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Abstract—The advent of intelligent networks powered by 

machine learning (ML) methods over the past few years has 

dramatically facilitated various facets of human lives, including 

healthcare, transportation, and entertainment. However, the use 

of ML in intelligent networks raises serious concerns about 

privacy and security, particularly in the context of data poisoning 

attacks. In order to address these concerns, this research paper 

presents a novel technique for detecting data poisoning attacks in 

intelligent networks, focusing on addressing privacy and security 

concerns associated with the use of machine learning (ML) 

methods. The research combines federated learning and deep 

learning approaches to analyze network data in a distributed and 

privacy-preserving manner. The technique employs a federated 

neural network to identify malicious data by analyzing network 

traffic, leveraging the power of Bayesian convolutional neural 

networks for efficient and accurate detection. The research 

follows an empirical approach, conducting experimental analyses 

to evaluate the proposed technique's effectiveness in terms of 

network security and data classification. The results demonstrate 

significant performance, including high throughput, quality of 

service, transmission rate, and low root mean square error for 

network security. Furthermore, the technique achieves 

impressive accuracy, recall, precision and malicious data analysis 

for data detection. The findings of this research contribute to 

enhancing the security and integrity of intelligent networks, 

benefiting various stakeholders, including network 

administrators, data privacy advocates, and users relying on 

secure network communication. 
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I. INTRODUCTION 

In recent years, the widespread use of systems and the data 
they generate has increased significantly, thanks to rapid 
advancements in technology [1]. This has led to a surge in the 
velocity at which data is produced, enabling systems to access 
and utilize it without requiring detailed programming. As an 
application of artificial intelligence, machine learning (ML) 
techniques enable systems to produce meaningful results by 
learning data on their own [2]. These techniques are 
extensively applied in cybersecurity, where they are used to 
identify malware, malicious network traffic, and improper 
system behavior [3]. Commercial products, such as Exabeam, 
Fortscale, and E8 Security, leverage these and related ML 
techniques for cybersecurity. 

However, to bypass such detection systems and 
compromise the security of critical areas by exploiting flaws in 
ML methodologies, attackers have resorted to deploying 
adversarial ML techniques. Adversarial ML is a strategy 
employed in the field of ML that aims to deceive methods 
using nefarious input in either training or decision-making 
time. 

When building a machine learning algorithm, the first step 
is to collect data, such as a set of images for developing 
computer vision applications. Ideally, this data should be 
collected and labeled in a controlled and secure environment 
[4]. However, this is a time-consuming and costly operation 
that not all organizations and individuals can afford. Therefore, 
they sometimes collect data from the Internet or other untrusted 
sources. For example, when building security systems, users 
may download labeled data from external vendors, such as 
VirusTotal, for malware data annotation. 

However, applying ML in Internet of Things (IoT) 
environments poses unique security challenges, as attackers 
may tamper with sensors and modify the training data. A 
poisoning attack, also known as a targeted misclassification or 
bad behavior assault, allows adversaries to significantly reduce 
overall performance, introduce backdoors and neural Trojans, 
and cause targeted misclassification or bad behavior [5]. 

The study of how adversarial approaches could exploit ML 
algorithms and the development of effective defenses against 
their exposure led to the creation of the discipline of 
adversarial machine learning (AML). AML has been 
extensively researched in various disciplines, including 
intrusion detection and picture categorization. However, IoT 
systems have not been thoroughly studied in this regard. 

Although the prevalence of data-driven applications and 
our growing reliance on networked systems have many 
advantages, they have also raised serious security concerns [6]. 
Data poisoning attacks, in which malicious actors inject 
harmful data into the system to manipulate its behavior and 
compromise its performance, are a serious security risk. These 
attacks have the potential to have devastating effects, including 
incorrect decisions, privacy breaches, and possibly catastrophic 
outcomes in crucial systems like those that control finance, 
healthcare, and industry. Effective detection and mitigation of 
data poisoning attacks may not be possible with current 
security measures and data classification techniques. 
Furthermore, since sensitive data is frequently made available 
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to a single entity or server, centralized approaches to data 
analysis raise privacy issues. There is a growing interest in 
investigating decentralized and privacy-preserving techniques, 
like federated learning, which enables local data analysis while 
aggregating knowledge globally, to address these problems. 

The main goal of this paper is to suggest a novel method 
for detecting data poisoning attacks with a focus on classifying 
malicious data using federated and deep learning techniques. 
The goal of the paper is to tackle the problem of spotting and 
countering malicious activity in networked systems while 
protecting data security and privacy. The proposed method 
enables decentralized data analysis and guarantees that 
sensitive data is stored and protected locally by using federated 
learning and a federated adversarial neural network. The 
analysis of harmful network data is further improved by using 
BCNN, producing more precise and trustworthy results.  

The major contributions of this research study are as 
follows: 

 The study suggests a novel method for identifying data 
poisoning attacks that focuses on the classification of 
malicious data. The suggested approach improves the 
capacity to recognize and counteract malicious 
activities within the network by utilizing federated and 
deep learning techniques. 

 To analyze network data, spread across various 
participants, the research introduces the use of a 
federated adversarial neural network. With this strategy, 
sensitive information is stored locally, privacy is 
maintained, and effective analysis of malicious activity 
is still possible. 

 The analyzed data is collected and processed using a 
cloud module. This federated learning system’s 
participants can communicate with each other easily 
thanks to the cloud-based approach's efficient data 
handling. 

 In this study, harmful network data is analyzed using a 
BCNN. The ability of BCNNs to capture model 
parameter uncertainty allows for more accurate analysis 
and classification of malicious data. 

