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Abstract—AES (Advanced Encryption Standard) is a widely 

applied block cipher standard in the United States, used in 

various security applications today. Currently, there are 

numerous research endeavors aimed at making AES block 

ciphers dynamic to improve their security against contemporary 

strong attacks. The most common dynamic approach involves the 

dynamization of AES block transformations, including SubByte, 

ShiftRow, AddRoundKey, and MixColumn operations. The 

combination of these transformations has also been explored and 

proposed. However, to the best of our knowledge, the dynamic 

combination of AddRoundKey and ShiftRow transformations 

remains unexplored. Therefore, in this paper we introduce 

algorithms for generating key-dependent AddRoundKey and 

ShiftRow transformations based on permutations. Subsequently, 

these key-dependent transformations are applied to AES to 

create dynamic AES block ciphers. Security analysis and 

evaluation of NIST’s statistical criteria are performed, and the 

entropy of AES and dynamic AES is assessed. From our findings, 

it is evident that dynamic AES block ciphers can significantly 

enhance AES security and meet stringent randomness criteria, 

similar to AES. 

Keywords—AES; ShiftRow; AddRoundKey; dynamic AES; key-

dependent 

I. INTRODUCTION 

Along with the strong development of information 
technology, security risks and attacks are increasing in 
complexity. Therefore, cryptographic primitives are being 
widely used in various security domains nowadays [1, 2, 3]. 
Substitution-Permutation Network (SPN) block ciphers [4, 5, 
6] represent a prevalent category of block ciphers extensively 
applied in contemporary cryptographic scenarios. An SPN 
block cipher comprises three primary components: the 
substitution layer, which typically employs S-boxes [7–10]; 
the diffusion layer, commonly utilizing MDS matrices [11–14] 
(matrices derived from maximum distance separable codes); 
and the key addition layer. 

AES [15, 16] belongs to the class of SPN block ciphers 
and serves as a block cipher standard established by NIST in 
2001, originating in the United States. The AES round 
function incorporates three operations, namely key addition, 
substitution, and linear transformations. AES, one of the 
world's most widely used encryption algorithms, faces 
potential vulnerabilities that could be exploited by 
cryptanalysts. The simplicity of AES’s mathematical structure 
and the threat of attacks such as algebraic attacks [17], linear 

attacks [8, 18], and differential attacks [18, 19], make its 
security a concern. Moreover, the advent of supercomputers 
and quantum computing poses further risks, necessitating 
increased key lengths for maintaining security. Therefore, 
researching various approaches to enhance the security 
strength of AES is crucial in the current scenario. 

To enhance the resilience of block ciphers against modern, 
potent attacks, extensive research has been conducted to 
animate these cryptographic algorithms. Specifically, with the 
AES block cipher, there is a variety of approaches to 
dynamize the AES block cipher to enhance its security. Some 
of these methods center on incorporating S-boxes in AES that 
depend on a secret key [20–25], while others work on creating 
key-dependent MixColumn transformations for AES [26–28]. 
Notably, there are studies exploring the dynamization of both 
AES’s S-boxes and MixColumn [29], or the dynamization of 
all three transformations: S-Boxes, MixColumn, and 
ShiftRow, which have also received attention [30–32]. 
Another current research direction is to make the XOR 
operation dynamic in AES [33, 34].  

For the dynamic S-box approach in AES, in their work 
[20], the authors introduced a method for generating S-boxes 
that depend on the encryption key and possess favorable 
algebraic characteristics, including non-linearity, BIC, and 
SAC. Furthermore, an alternative approach to produce S-
boxes that rely on the encryption key in AES was introduced 
in [21]. This method entails establishing a novel arrangement 
for the S-box through the use of a simulated key expansion 
algorithm. In [22], the authors introduced an innovative 
method for creating variable S-boxes by rearranging the S-box 
of AES. These adaptable S-boxes rely on a secret key and 
utilize an affine constant and an unconventional polynomial. 
For each additional key bit, a fresh S-box with rearranged 
values is produced, thus enhancing the intricacy of the 
algorithm. In [23], the authors presented an approach to create 
S-boxes that vary with the encryption key, employing a 
evolving approach. The evaluative experimentation of these 
key-dependent S-boxes was conducted, focusing on 
characteristics such as achieving a SAC, BIC, balanced 
output, non-linearity, and probabilities related to linear and 
differential approximation. In [24], the authors introduced four 
straightforward procedures for producing key-influenced S-
boxes. To assess the quality of these S-boxes, they introduced 
eight standardized dissimilarity measurements. The authors 
outlined four methods for generating key-influenced S-boxes 
and scrutinized eight normalized dissimilarity measurements 
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employed to appraise the effectiveness of these key-dependent 
generation techniques. Furthermore, in [25], Murphy et al. 
introduced an approach for the differential cryptanalysis of 
key-influenced S-boxes, elucidating methods for performing 
cryptanalysis with the utilization of these S-boxes. 

