unimodal. Unimodal 
features have a better fisher score than bimodal features, so if 
the dataset contains unimodal features, it can improve the 
performance of the ML algorithm. The proposed feature 
transformation method can improve the feature's fisher score 
and seven feature quality test metrics, i.e, Information Gain, 
Gen ratio, Gini Decrease, ANOVA, Chi-Square, ReliefF, and 
FCBF. Experimental results on 11 datasets using ML 
algorithms, namely LDA and QDA, show that feature 
transformation using quadratic functions can significantly 
improve the accuracy performance of ML algorithms. 
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