 The research makes use of real-world datasets, such as 
the Duchenne Smile Dataset, Product Dataset, and 
Sentiment Dataset, to show the effectiveness of the 
suggested attack approach. 

The proposed method was chosen based on the distinct 
advantages of combining federated learning and deep learning 
approaches for effectively detecting data poisoning attacks in 
intelligent networks. 

Acknowledging the limitations of existing methods in 
addressing data poisoning attacks in intelligent networks, such 
as scalability and sensitivity to biased data distributions, 
emphasizes the need for our proposed approach. By 
overcoming these constraints, our method offers a compelling 
alternative to enhance the effectiveness of detecting and 
mitigating such attacks. 

The rest of this paper is organized into four sections. In 
Section II, we provide a comprehensive review of the existing 
literature, focusing on data poisoning attacks and their 
detection. Section III describes the system model used in this 
research and the architecture of our proposed technique. 
Section IV presents the results of our experimental analysis, 
which evaluates the effectiveness of our proposed technique. 
Finally, in Section V, we summarize our research and its 
contributions, discuss the implications of our findings, and 
identify areas for future work. 

II. LITERATURE REVIEW 

In recent years, the potential threats posed by adversarial 
machine learning (AML) have been widely studied by 
researchers. In this section, we provide a comprehensive 
review of the existing literature on data poisoning attacks and 
their detection techniques in machine learning. 

In the realm of machine learning applications, the data 
generated for training and testing models is susceptible to 
manipulation by malicious actors who can gain control over a 
multitude of devices [7]. Biggio et al. [8] conducted the first 
systematic poisoning assault against the linear regression 
method by taking control of many devices, and introduced the 
TRIM algorithm, which is a more potent method than 
conventional methods for identifying poisoning spots on 
training data. Khalid et al. [9] highlighted potential AML 
attacks and training data poisoning risks, and provided 
examples of these assaults, including a less damaging training 
data poisoning attack. The study in [10] proposed a data 
poisoning attack that modifies labels of labeled data and affects 
machine learning systems' capacity to categorize data. To 
guarantee label clearing against this assault, they then put forth 
a defense method based on the k-nearest neighbors (K-NN) 
algorithm. 

Adversarial attacks are a critical threat to the integrity of 
machine learning models, and adversaries can manipulate the 
data generated for these applications by commandeering 
multiple devices [11]. Within this context, the TRIM algorithm 
proposed in [12] has been shown to be a more effective and 
powerful technique for identifying poisoning points in training 
data, and it was the first systematic attack against the linear 
regression method. In [13], the author identified potential 
adversarial machine learning (AML) attacks and risks 
associated with training data poisoning, including a less 
harmful attack on training data. Additionally, [14] described a 
data poisoning attack that modifies the labels of labeled data 
and impairs the ability of machine learning systems to classify 
data. To combat this attack, the authors proposed a defense 
method based on the k-nearest neighbors (K-NN) algorithm. It 
is highly improbable for training data to represent all possible 
scenarios, and "adversarial areas" near the decision boundary 
are particularly vulnerable locations for machine learning 
models. As a result, adversaries may use trial and error or 
reverse engineering to uncover "adversarial samples" that are 
not covered by the training data. Indeed, adversaries can use 
trial and error or reverse engineering to uncover "adversarial 
samples" and deceive the model, endangering its integrity. 
These evasion attacks are experimental and frequently used 
[15]. For instance, creator [16] utilized a generative network 
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called Malware-GAN to make ill-disposed malware samples 
for a black-box classifier, causing the classifier to fail after the 
assault. 

An attack is viewed as causal when an attacker approaches 
training data and is allowed to harm it. The author in [17] 
showed that a peculiarity identification strategy on network 
traffic that had been polluted by refuse traffic infusion 
enhanced the bogus negative rate to 28 percent for single 
preparation period harming and to more than 70% for multi-
preparing period harming. They also presented a cure strategy 
that can reject harmful preparation information and is less 
vulnerable to exceptions for extensive inconsistency detection. 
The study in [18] proposed the RONI safeguard strategy, 
which was effective, but had limitations in that it must be 
tested and trained on spam email data. Furthermore, it could 
potentially dispose of important information from training data, 
requiring further examination. 

The authors in [19] endeavored to address a limitation that 
had been encountered by several previous studies. In addition, 
the authors in [20] proposed a detrimental attack that has the 
potential to bypass current safeguards with ease. The attack 
was subjected to testing against a range of hypothetical 
adversaries, providing valuable insights into its efficacy. The 
study in[21] also suggested a detrimental attack that utilizes a 
generative approach to expedite the generation of manipulated 
data by leveraging the gradient of the model. These advances 
in adversarial machine learning highlight the urgent need for 
developing more robust and effective techniques to detect and 
mitigate these attacks. 

In the literature, several studies have proposed techniques 
to detect data poisoning attacks and other adversarial attacks in 
machine learning. Data poisoning attack detection tools 
currently available have some drawbacks and restrictions. 
Some defense strategies, such as the K-NN algorithm, aren't 
robust enough to handle complex data poisoning attacks, 
leaving room for attackers to get around these strategies and 
successfully poison the training data. When used on 
contaminated training data, some detection techniques may 
produce a high percentage of false negatives, failing to 
accurately detect some cases of data poisoning. Additionally, 
some current solutions might be effective against the kinds of 
attacks but fall short when faced with fresh or unexpected 
attack patterns, which restricts their applicability in real-world 
situations. Additionally, some proposed techniques are less 
applicable to a variety of real-world datasets because they rely 
on data for testing and training, such as spam email data. 
Additionally, some techniques are impractical for use in real-
world applications because of their inability to scale effectively 
to large datasets or distributed environments. Additionally, 
although BCNNs demonstrate promise in capturing uncertainty 
and identifying adversarial samples, their ability to estimate 
uncertainty may not be accurate enough to defend against all 
possible data poisoning attacks. Finally, the limited 
collaborative defense mechanisms used in current methods fail 
to fully capitalize on the benefits of federated learning and 
distributed learning for improved detection. Together, these 
flaws highlight the need for a more thorough and potent 
method to deal with the constraints imposed on current 
solutions. The proposed method integrates federated learning, 

adversarial neural networks, and BCNNs to close this research 
gap. It hopes to accomplish this by developing a more reliable 
and scalable method of identifying data poisoning attacks. The 
proposed method seeks to improve the defense against data 
poisoning attacks through careful experimental analysis, 
ultimately advancing the field of adversarial machine learning 
research. 