For the dynamic Mixcolumn approach in AES, in [26], the 
authors proposed a MixColumn transformation that depends 
on the encryption key, derived from the AES MDS matrix, 
using scalar multiplication on the rows of the matrix along 
with an extra  -bit key. An idea presented in [27] includes the 
creation of a diffusion layer that relies on the encryption key, 
achieved through scalar multiplication and immediate 
exponentiation. In [28], the authors introduced a collection of 
    binary matrices that can be employed to create dynamic 
matrices resembling AES and recursive MDS matrices. 

For the approach of making multiple transformations 
dynamic in AES, in [29], the authors introduced dynamic S-
boxes and novel MixColumn matrices that preserve favorable 
cryptographic characteristics when developing dynamic AES. 
In [30], an image encryption method rooted in symmetric 
cryptography was introduced. It utilizes transformations like 
MixColumns, ShiftRows, and SubByte, which are 
dynamically influenced by the encryption key. In [31], the 
authors presented a dynamic block cipher based on AES, in 
which AES parameters vary for each unique key. More 
precisely, the ShiftRows, the SubBytes, and MixColumns 
transformations adapt according to the key, leading to distinct 
behavior for every key. Extensive testing has verified the 
security of the proposed algorithm. In [32], a fresh and 
efficient AES algorithm, which is dependent on the key, is 
introduced. The authors have put forward an innovative 
approach to enhance the advanced encryption standard 
algorithm by employing dynamic sub-byte, mix-column, and 
shift rows operations to ensure secure communication. This 
novel work exhibits superior avalanche and strict avalanche 
effects when compared to the conventional AES algorithm. 

In [33, 34], the authors introduced innovative techniques 
that employ key-dependent XOR tables utilizing 3D chaotic 
maps. The authors utilized XOR tables that rely on the initial 
confidential parameters. In [34], they established a fresh MDS 
matrix, however, regrettably, this matrix does not qualify as an 
MDS matrix. Furthermore, their approaches in [31, 32] still 
exhibit numerous weaknesses and shortcomings. 

Based on our review of related works, to the best of our 
knowledge, we haven’t come across any research that 
investigates the combination of animating both the ShiftRow 
and AddRoundKey transformations of AES. In this paper, we 
introduce algorithms for generating key-dependent 
AddRoundKey and ShiftRow transformations based on 
permutations. Subsequently, we apply these key-dependent 
transformations to AES to create a dynamic AES block cipher. 
We conduct security analysis and evaluate NIST’s statistical 
criteria, as well as assess the entropy of AES and dynamic 
AES. Consequently, it becomes evident that dynamic AES 
block ciphers can significantly enhance the security of AES 
and meet rigorous randomness criteria, similar to AES. 

The structure of the remaining part of the paper is as 
follows: Section II provides preliminaries. Section III 
introduces algorithms for generating key-dependent ShiftRow 
and AddRoundKey transformations based on permutations. 
Section IV adapts the AES block cipher using key-dependent 
ShiftRow and AddRoundKey operations. Section V is 
conclusion. 

II. PRELIMINARIES 

A. Introduction to Hadamard Matrices 

A Hadamard matrix [35] of dimension  , with the initial 
row elements represented as           , can be designated 
in the following manner. 

     (          )   

Furthermore, a Hadamard matrix of size       has the 
following form. 

  (
      
      

) 

where   and   are     matrices,   is even. 

B. ShiffRow and AddRoundKey Transformations in AES 

The ShiftRow operation in AES processes the state by left 
rotating the last three rows of the state with a varying number 
of rotation. Row 1 of the state remains unchanged, row 2 of 
the state left rotates by 1 byte, row 3 of the state left rotates by 
2 bytes, and row 4 of the state left rotates by 3 bytes. 

