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Abstract—Pregnancy monitoring plays a pivotal role in 

ensuring the well-being of both the mother and the fetus. 

Accurate and timely classification of fetal health is essential for 

early intervention and appropriate medical care. This work 

presents a novel method for classifying fetal health optimally by 

combining the Bat Algorithm (BA) in an effective manner with a 

hybrid model that combines Recurrent Neural Networks (RNN) 

and Extreme Gradient Boosting (XGB). The Bat Algorithm, 

inspired by the echolocation behaviour of bats, is employed to 

optimize the hyperparameters of the XGB-RNN hybrid model. 

This enables the model to adapt dynamically to the complexities 

of fetal health data, enhancing its performance and predictive 

accuracy. The XGB-RNN hybrid model is designed to capitalize 

on the strengths of both algorithms. XGB provides superior 

feature selection and gradient boosting capabilities, while RNN 

excels in capturing temporal dependencies in the data. This 

approach effectively deals with the difficulties involved in 

classifying fetal health in the context of pregnancy monitoring by 

combining these approaches. Python is used to implement the 

proposed framework. To validate the performance of the 

proposed approach, extensive experiments were conducted on a 

comprehensive dataset comprising a wide range of physiological 

parameters related to fetal health. When it comes to fetal health, 

BAT Algorithm's XGB-RNN (BARXG) performs outstandingly, 

greater than other classifiers in terms of accuracy, sensitivity, and 

specificity. The proposed BARXG model has greater accuracy 

(98.2%) than existing techniques, which include SVM, Random 

Forest Classifier, LGBM, Voting Classifier, and EHG. 

Keywords—BAT; fetal health; pregnancy monitoring; RNN; 

XGBoost 

I. INTRODUCTION 

Embryogenesis and maternity are essential components for 
human life and fertility. Whenever the fertilized egg, also 
called as a zygote, grows becomes a developing embryo, 
becomes a fetus, and finally culminates with the conception as 
a new human being, it is called pregnancy. Although 
becoming pregnant is an amazing experience, there are 
dangers and uncertainty involved. It is crucial to protect the 

mother's wellness and health in addition to the developing 
fetus. Regular fetal health monitoring is essential to prenatal 
treatment in order to identify and quickly fix any possible 
problems. This is a complicated and transformational process. 
Monitoring the development of the fetus throughout 
pregnancy is one of the hardest and most complex treatments. 
Although the average duration of this incredible journey is 
forty weeks, individual experiences may vary greatly [1]. The 
growing child of a person around the final stages of pregnancy 
is called a fetus. It is a crucial phase that comes after the 
embryonic stage and before childbirth during the entire human 
gestational process. In the fetus, the life form develops 
significantly. Usually, the fetus is just a few millimeters long 
at the start of the fetal stage, which occurs during the ninth 
week of development [2]. The fetus may grow to a size of 19 
to 21 inches or greater by the conclusion of the trimester. The 
following are the phases of fetal growth. Weeks 9–12 of the 
first trimester, the fetus experiences tremendous expansion 
and growth. Important organs and tissues develop, and the 
fetus starts to take on characteristics of a little human. Weeks 
13–27 of the second trimester, the fetus's body is growing as 
well as becomes more proportional. The embryo starts to 
move more deliberately and has the ability to grab items and 
sucks its thumb. Weeks 28 to Birth of the third trimester, a 
noticeable increase in size characterizes the last trimester. 

 This tissues and structures of the fetus develop more in 
order to get prepared for living beyond the mother's body [3]. 
The mother can clearly observe the fetus's movements, and it 
is capable of reacting to outside stimuli. A fetus is vulnerable 
to various issues throughout the course of pregnancy. 
Obstetrics carelessness can have devastating consequences, 
such as during childbirth fetal mortality, deaths from stillbirth, 
including over time infant neurological abnormalities. More 
than 1.3 million fetal fatalities happen throughout childbirth 
every year [4]. Birth asphyxia represents one causing the main 
causes of fetal death. Birth asphyxia, also known as hypoxia, 
is the result of a disruption in the blood supply via the 
placenta, which results in low oxygen levels in the fetus's 
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brain. Hypoxia-induced fetal distress can result in a range of 
anomalies during birthing that can be classified as either life-
threatening or non-life-threatening. A newborn's brain is very 
susceptible to the effects of oxygen; hence a shortage of 
oxygen can have fatal consequences for the developing brain. 
Therefore, in order to identify fetal acidic conditions early on, 
we require an effective method that can track the fetal 
condition in real time and notify obstetricians when something 
odd happens so they may act quickly to save the fetus from 
irreversible harm. Birth asphyxia caused hypoxia causes 
permanent mental and physical disabilities such as spinal cord 
injury, deafness and visual impairment, speech difficulties, 
and autism. One typical outcomes diagnosis linked to 
fetal/perinatal brain damage is cerebral palsy (CP). 