III. SYSTEM MODEL 

This section presents a novel technique for detecting data 
poisoning attacks based on federated and deep learning 
techniques. The overview of the proposed approach is shown 
in Fig. 1. By randomly flipping labels in a section of the 
training dataset, the data poisoning process creates poisoned 
datasets with varying poisoning rates that include both 
legitimate and adversarial samples. The method uses an 
adversarial neural network integrated with a federated learning 
approach to counter these poisoning attacks. Participants 
(clients) in this collaborative setting use local datasets to jointly 
train a global model. As a result of the inclusion of adversarial 
elements in the learning process, the model is better equipped 
to fend off poisoning attacks during the federated learning 
procedure. To further improve model robustness, the proposed 
technique makes use of BCNNs. The ability of BCNNs to 
capture prediction uncertainty allows for more accurate 
detection of potential adversarial samples. Each of the 
poisoned datasets is used to train a separate BCNN during the 
phase of model training and evaluation. The effectiveness of 
both the global model and the BCNNs is then evaluated using 
results from a shared test dataset. Analyzing the BCNN 
predictions' levels of uncertainty on the test dataset is a step in 
the process of detecting data poisoning attacks. The method 
effectively identifies potential data poisoning attacks by 
establishing an uncertainty threshold. The detailed description 
of each step of the proposed approach is presented in the 
subsequent subsections. 

 
Fig. 1. Overview of the proposed approach. 

Data Poisoning Process 

Federated Adversarial Neural Network-

Based Network Data Analysis 
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Evaluating Model Performance 

Detecting Data Poisoning Attacks 
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A. Data Poisoning Process 

To simulate the information poisoning attack on data 
classes, training datasets were created. To prevent a bias 
towards poisoning a significant amount of either normal data or 
attack data, normal observations were randomly selected, and 
most of the normal traffic observations were pooled. After 
randomizing the data, a Python script was used to determine 
the number of labels to flip based on a specified rate. To 
demonstrate the impact of data poisoning on classifiers, the 
data was poisoned at four rates (rpoison), as outlined in 
Algorithm 1. 

Algorithm 1: Data Poisoning Process 

Input: Sanitized Training Dataset (  ) 

Output: Poisoned Training Datasets (  
     

     
      

 ) 
Steps: 

Randomise    observations should not be biased by poisoning either 

normal or attack observations. 

For every rate rpoison of data poisoning ,                - 
Evaluate a number of labels to flip Lpoison=D5*rpoison 

Flip Lpoison labels within Ds 

End for 

Return poisoned training datasets   
     

     
     

  

B. Federated Adversarial Neural Network-based Network 

Data Analysis 

Participants in federated learning may not always have the 
same learning objectives or method structures. The central 
server sends the most recent global model parameters to the 
chosen participants (mt) at the beginning of each 
communication round. Then, using the relevant local data, 
these participants go on to update and train their local models. 
Each participant uploads their updated model to the central 
server following the local training process. The central server 
then averages the models that were uploaded and incorporates 
the resulting information into the central model. This update 
procedure is implemented as shown in Eq. (1), ensuring that 
the central model gains from the group learning of all 
participants while maintaining the security and privacy of the 
data. The federated learning approach is a flexible and strong 
framework that can be applied to various scenarios because it 
allows participants to maintain their individuality when 
defining their learning objectives and selecting the best method 
structures. 

        
 

  
    
     

    (1) 

In Eq. (1),   
  represents the method updates submitted by 

the     participant, and Mt represents the current global 

method at the     iteration. A federated learning system can 
achieve high accuracy when users download the same method 
with the same initialization, which is averaged by the central 
method with all valid uploads. We now introduce a new 
method, presented in Eq. (2), for training supervised federated 
learning models. 

 ( )  
 

 
    
    (  )  ( )  

 

  
    
  ∥∥    ‾∥∥

 
 (2) 

where,       is a penalty specification,    

(          )   
  are local methods, and    

 

 
   
    ‾  is 

average of local methods. Since Eq. (2) has a unique solution, 
which we designate by Eq. (3), F is strongly convex due to 
assumptions on fi that we will make. 

Here in Eq. (2),       is a penalty specification,    
(          )   

   represents the local methods, and 

   
 

 
   
    ‾   is the average of the local methods. Since Eq. 

(2) has a unique solution, which we designate as Eq. (3), F is 
strongly convex due to the assumptions we make on fi. 

 ( )  (  ( )     ( ))   
nd   (3) 

We further let  ‾( )  
 

 
    
    ( ) We now provide a 

statement regarding the new formulation's justification. Let's 
now examine the limit case      . The ideal local models 
should be forced to be mutually identical by this limit case 
while minimising the loss f, according to intuition. This limit 
situation will specifically be solved using   Eq. (4). 

We also define  ‾( )  
 

 
    
    ( ) . We now provide a 

statement regarding the justification for the new formulation. 
Let us consider the limit case      . In this limit, the ideal 
local models should be forced to be identical to each other 
while minimizing the loss function f, according to intuition. 
This limit situation is specifically solved using Eq. (4). 