The AddRoundKey operation in AES performs a bitwise 
XOR between the state and a round key. The AddRoundKey 
operation is represented by a 4-bit XOR table as described in 
Table I. 

TABLE I. THE 4-BIT XOR TABLE IN AES 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 

2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 

3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 

4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11 

5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10 

6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9 

7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 

9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6 

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 

11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4 

12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 

13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2 

14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 

15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

701 | P a g e  

www.ijacsa.thesai.org 

III. PROPOSING ALGORITHMS TO GENERATE KEY-

DEPENDENT SHIFTROW AND ADDROUNDKEY 

TRANSFORMATIONS BASED ON PERMUTATION 

A. Algorithm for Generating Key-Dependent ShiftRow 

First, we analyze the diffusion capacity of active bytes 
(non-zero byte) through two rounds of AES. Fig. 1 represents 
the diffusion state of AES after the first round, with the initial 
state containing an active byte (indicated by the black cell). 
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Fig. 1. Diffusion state of AES after the first round. 

According to Fig. 1, after the SubByte and ShiftRow 
transformations in the first round, the number of active bytes 
in the state array remains at 1. Subsequently, during the 
MixColumn transformation, the number of active bytes 
becomes 4 due to the diffusion capabilities of the MDS 
matrix, and the number of active bytes is preserved when 
going through the AddRoundKey transformation. Thus, 
starting with 1 active byte, there will be 4 active bytes at the 
end of the first round.  

Fig. 2 shows the diffusion state of AES after the second 
round. 
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Fig. 2. Diffusion state of AES after the second round. 

From Fig. 2, we can observe that the role of ShiftRow is 
extremely important in propagating active bytes from column 
1 to all four columns of the state array. This allows, through 
the MixColumn transformation, the maximum number of 
active bytes to be achieved, which is 16 bytes in the state 
array. 

Remark 1: The crucial point in designing the ShiftRow 
transformation is its capability to distribute active bytes from 
one column to all the remaining columns, ensuring that all 
four columns of the state array contain at least one active byte. 

According to Fig. 2, the number of bytes rotated in each 
row of the state by the ShiftRow transformation in AES can be 
described as shown in Fig. 3. 

Therefore, as long as the number of bytes rotated in each 
row is distinct and falls within the range [0, 3], active bytes 
will undoubtedly be propagated to all four columns of the 
state. 

 
Fig. 3. The number of bytes rotated in each row of the state by the ShiftRow 

in AES. 

Based on these observations, we propose the idea 
presented in Algorithm 1 to generate key-dependent ShiftRow 
transformations while ensuring the propagation of active bytes 
as described above. 

Algorithm 1. Key-dependent ShiftRow Transformation 

Generation via Permutation 

Input: A secret key   consists of   (     ) bits; A state   

of size    . 

Output: The new ShiftRow operation for AES depends on the 

key  ; A new state  ́. 

Step 1: Take the first two bits of the key   and convert them 

into an integer, denoted as   . Take the next two bits of   and 

convert them into an integer. If this integer is different from 

  , assign it to   ; otherwise, shift the key   to the right by 

one bit until you obtain      . Continue this process until 

you have four distinct integers:            . 

Step 2: From the permutation (           ) obtained in step 

1, left rotate the rows of the state   as follows: left rotate    

bytes for row 1, left rotate    bytes for row 2, left rotate    

bytes for row 3, left rotate    bytes for row 4. The resulting 

state is denoted as  ́. 

Step 3: The left rotation operation as in step 2 is called 

KD_ShiftRow. The KD_ShiftRow operation will be used to 

replace the ShiftRow operation in AES. 

Remark 2. Because there are    permutations of (0, 1, 2, 
3), there will be       key-dependent ShiftRow operations 
(KD_ShiftRow) that can be generated by Algorithm 1. 

Example 1. If step 1 of Algorithm 1 results in the 
permutation (           )  (       ) , then the 
KD_ShiftRow operation obtained from Algorithm 1 will 
function as shown in Fig. 4. 

 
Fig. 4. An example of the KD_ShiftRow obtained from Algorithm 1. 