   * ( )          
            + (4) 

Eq. (4) is the equivalent global formulation. Therefore, we 
define xi(∞) as the optimal solution to Eq. (4) for each i, and 
let x(∞) := (x1(∞), . . . , xn(∞)). 

For vectors   (       )   
   and   (       )  

   , we define the standard inner product and norm as 

follows:            
  (       ∥  ∥

       
  ∥∥  ∥∥

 
. Note that 

the separable structure of f implies that ((  ( ))  
 

 
   (  )), 

i.e.,   ( )  
 

 
(   (  )    (  )      (  )). 

Furthermore, note that f is   -smooth with with     
 

 
 and 

  -strongly convex with     
 

 
. Clearly,   is convex by 

construction, and it is given that   is   -smooth with    
 

 
. 

We can observe that (  ( ))  
 

 
(    ‾), which, in turn, 

implies by Eq.  (5), (6), and (7). 

 ( )  
 

 
   
   ∥∥(  ( )) ∥∥

  
 

 
∥   ( ) ∥  (5) 

 ( ( ))  
 ( ( ))  ( ( ))

 
  (6) 

 ( ( ))   ( ( ))  (7) 

For every       and          , we have by (8): 

  ( )   ‾( )  
 

 
   (  ( ))  (8) 

We have    
      (  ( ))   . By subtracting a multiple 

of the local gradient from the average model, the best local 
models Eq. (5) can be obtained. Note that at optimality, the 
local gradients always add up to zero. This is clearly true for   
= 0, but it is less clear that this is true for      , or for any   
> 0. 
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Let  (z):=
1

n
  n

i=1 fi (z). Then, according to Eq. (9), x(∞) is 

the unique minimizer of P. 

∥   ( ‾( )) ∥  
   

 
( ( ( ))   ( ( )))       (9) 

If α ≤ 2L , we then by (10) have the following. 

 0∥∥    ( )∥∥
 
1  .  

  

 
/
 

∥∥    ( )∥∥
 
 
     

 
 (10) 

where,    
 

 
   2

 

   
 
 

 
3  and by (11), we have the 

following. 

    
 

  
   
   (

 

   
∥∥   (  ( ))∥∥

 

 
  

 
∥∥  ( )   ‾( )∥∥

 
) (11) 

Let us determine the values of p and   that lead to the 

fastest rate for pushing the error within a . ( )  
     

 
/ -

neighborhood of the optimum. In other words, we aim to 
achieve Eq. (12). 

 0∥∥    ( )∥∥
 
1   ∥∥    ( )∥∥

 
 
      

 
       (12) 

The parameter    
 

   
 reduces the predicted number of 

communications for attaining as well as the number of 
repetitions. The optimal expected number of communications 

is  
   

 
    

 

 
, while best number of iterations is  

   

 
    

 

 
. We 

employ relativistic average discriminator     to render the 
output image virtually identical to the original. According to 
Eq. (13), the objective functions are as follows: 

         ,    (   ( ))-

       ,    (     ( (     )))- 

             ,    (   ( (     )))-

   ,    (     ( ))- 

   ( )          ( ( )        , ( (     ))-) 

            ( (     ))          4
 ( (     ))

   , ( )-
5        (13) 

The parameter    
 

   
 reduces the predicted number of 

communications required to achieve the desired accuracy, as 
well as the number of repetitions needed. The optimal expected 

number of communications is  
   

 
    

 

 
, while the optimal 

number of iterations is  
   

 
    

 

 
. 

To make the output image virtually identical to the original, 
we employ the relativistic average discriminator    . 
According to Eq. (13), the objective functions are as follows: 

The output of the non-changed layer is denoted as H(•). 
The probability that certifies the real image as genuine is 
higher than the probability that certifies the generated image as 
genuine. This can be improved by minimizing the loss function 
     . 

To further reduce the loss, we subject the generator to a 
cycle consistency loss, which is described by Eq. (14) as 
follows: 

           ,∥    ( (     )      ) ∥ -    (14) 

To identify the source of the image, we add a helper 
classifier called  ind  on top of the discriminator network. 

According to Eq. (15), the loss function for the image 
attribution model is as follows: 

 ind  

     [    ( ind (      ))]                [    ( ind (     

 (     )))] (15) 

The picture producing model fundamentally affects the 
unraveling organization (c) since it is a common organization, 
and picture interpretation strategy utilizes essentially less 
examples than the picture age model does. We integrate the 
accompanying matched antagonistic misfortune condition (16) 
to more likely guarantee the fitting of the picture interpretation 
model: 

Since the image generation model is a shared network, it 
significantly affects the decoding network (c). Moreover, the 
image attribution method uses significantly fewer samples than 
the image generation model. To better ensure the fitting of the 
image attribution model, we integrate the following paired 
adversarial loss condition as shown in Eq.  (16).  

            0    .    (     )/1       [    (  

                                   (   (     )))] (16) 

In this scenario,       is used to determine if two images 

belong to the same class. Our objective is to translate    into 
an output image y that contains variation  , for input image     
and action (v, c = 01). Moreover, our goal is to remove 
variation   from input image    using the action (v, c = 10). 

To achieve this, we add an additional classifier called      
on top of the discriminator network to identify different types 
of image variations. The classification loss during training of 
the discriminator network is given by Eq. (17). 

 
var 

       ,    (    (   ))-  (17) 

Discriminator network may categorize real image   into 
variant type   by minimizing formula. Classification loss 
during training the generator network is as shown in Eq.  (18) 

The discriminator network can categorize the real image x 
into variant type   by minimizing the formula mentioned 
above. The classification loss during training of the generator 
network is given by Eq. (18). 

 
var 

 
        ,    (    (   ))-  (18) 

The first condition in Eq. (18) states that the image 
produced by adding variation   to the input image    should be 
accurately classified into class  . The second condition states 
that the image produced by removing variation v from the 
paired image    should be classified into class  . 
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The values of    range from 0 to 1. The following Eq. (19) 
can be used to obtain the final output image. 

 out    (    )              (19) 

  element-wise product is located. By using Eq. (20), we 
add the next restriction for the mask   : 

 mas   .
 

 
   |  , -|/

 

        (20) 

Here, W represents the number of pixels, and   , - refers 

to the     pixel of   . The formula shown above encourages 
minimizing alterations to the source image. Based on the 
foregoing discussion, the overall loss of the image translation 
model is given by Eq. (21): 

     a     pis  pis   var  var 
   ind  ind  

              pis   cyc  cyc   var  tar 

 
  ind  ind  

 mas   mas     (21) 

The hyperparameters  pis   var   ind   cyc      and 

 mas  control the relative significance of each term in Eq. (21) 

as outlined in Algorithm 2. 

Algorithm 2: FANN 

Input:   clients are indexed by     is client fraction, the   
communication rounds are indexed by     is local minibatch size,   is 
number of local epochs, and   is learning rate, PGD Attack         
where       are number of PGD steps, perturbation ball size, step 
size,   is the adversarial ratio,   is the scale factor. 

Output: The global model  . 

On server 

Initialize    

For every round             do 

      (    ) 

   (                       ) 

For every client      in parallel do 

    
                (    ) 

End for 

    
          (   *    

 +    ) 

End for 

Return      

Client update (k, ) 

                                                 

For every local epoch I from 1 to E do 

For batch     do 

         

     (                             ) 

     (        )              

            

End for 

End for 

Return   

C. Bayesian Convolutional Neural Network-based Data 

Training 

BCNNs are a type of neural network that combines the 
CNN architecture and Bayesian inference principles to model 
uncertainty in deep learning tasks. In contrast to conventional 
CNNs, which provide point estimates of the model parameters, 
BCNNs estimate the model posterior distribution over the 
parameters, providing a principled method for dealing with 
model uncertainty. This feature is especially helpful when there 
is little or noisy data available, enabling more accurate 
predictions. BCNNs also allow for incorporating prior 
information and hypotheses, which can improve model 
performance in challenging real-world datasets. Additionally, 
BCNNs provide a natural method for model averaging, 
improving the generalizability of the model. In our work on 
identifying data poisoning attacks, BCNNs' uncertainty 
estimation is essential, as it can highlight areas of high 
ambiguity and possible adversarial inputs, resulting in a more 
accurate identification of such attacks. 

Bayesian neural networks train a model by inferring the 
model posterior. However, accurate inference of the model 
posterior is computationally demanding, and even for 
moderately sized models, it can become intractable. Therefore, 
the model posterior is usually approximated. One popular and 
successful method for approximating the model posterior is 
variational inference. Fig. 2 provides an overview of the 
BCNN Architecture. 

The BCNN architecture process is shown in Fig. 3. The 
"Start" symbol marks the beginning of the process at the top. 
Taking input data, which stand for the input set and the 
corresponding output set, respectively, is the first step. The 
next step in the flowchart is the "Feature Extraction" module. 
Utilizing techniques like convolution, non-linear 
transformations (relu), max-pooling, and local normalization, 
features are in this case extracted from the input data. The 
“Feature Selection” module is the next step in the flowchart 
after feature extraction. To further hone the extracted features, 
additional feature selection is carried out in this step using non-
linear transformations (relu). The "Prediction" module is the 
next step in the process, where the final output probabilities are 
computed. 

 
Fig. 2. Overview of the BCNN architecture. 
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Fig. 3. Flowchart of BCNN architecture process. 

The softmax operation provides a probability distribution 
for each output class C. The flowchart then moves to the 
"Bayesian Learning" phase, where variational inference is used 
to obtain the model posterior by approximating it with the 
variational distribution. The "KL Divergence" step computes 
the KL divergence, which is reduced through optimization of 
the model parameters W and b to increase the log evidence 
lower bound. The "Training and Validation" phase trains the 
model on the training set and assesses its performance on the 
validation set after each epoch. The "Best Model Selection" 
step chooses the model with the best validation performance. 
The "Test" step tests the chosen model on the test set to 
evaluate its final performance metrics. The "End" symbol 
marks the end of the process. The detailed process is presented 
in this section. 

Given the input set                  and the 
corresponding output set                 , the function 
 ( )      estimates the output y from the inputs  . Bayesian 
learning provides a principled approach to obtain the model 
posterior  ( |   ) . To calculate the posterior, two 
components are required. First, a prior distribution  ( ) that 
captures a prior belief about the estimator functions. Second, a 
likelihood function  ( |   ) that indicates how likely it is for 
the model f to predict the output   given the observations  . 
More specifically, given an unseen data point (       ), the 
posterior is obtained by integrating over all possible estimator 
functions f that are parametric models with a parameter set  , 
as shown in Eq. (22): 

 (         )    (    ) (        )   
                     (    ) (      ) (     )          (22) 

The integral in Eq. (22) is intractable because the 
distribution  ( |   ) is intractable. Therefore, the variational 
approach is to approximate  ( |   )  with a variational 
distribution  ( ). The candidate  ( ) should be as similar as 
possible to the original intractable distribution. The similarity 
between  ( |   )  and q(\theta) can be measured by the 
Kullback-Leibler (KL) divergence. Reducing the KL 
divergence is equivalent to increasing the log evidence lower 
bound based on the parameter set  , as shown in Eq. (23): 

      ( ) (      )     (     )      

                         ( ( ) ∥  ( ))  (23) 

Maximizing the KL divergence results in a variational 
distribution that approximates the posterior. The approximation 
 ( ) simplifies Eq. (23) to Eq. (24).  