B. Algorithm for Generating Key-Dependent AddRoundKey 

Transformations 

From the original XOR table of AES (Table I), we have a 
remark regarding three essential Attributes that a XOR table 
must possess. 
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Remark 3. Three essential Attributes of an XOR table 

 Attribute 1: Every row and column in the XOR table 
contains unique values within the range of 0 to 15. 

 Attribute 2: The XOR table should exhibit symmetry 
along the principal diagonal, implying that          
        . 

 Attribute 3: For any given      and   elements within 
the XOR table where          , the following 
holds true:           and          . 

From the XOR table of AES, denote the     matrices as 
follows: 

   (

             
             
             
             

)     (

             
             
             
             

),  

   (

                  
                  
                     
                       

)     (

                       
                       
                           
                             

). 

Set   (

                       
                       
                           
                             

). 

Remark 4. The matrices    (     )  are Hadamard 
matrices. And the matrix   is also a Hadamard matrix in the 
form      (          ) . Therefore, the XOR table of 
AES is created from the Hadamard matrix  , where row 0 and 
column 0 (bolded) of this XOR table are ordered according to 
the first row of matrix  , meaning in the order 0, 1, 2, …, 15. 

We can denote:      (           ). 

From Remark 4, it can be seen that by permuting the 
matrices   , new Hadamard matrices   can be generated. 
Based on this idea, we propose Algorithm 2 to generate a new 
XOR table and key-dependent AddRoundKey transformation 
by permuting the    matrices in matrix  . 

Algorithm 2. Generating a new 4-bit XOR table and key-

dependent AddRoundKey transformation based on 

permutation. 

Input: A secret key   consisting of   (     )  bits, the 

original XOR table of AES. 

Output: A new 4-bit XOR table; Key-dependent 

AddRoundKey operation. 

Step 1: Take the first two bits of the secret key   and convert 

these two bits into an integer, denoted as   . Take the next 

two bits of   and convert them into an integer. If this integer 

is different from   , assign this integer to   ; otherwise, shift 

the key   to the right by one bit until       is obtained. Do 

the same for the remaining bits until four distinct integers are 

obtained:            . 

Step 2: Construct a permutation-based Hadamard matrix 

using the permutation (           ) obtained in step 1, which 

has the form:  ́     (               ). 

Step 3: Construct a new 4-bit XOR table based on the 

Hadamard matrix  ́ such that the elements in the first row and 

the first column of this new XOR table follow the order of 

elements in the first row of matrix  ́. 

Step 4: Reorder the rows and columns of the new XOR table 

so that both row 0 and column 0 of the new XOR table follow 

an increasing order from 0 to 15. 

Step 5: Replace the regular bitwise XOR operation in the 

AddRoundKey transformation of AES with the new XOR 

operation determined by the new XOR table created in step 4. 

The result is the KD_AddRoundKey operation, which is used 

in place of the AddRoundKey operation in AES. 

Remark 5. Since there are    permutations of (0, 1, 2, 3), 
there will be a total of         new XOR tables generated by 
Algorithm 2, corresponding to the number of 
KD_AddRoundKey operations obtained. 

Example 2. Suppose that step 1 of Algorithm 2 yields the 
permutation (           )  (       ) . The resulting 
Hadamard matrix is as follows: 

 ́     (           )  (

                       
                       
                           
                             

) 

In that case, the resulting new XOR table after 
Algorithm 2 is presented in Table II. 

TABLE II. THE NEW XOR TABLE GENERATED FROM ALGORITHM 1 

 12 13 14 15 8 9 10 11 0 1 2 3 4 5 6 7 

12 12 13 14 15 8 9 10 11 0 1 2 3 4 5 6 7 

13 13 12 15 14 9 8 11 10 1 0 3 2 5 4 7 6 

14 14 15 12 13 10 11 8 9 2 3 0 1 6 7 4 5 

15 15 14 13 12 11 10 9 8 3 2 1 0 7 6 5 4 

8 8 9 10 11 12 13 14 15 4 5 6 7 0 1 2 3 

9 9 8 11 10 13 12 15 14 5 4 7 6 1 0 3 2 

10 10 11 8 9 14 15 12 13 6 7 4 5 2 3 0 1 

11 11 10 9 8 15 14 13 12 7 6 5 4 3 2 1 0 

0 0 1 2 3 4 5 6 7 12 13 14 15 8 9 10 11 

1 1 0 3 2 5 4 7 6 13 12 15 14 9 8 11 10 

2 2 3 0 1 6 7 4 5 14 15 12 13 10 11 8 9 

3 3 2 1 0 7 6 5 4 15 14 13 12 11 10 9 8 

4 4 5 6 7 0 1 2 3 8 9 10 11 12 13 14 15 

5 5 4 7 6 1 0 3 2 9 8 11 10 13 12 15 14 

6 6 7 4 5 2 3 0 1 10 11 8 9 14 15 12 13 

7 7 6 5 4 3 2 1 0 11 10 9 8 15 14 13 12 

From the three attributes of an XOR table as mentioned in 
Remark 3, we prove the accuracy of the new XOR table 
generated by Algorithm 1 with the following proposition.  

Proposition 1. The new XOR table generated by 
Algorithm 1 satisfies the three necessary attributes of an XOR 
table. 

Proof. 

Since the Hadamard matrix  ́ is essentially a permutation 
of elements within a row of the original XOR table of AES, 
Atrribute 1 of the new XOR table is satisfied. 
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Matrix 

 ́     (               )  

(

 
 

                           
                           
                              

                                )

 
 

 

is a Hadamard one, and the matrices    (     ) are also 

Hadamard matrices, so the matrix  ́ is symmetric across the 
main diagonal. Thus, Attribute 2 of the new XOR table is 
satisfied. 

The matrix  ́  is denoted as follows: 

 ́     (           ). 

Comparing with the original XOR table of AES, it can be 
observed that the elements of the new XOR table have been 
replaced by a one-to-one mapping as follows:     ,     , 
…,       . This substitution is applied to all elements of 
the original XOR table, including both row 0 and column 0. 

According to Attribute 3 of the original XOR table: if 
         , it always holds that           and          . 

From the replacement operation, we also have the 
corresponding relationship: if             , it always holds 

that              and             . Therefore, Attribute 

3 of the new XOR table is satisfied. 

On the other hand, rearranging the order of rows and 
columns of the new XOR table so that row 0 and column 0 of 
that XOR table are in increasing order from 0 to 15 will not 
affect the values in the XOR table. Therefore, all three 
properties are satisfied for the new XOR table.  

C. Proposing the Combined Algorithm 

In this section, we will propose a combined algorithm to 
generate both the key-dependent ShiftRow and AddRoundKey 
transformations for the AES block cipher. 

Algorithm 3. Generating key-dependent ShiftRow and 

AddRoundKey transformations. 

Input: A secret key   consisting of   (     )  bits; The 

original XOR table of AES. 

Output: A new 4-bit XOR table; New key-dependent 

ShiftRow and AddRoundKey transformations for AES. 

Step 1: Take the first two bits of key   and convert these two bits 

into integers, denoted as   . Take the next two bits of   and 

convert them into integers. If this integer is different from   , 

assign it to   ; otherwise, shift key   to the right by one bit until 

you obtain       . Repeat this process until you have four 

distinct integers:            . 

Step 2: From the permutation (           ) obtained in step 1, 

for any arbitrary state  , perform a left rotation on the rows of the 

state   as follows: rotate row 1 to the left by    bytes, rotate row 

2 to the left by    bytes, rotate row 3 to the left by    bytes, rotate 

row 3 to the left by    bytes. This left rotating operation is named 

KD_ShiftRow and will be used to replace the ShiftRow operation 

in AES. 

Step 3: Following the same procedure as in step 1, with the next 

bits of the secret key   after step 1, we obtain a permutation 

(           ). 

Step 4: Construct a Hadamard matrix based on the permutation 

(            ) obtained in step 3, in the form of:  ́  
   (               ). 

Step 5: Construct a new 4-bit XOR table based on the Hadamard 

matrix  ́, with the first row and column of the new XOR table 

containing elements in the same order as those in the first row of 

matrix  ́. Rearrange the rows and columns of the new XOR table 

so that the first row and column follow an increasing order from 0 

to 15. 

Step 6: Replace the usual bitwise XOR operation in the 

AddRoundKey transformation of AES with the new XOR 

operation defined by the XOR table generated in step 5. The 

result is the KD_AddRoundKey operation, which is used in place 

of AddRoundKey in AES. 