 (     )    (    ) (      ) ( )     (24) 

During inference, the network parameters   are sampled 
from  ( ). The feature extraction module at stage l, denoted as 

 ( ), extracts the features  ( ) as specified by Eq. (25). 

 ( )   ( )( (   )  ( )  ( ))  

                 ( pool . relu ( ( )   (   )   ( ))/)        (25) 

The   operator denotes convolution, which is one of the 
specific processes that go into feature extraction, along with 
non-linear transformations, max-pooling, and local 
normalization. After the convolution operation, a dot product is 
computed, which is followed by a non-linear transformation 
specified in Eq. (26) within the feature selection module f (l). 

 ( )   ( )( (   )  ( )  ( ))  .     ( ( )   (   )  

                                ( ))/                                       (26) 

In Eq. (26),  (   ) denotes the activation of the (l - 1) th 
hidden layer, and (.) denotes the dot product. To provide a 
probability distribution over every output class C, as 
represented in Eq. (27), the softmax operation is used as the 
final step in the prediction module. 

 (       )          ( ( )   (   )   ( )) (27) 

The DCNN model architecture is constructed by stacking 
the feature extraction, selection, and prediction modules, as 
shown in Eq. (28). 

 (        )  

                  ( ( ) 4 ( ) ( ( ) . ( )( ( )( ))/)5)     (28) 

During this optimization, local connections and weight 
sharing are implemented, resulting in a reduction in the number 
of parameters. Eq. (29) and Eq. (30) can be used to define 1-D 
and 2-D convolutional operations in a CNN, respectively: 

     (   )          (   )                     (29) 

             (   )      

         (   )    (   )                                    (30) 

In Eq. (29), x is the 1-D input, v is the convolutional kernel, 
and o is the output. Similarly,   and   are the corresponding 
kernel and output in Eq. (30), where   is the input of the 2-D 
convolutional operation. The number of data points skipped 
between two convolutional operations is referred to as the 
stride, denoted by s. 

The data is split into training, validation, and test sets. The 
method is then trained on the training set, and after every 
epoch, the method is validated. After training, the model with 
the best validation kappa score is selected and evaluated on the 
test set. 
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Deep neural networks are capable of extracting features 
from raw input data. However, the quality and quantity of the 
training data are important requirements for achieving good 
performance. When the available data is limited, the network 
may not converge. In such cases, a pre-processing step can be 
applied to eliminate redundancy and reduce the feature 
dimensionality, which can help the network converge. 

Consider a deep learning method with a model 
specification W. The training dataset consists of M samples, 
denoted as     (     ) (     ) (     ), and so on. The 
model parameters are calculated using the Bayes formula, as 
shown in Eq. (31): 

 (   )  
 (   ) ( )

 ( )
 

 (   ) ( )

    (   ) ( )  
 (31) 

The prior distribution, denoted by  ( ), is based on an 
assumption, knowledge from the past, or experience. The 
likelihood function is  ( | ) , where  ( )  denotes the 
distribution of the training samples, and the predicted 
distribution of the model specification   is  (  | ) . 
However, the Bayes formula cannot be used directly to obtain 
the specification evaluation because it is challenging to 
calculate p(S). To address this issue, a new distribution,  ( ), 
is developed to approximate  ( | ). The idea of Kullback-
Leibler (KL) divergence can be used to calculate the difference 
between  ( ), and  ( | ). Eq. (32) is used to express the 
KL divergence. 

   ( ( ) ∥  (    ))      ( )    
 ( )

 (  )
   

  
 
  ( )    

 ( ) 
 
  (  ) ( )  

 (  ) ( )
   

                 
 
  ( ) ( )    

 
  ( )    

 (  ) ( )

 ( )
    (32) 

The goal of variational inference is to maximize the second 
term on the left-hand side of (33), which corresponds to  ( ), 
while minimizing the KL divergence. 

  ( )        
 ( )

   ( ( ) ∥  (   )) 

                        
 ( )

 
 
  ( )    

 (   ) ( )

 ( )
          (33) 

Assuming that q(W) is a joint Gaussian distribution and 
that each specification    in the specification matrix   
follows an independent Gaussian distribution allows us to 
transform the variational problem into an optimization 
problem, as shown in Eq. (34): 

( )   (      )   
 

     (        
 )        (34) 

In Eq. (34), the mean value matrix and standard deviation 
are denoted by   and  , respectively. Determining the optimal 
values of the mean and standard deviation matrices, as shown 
in Eq. (35), will yield the ideal distribution  ( ): 

            
      

 
   

     (       )[    ( (       ))] 

     
      (       )[    (  (       ))] 

           
  

 
    
       

     
     ( )[    ( (           ))]    (35) 

IV. EXPERIMENTAL ANALYSIS 

In our evaluation, we present the compelling results of our 
proposed method for detecting data poisoning attacks in 
intelligent networks. Our approach consistently outperformed 
the referenced methods, achieving a significantly higher 
detection rate. The visualizations, including precision-recall 
curves and confusion matrices, vividly illustrate the superior 
performance and robustness of our method. These results 
provide strong evidence of the effectiveness and practical 
relevance of our approach in bolstering network security 
against data poisoning attacks. 