IV. ADAPT THE AES BLOCK CIPHER BY INCORPORATING 

THE KEY-DEPENDENT SHIFTROW AND ADDROUNDKEY 

TRANSFORMATIONS 

A. Implementation of Experiments 

Execute the combined algorithm in Algorithm 3 to obtain 
two key-dependent transformations: KD_ShiftRow and 
KD_AddRoundKey. Then, use these two transformations to 
replace the original ShiftRow and AddRoundKey in AES. The 
resulting dynamic AES algorithm is denoted as ShiftAES. 
Fig. 5 illustrates the diagram of encryption/decryption rounds 
in the ShiftAES algorithm. 

 
Fig. 5. Encryption / decryption round diagram of the ShiftAES algorithm. 

For experiment, we select the AES-128 block cipher with a 
XOR table of 4-bit. This led to the development of a key-
dependent dynamic block cipher algorithm, which we named 
ShiftAES-128 based on Algorithm 3. We implement these 
algorithms using C++ on an Asus K43SJ Laptop (Core i5-
2430M, 500GB, HDD 6GB RAM, Nvidia Geforce GT 520M). 

B. Security Analysis  

In the realm of block ciphers, encompassing AES, the 
most potent threats manifest in the form of differential attacks 
[18, 19], linear attacks [18, 36], or their derivatives. In the 
case of differential attacks, attackers must rely on predefined 
differential patterns to execute their strategies. Our ShiftAES 
block cipher ensures the continuous alteration of differential 
patterns [17], contingent upon the encryption key. This 
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dynamic behavior significantly enhances the security of the 
ShiftAES block cipher, as it becomes exceedingly arduous for 
potential attackers to compute the differentials required for 
launching attacks. 

The use of the key-dependent ShiftRow operation makes it 
considerably more challenging for attackers as it conceals the 
exact rotation values applied in AES’s KD_ShiftRow, 
rendering decryption significantly more difficult. Moreover, 
the utilization of key-dependent AddRoundKey operations 
will heighten the intricacy of key-related attacks [37]. It 
disrupts the conventional property of XOR tables, where 
different inputs with the same difference yield an output 
difference of 0. The dynamic nature of the relationship 
between input differences, driven by the variable key, adds an 
additional layer of security to block ciphers that incorporate 
such elements. 

Combining both KD_ShiftRow and KD_AddRoundKey 
makes the attacker’s task significantly more challenging. In 
the case of AES, attackers know how ShiftRow and 
AddRoundKey work, they might collect a large number of 
plaintext/ciphertext pairs for differential or linear 
cryptanalysis attacks. This number of pairs could be very 
large, let’s assume it’s    . However, with the ShiftAES 
algorithm, there can be 24 possibilities for KD_ShiftRow and 
24 possibilities for dynamic XOR tables, which results in 
          possible combinations for ShiftRow and 
AddRoundKey used in ShiftAES. In this scenario, the number 
of plaintext/ciphertext pairs required for an attack is not just 
    but        . This number, at first glance, may not seem 
significantly larger, but in reality, it’s extremely huge and has 
practical implications. So, for the dynamic AES block cipher, 
an attacker needs to collect plaintext/ciphertext pairs that are 
576 times more than in the case of regular AES. This is not an 
easy task in practice. Furthermore, when the 
encryption/decryption switches to a different secret key, 
meaning different KD_ShiftRow and KD_AddRoundKey are 
used, the attacker might not have enough time to gather a 
sufficient number of plaintext/ciphertext pairs to carry out the 
attack. 

Therefore, it can be seen that the proposed dynamic 
method can significantly increase the security of AES. 
Furthermore, as mentioned in the introduction, our proposed 
method is a novel approach, which may be highly beneficial 
for cryptography designers in designing secure dynamic SPN 
block ciphers. 

C. Evaluating the Random Statistical Standards 

In this section, we assess the random statistical standards 
according to NIST SP 800-22 [38] and Shannon Entropy 
criteria [39] of the AES and ShiftAES block cipher. 

NIST SP 800-22 [38] has been developed to serve as the 
primary and extensively utilized means for evaluating the 
statistical randomness of random or pseudorandom number 
generators in the field of cryptography. NIST's set of 
randomness assessments encompasses a total of 15 tests, 
which are outlined below. 

Random Excursions Test; Frequency Test within a Block; 
Test for the Longest Run of Ones in a Block; Approximate 

Entropy Test; Non-overlapping Template Matching Test; 
Binary Matrix Rank Test; Random Excursions Variant Test; 
Cumulative Sums (Cusum) Test; Frequency (Monobit) Test; 
Linear Complexity Test; Runs Test; Serial Test; Overlapping 
Template Matching Test; Discrete Fourier Transform 
(Spectral) Test; Maurer’s ―Universal Statistical‖ Test. 

For a given input sequence, every test computes a 
respective p-value, which is then compared to the significance 
level       . Should     , it is inferred that the sequence 
exhibits randomness, and conversely. 

Entropy, also known as information entropy, is described 
as the degree of unpredictability concerning an individual's 
knowledge or the result of an experiment before it is observed, 
as well as the connected deterministic characteristics for 
forecasting its value. Higher entropy indicates increased 
uncertainty when forecasting an observation's value. Shannon 
entropy represents one category of information entropy 
developed by Shannon in [39]. 

1) Evaluate the shannon entropy change using the ENT 

tool: Shannon entropy is a vital indicator of randomness. In 

this section, we assess the alteration in Shannon entropy for 

the four datasets, namely LW, HW, AV1, and Rot, across each 

round of the DAES block cipher. This analysis aims to 

provide a comprehensive view of the randomness at each 

round. We utilized the ENT tool [40] to perform the 

evaluations and acquired the subsequent outcomes. 

The results of the entropy evaluation are presented in 
Table III. 

TABLE III. EVALUATION RESULTS OF ENTROPY FOR AES AND SHIFTAES 

Rounds AES ShiftAES 

1 4.994138 5.014244 

2 7.077322 7.040298 

3 8 7.999285 

4 7.999989 7.999987 

5 7.999990 7.999990 

6 7.999989 7.999989 

7 7.999990 7.999989 

8 7.999990 7.999988 

9 7.999989 7.999988 

10 7.999989 7.999988 

The entropy evaluation results show that after three 
rounds, the entropy of data encrypted by both original AES 
and ShiftAES is approximately 8 bits/byte. This implies that 
both block ciphers achieve randomness properties with three 
or more rounds. 

2) The evaluation results according to NIST SP 800-22: 

We conducted an evaluation of the statistical tests for rounds 

1, 2, ..., 10 of both AES and ShiftAES. Tables IV to VIII 

display the results of the randomness evaluation of AES and 

ShiftAES across 1, 2, 3, 4, and 10 rounds. 
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TABLE IV. RANDOMNESS EVALUATION OF AES AND SHIFTAES OVER 1 