A. Experimental Setup 

The purpose of the experimental setup is to assess how well 
the suggested attack and defense strategies work. The 
Duchenne Smile Dataset, Product Dataset, and Sentiment 
Dataset are three real-world datasets used in the evaluation. 
Using customary cross-validation methods, these datasets are 
preprocessed and divided into training, testing, and validation 
sets. The suggested strategy is put into practice for the attack 
method using Python's NumPy and sklearn libraries. The 
datasets are subjected to the attack to evaluate its potential to 
undermine network security and jeopardize data classification. 
The suggested method is also put into practice for the defense 
method using Python's sklearn and NumPy libraries. The 
defense mechanism is applied to the datasets to test its efficacy 
in defending the network against threats and enhancing the 
accuracy and dependability of data classification. A 
comparison between the proposed methods and current 
methods, like K-Nearest Neighbors (KNN) and Malware-
GAN, is done to ensure thorough evaluation. Throughput, 
Quality-of-Service (QoS), transmission rate, Root Mean 
Square Error (RMSE), accuracy, recall, precision, and 
malicious data analysis are just a few of the performance 
metrics that are measured and compared. 

B. Dataset Description 

This section provides a brief overview of the real-world 
datasets used in our experimental analysis in this section. These 
datasets are used to assess how well the attack and defense 
strategies we've suggested improve network security and data 
classification. 

Duchenne Smile Dataset: The aim of this dataset is to 
determine whether a facial image contains a Duchenne or non-
Duchenne smile. The task-creation and label-collection 
processes were performed using the Amazon Mechanical Turk 
platform. The dataset consists of 2,134 entries, with 64 regular 
employees producing 17,729 labels. 

Product Dataset: The objective of this dataset is to 
determine whether two products are the same for each item in 
the dataset, which comprises pairs of items with descriptions. 
Participating employees were required to determine whether 
the two descriptions apply to the same item before providing 
their labels. This dataset contains 8,315 items, with 176 
average workers providing 24,945 labels in total. 

Sentiment Dataset: This dataset consists of a tweet about a 
specific firm for each item. The participating employees were 
tasked with determining whether the sentiment expressed in the 
tweet is favorable or unfavorable to the business. We created 
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1,000 objects using the AMT platform and collected labels 
from 85 regular workers. This dataset contains a total of 20,000 
labels. 

C. Performance Matrices 

We use a set of performance metrics that cover various 
facets of the models' performance to assess the efficacy of our 
suggested attack and defense strategies. 

Network throughput refers to the amount of data that can be 
successfully transported over a network in a certain period. It is 
measured in bits per second (bps) and can also refer to data 
packets per time slot or packets per second (pps). The 
aggregate throughput, also known as system throughput, is the 
total data rates sent to all network endpoints. 

Quality-of-service (QoS) is a critical issue in wireless 
sensor applications, and each application has specific QoS 
requirements. Accuracy is one specification used to assess 
classification models, and it refers to the percentage of correct 
predictions made by a method. Recall and precision are 
measures of quantity and quality, respectively. A higher recall 
indicates that the method provides more relevant results, while 
a higher precision indicates that the method provides more 
relevant results than irrelevant ones. Precision is evaluated by 
dividing the total number of true positives (TP) by the total 
number of TP plus false positives (FP), while recall is 
calculated as the product of the number of TP divided by the 
sum of the TP and false negatives (FN). 

Root means square error (RMSE) is a commonly used 
method for assessing the accuracy of forecasts, and it measures 
the Euclidean distance between the measured true values and 
forecasts. The standard deviation of residuals is also known as 
RMSE. 

D. Comparative Analysis 

Table I presents a comparative analysis between our 
proposed method and existing methods, based on network 
security and data classification. The analysis considers various 
parameters, including throughput, QoS, transmission rate, 
RMSE, accuracy, recall, precision, and malicious data analysis. 
The datasets analyzed include the Duchenne Smile Dataset, 
Product Dataset, and Sentiment Dataset. 

Fig. 4 represents a comparative analysis between our 
proposed method and existing methods for network security. 
The graph shows that our proposed technique achieved a 

throughput of 96%, QoS of 83%, transmission rate of 89%, 
RMSE of 61%, accuracy of 95%, recall of 69%, precision of 
79%, and malicious data analysis of 75%. In comparison, the 
KNN method achieved a throughput of 86%, QoS of 77%, 
transmission rate of 85%, RMSE of 55%, accuracy of 91%, 
recall of 65%, precision of 72%, and malicious data analysis of 
69%, while the Malware-GAN method obtained a throughput 
of 94%, QoS of 79%, transmission rate of 88%, RMSE of 
59%, accuracy of 93%, recall of 66%, precision of 75%, and 
malicious data analysis of 73%. 

Significant performance differences are found when 
comparing the proposed method to the current network security 
methods. Compared to the KNN and Malware-GAN methods, 
our suggested technique outperformed them in all performance 
metrics. These findings suggest that when compared to the 
KNN and Malware-GAN methods, the proposed method is 
more effective and reliable in the context of network security 
analysis. The proposed method's efficiency in addressing 
network security issues is demonstrated by the higher 
throughput and transmission rate, better accuracy, and MDA. 

Fig. 5 provides an analysis based on data classification 
between our proposed method and existing techniques. The 
graph shows that our proposed technique achieved a 
throughput of 95%, QoS of 85%, transmission rate of 93%, 
RMSE of 69%, accuracy of 96%, recall of 75%, precision of 
85%, and malicious data analysis of 86%. In comparison, the 
KNN method achieved a throughput of 89%, QoS of 81%, 
transmission rate of 91%, RMSE of 63%, accuracy of 92%, 
recall of 71%, precision of 81%, and malicious data analysis of 
79%, while the Malware-GAN method obtained a throughput 
of 95%, QoS of 85%, transmission rate of 93%, RMSE of 
69%, accuracy of 96%, recall of 75%, precision of 85%, and 
malicious data analysis of 86%. 