ROUND 

Test AES-1R ShiftAES-1R 

AppEnt 0 0 

BlocFreq 0 0 

Cusum 1 0 0 

Cusum 2 0 0 

FFT 0 0 

Freq 0 0 

Linear Complexity 0.631288 0.752788 

LongRun 0 0 

NonOverLap 148 p-values = 0 148 p-values = 0 

OverLap 0 0 

RanEx 8 p-values = 0 8 p-values = 0 

RanEx Var 18 p-values = 0 18 p-values = 0 

Rank 0 0 

Run 0 0 

Serial 1 0 0 

Serial 2 0 0 

Universal 0 0 

TABLE V. RANDOMNESS EVALUATION OF AES AND SHIFTAES OVER 2 

ROUNDS 

Test AES-2R ShiftAES-2R 

AppEnt 0 0 

BlocFreq 0 0 

Cusum 1 0 0 

Cusum 2 0 0 

FFT 0 0 

Freq 0 0 

Linear Complexity 0.204973 0.051540 

LongRun 0 0 

NonOverLap 148 p-values = 0 148 p-values = 0 

OverLap 0 0 

RanEx 8 p-values = 0 3 p-values >= 0.01, 5 
p-values < 0.01 

RanEx Var 18 p-values = 0 18 p-values >= 0.01 

Rank 0 0 

Run 0 0 

Serial 1 0 0 

Serial 2 0 0 

Universal 0 0 

TABLE VI. RANDOMNESS EVALUATION OF AES AND SHIFTAES OVER 3 

ROUNDS 

Test AES-3R ShiftAES-3R 

AppEnt 0.925352 0 

BlocFreq 0.831754 0.999999 

Cusum 1 0 0 

Cusum 2 0 0 

FFT 0 0 

Freq 0.993653 0 

Linear Complexity 0.978496 0.876043 

LongRun 0.041736 0 

NonOverLap 148 p-values >= 0.01 148 p-values <= 0.01 

OverLap 0 0 

RanEx 
3 p-values >= 0.01, 5 
p-values < 0.01 

8 p-values = 0 

RanEx Var 
2 p-values >= 0.01, 16 

< 0.01 
18 p-values = 0 

Rank 0.611499 0.662867 

Run 0.340678 0 

Serial 1 0.437274 0.029134 

Serial 2 0.113612 0.577590 

Universal 0.000003 0 

TABLE VII. RANDOMNESS EVALUATION OF AES AND SHIFTAES OVER 4 

ROUNDS 

Test AES-4R ShiftAES-4R 

AppEnt 0.898152 0.826485 

BlocFreq 0.970639 0.862578 

Cusum 1 0.254482 0.046664 

Cusum 2 0.230798 0.010182 

FFT 0.339743 0.896743 

Freq 0.363824 0.034995 

Linear Complexity 0.540695 0.080683 

LongRun 0.162664 0.675598 

NonOverLap 148 p-values >= 0.01 148 p-values >= 0.01 

OverLap 0.220930 0.628086 

RanEx 8 p-values >= 0.01 8 p-values >= 0.01 

RanEx Var 18 p-values >= 0.01 18 p-values >= 0.01 

Rank 0.615078 0.995817 

Run 0.225007 0.415387 

Serial 1 0.987050 0.564141 

Serial 2 0.996948 0.403646 

Universal 0.571751 0.494948 

TABLE VIII. RANDOMNESS EVALUATION OF AES AND SHIFTAES OVER 10 

ROUNDS 

Test AES-10R ShiftAES-10R 

AppEnt 0.863909 0.002023 

BlocFreq 0.415025 0.510530 

Cusum 1 0.537509 0.143294 

Cusum 2 0.927344 0.306088 

FFT 0.307167 0.782720 

Freq 0.604613 0.234997 

Linear Complexity 0.002433 0.057640 

LongRun 0.748478 0.465346 

NonOverLap 148 p-values >= 0.01 148 p-values >= 0.01 

OverLap 0.000320 0.133895 

RanEx 8 p-values >= 0.01 8 p-values >= 0.01 

RanEx Var 18 p-values >= 0.01 18 p-values >= 0.01 

Rank 0.908691 0.312501 

Run 0.369725 0.584987 

Serial 1 0.759251 0.618985 

Serial 2 0.412087 0.396930 

Universal 0.674145 0.165542 
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The results show that both the original AES and ShiftAES 
achieve randomness when they pass all the tests. For rounds 
fewer than four, both AES and ShiftAES still fail in some tests. 
From round 5 to round 10, both AES and ShiftAES block 
ciphers pass all tests. It means that the p-values of those tests 
are all greater than or equal to 0.01 from round 5 to round 10. 
Therefore, both block ciphers exhibit randomness when using 
four rounds or more.  

Combining the evaluation results based on entropy and 
statistical tests from NIST SP 800-22, we conclude that the 
ShiftAES algorithm achieves randomness with a number of 
rounds greater than or equal to four and is equivalent to the 
original AES algorithm. 

V. CONCLUSION 

In this paper, we propose algorithms for generating key-
dependent AddRoundKey and ShiftRow transformations 
based on permutations. Subsequently, we apply these key-
dependent transformations to AES to create a dynamic AES 
block cipher. We conduct a security analysis and evaluate the 
statistical standards of NIST, assess the entropy of both AES 
and the dynamic AES (ShiftAES). Consequently, it is evident 
that the dynamic AES block cipher can significantly 
strengthen the security of AES and meets statistical 
randomness criteria similar to AES. This result is significant 
both in theory and practice, providing cryptographic 
researchers with a new method to improve block cipher 
security. Our future research direction involves further 
development of other dynamic algorithms to strengthen the 
resilience of SPN block ciphers against cryptanalysis. 
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