The proposed approach performs better than existing 
techniques for data classification, as shown by the comparative 
analysis between them. The outcomes show that the suggested 
method outperforms the KNN and Malware-GAN methods 
across the board. According to these findings, the proposed 
method performs data classification more effectively and 
efficiently than the KNN and Malware-GAN methods. The 
superiority of the suggested technique in handling data 
classification tasks is demonstrated by the higher throughput, 
transmission rate, accuracy, and MDA, along with better QoS 
and recall. 

TABLE I.  TABLE TYPE COMPARATIVE ANALYSIS OF PROPOSED AND EXISTING METHOD BASED ON NETWORK SECURITY AND DATA CLASSIFICATION 

Techniques Throughput QoS Transmission Rate RMSE Accuracy Recall Precision Malicious Data Analysis 

Case 1: Network security 

KNN 86 77 85 55 91 65 72 69 

Malware_GAN 94 79 88 59 93 66 75 73 

DPAD_NA_FANN_BCNN 96 83 89 61 95 69 79 75 

Case 2: Data classification 

KNN 89 81 91 63 92 71 81 79 

Malware_GAN 92 83 92 66 94 73 83 84 

DPAD_NA_FANN_BCNN 95 85 93 69 96 75 85 86 
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(a)      (b) 

Fig. 4. Comparative analysis between proposed and existing method based on network security analysis: (a) comparison in terms of RMSE, transmission rate, 

QoS, and throughput (b) comparison in terms of MDA, precision, recall, and accuracy. 

  
(a)       (b) 

Fig. 5. Comparative analysis between proposed and existing technique based on data classification: (a) comparison in terms of RMSE, transmission rate, QoS, and 

throughput; (b) comparison in terms of MDA, precision, recall, and accuracy. 

We observe that our experimental analysis demonstrates 
the effectiveness of our proposed method in achieving high 
levels of network security and data classification performance. 
Our proposed technique outperforms the existing methods in 
terms of various parameters, including throughput, QoS, 
transmission rate, RMSE, accuracy, recall, precision, and 
malicious data analysis. The results indicate that our proposed 
method can significantly enhance the security and performance 
of wireless sensor networks. 

Furthermore, the analysis of the Duchenne Smile Dataset, 
Product Dataset, and Sentiment Dataset reveals that our 
proposed method is robust and can be applied to various types 
of datasets. The high levels of accuracy, recall, and precision 
achieved by our proposed method indicate its potential for use 
in real-world applications, including in industries such as 
healthcare, e-commerce, and social media. 

The results demonstrate the potential of our proposed 
method in enhancing the security and performance of wireless 
sensor networks and its ability to provide accurate and relevant 
results for data classification tasks. Further research can 

explore the use of our proposed method for other types of 
datasets and in different settings to evaluate its robustness and 
scalability. 

The findings of this study highlight the effectiveness of the 
proposed technique in detecting and mitigating data poisoning 
attacks in intelligent networks. The achieved high levels of 
network security and accuracy in data detection demonstrate its 
practical value for network administrators, ensuring the 
protection of sensitive data and system integrity. The 
successful application of the technique contributes to 
advancements in network security and data analytics, while 
future research can focus on scalability and addressing 
potential vulnerabilities to further enhance its robustness. 
Overall, this study provides valuable insights for the 
implementation of secure and privacy-preserving intelligent 
networks. 

V. CONCLUSION 

This research proposes a novel technique for detecting data 
poisoning attacks based on deep learning, which combines 

0
20
40
60
80

100
120

V
a

lu
e 

O
b

ta
in

ed
 (

%
) 

KNN

Malware_GAN

Proposed DPAD_NA_FANN_BCNN

0

20

40

60

80

100

Accuracy Recall Precision Malicious

data

analysis

O
b

ta
in

ed
 V

a
lu

e 
(%

) 

KNN

Malware_GAN

 Proposed DPAD_NA_FANN_BCNN

0

20

40

60

80

100

O
b

ta
in

ed
 V

a
lu

e 
(%

) 

KNN

Malware_GAN

Proposed DPAD_NA_FANN_BCNN

0

20

40

60

80

100

120

Accuracy Recall Precision Malicious

data

analysis

O
b

ta
in

ed
 V

a
lu

es
 (

%
) 

KNN

Malware_GAN

Proposed DPAD_NA_FANN_BCNN



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

698 | P a g e  

www.ijacsa.thesai.org 

federated learning with adversarial neural networks. The 
proposed technique utilizes a Bayesian convolutional neural 
network to train the data analyzed by federated learning for 
detecting the presence of data poisoning attacks in the network. 
The experimental analysis is carried out based on network 
security and data classification, utilizing real-world datasets, 
such as the Duchenne Smile Dataset, Product Dataset, and 
Sentiment Dataset. The proposed technique outperforms the 
existing models in the literature, achieving high levels of 
performance in various parameters, including throughput, QoS, 
transmission rate, RMSE, accuracy, recall, precision, and 
malicious data analysis. 

The results of this research indicate that the proposed 
technique can significantly enhance the security and 
performance of wireless sensor networks, contributing to a 
deeper understanding of data poisoning attacks and detection 
strategies in real-world contexts. Furthermore, this research 
contributes to the advancement of more effective outlier 
detection methods across a wider range of applications. Future 
work must address the challenge of preventing such attacks in 
a strengthened federated learning environment. 

Overall, the proposed technique offers a promising 
approach to the detection of data poisoning attacks, which have 
become increasingly prevalent in wireless sensor networks. 
This research opens new avenues for future research in the 
field of wireless sensor networks, and the proposed technique 
holds potential for use in various industries, including 
healthcare, e-commerce, and social media. 
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