Most people agree that cerebral palsy (CP) is a disorder for 
neurological growth that causes dyskinesias and spastic 
quadriplegia or diplegia, and hemiplegia. In full-term 
newborns, the rate of CP ranges from 2.5 to 4.0 in 1000 births. 
However, this number rises to 16–22 per 1000 live births for 
children delivered preterm or individuals that are tiny for their 
gestational age (growth limited). In industrialized nations, the 
Maternal Mortality Ratio (MMR) is significantly lower than in 
impoverished nations. High MMR frequently results in issues 
such as pre-eclampsia, insufficient tracking of both the 
maternal and unborn child's health, and pregnancy-related 
diabetes. With the right medical attention, MMR can be 
decreased and avoided. Monitoring of the baby is a routine 
practice carried out in the third trimester. Fetal tracking 
involves assessing the unborn child's health [2]. The well-
being of the mother has a direct impact on fetal development. 
Cardiotocography is used to continuously measure the well-
being and development progress of the fetus in order to 
prevent such issues. The goal of the cardiotocography is to 
assess the maternal uterine contractions while simultaneously 
monitoring the fetus' heartbeat. This procedure could be 
carried out in the last trimester, after the fetus's development 
has fully synchronized with its heart beat. Because this 
technique is simple and inexpensive, it should only be used by 
qualified medical professionals to diagnose fetal condition 
early and lower fetal mortality. The results of the CTG will 
show the mother's uterine contractions alongside the unborn 
child's heart rate, acceleration, deceleration, among other 
intricate measurements. Mother and fetal well-being are 
closely related. Managing the well-being of mother as well as 
baby depends on lowering the number of fetal deaths and 
keeping an eye on the circumstances of fetal health [5]. A 
prenatal test used to track the heartbeat of the fetus and uterine 
contractions throughout both gestation and delivery is called 
CTG, or Electronic Fetal Monitoring (EFM). 

These variables are monitored by two sensors, and the 
initial value, allowable variations, decelerations, and 
accelerations are used to classify the fetal health state. Medical 
professionals regularly look at these amounts and classify the 
fetus's health. Any numbers that deviate from a healthy state 
should raise suspicions about one's health. Healthcare workers 
review the data and assign an identifier to each characteristic. 
The CTG technique, which uses an electromagnetic field 
(EMF) equipment to track heart rate and uterine reductions 
throughout pregnancy, is used to get these data. Healthcare 

professionals physically categorize collected information and 
match it within a category in which the criteria are fulfilled; 
whenever the values fall outside of this range, an anxious 
condition is indicated. Through health state prediction, 
machine learning techniques can help physicians determine 
the fetal medical condition [6]. Doctors often use 
cardiotocography (CTG) for their clinical duties to track and 
evaluate the fetal status throughout gestation and delivery. 
CTG entails constant recording of both uterine contraction 
(UC) and fetal heart rate (FHR) signals. However, as fetal 
physiological changes are intricate and controlled through 
neurological mechanisms, there is typically a great deal of 
intra-observer and inter-observer discrepancy when utilizing 
standard criteria over visual interpretation of FHR signals. 
Obstetricians reduce diagnostic errors during labour by doing 
several subjective judgments. The key issue with the 
previously described procedure, nevertheless, is that it cannot 
be empirically realised; instead, obstetricians rely their 
conclusions only their own observations. As a result, the 
frequency of needless cesarean sections (CSs) brought on by 
subjectively mistake is rising, and this has made the pursuit on 
an additional accurate examination of the FHR signal its 
primary motivation. 

The principal technique used most commonly in hospital 
routine tests for fetal status identification is the 
cardiotocogram (CTG). Prenatal surveillance of CTG 
primarily uses two physiological signals: fetus heartbeat and 
uterine contractions. The distress of the fetus affects FHR, 
resulting in anomalous high or decreased FHR occurrences. 
Initial pathogenic condition identification is accomplished 
with the help using such data. CTG data may be used to 
categorize the fetus's pathogenic status in relation to regular, 
which indicates its healthy state. A hypoxic fetus is extremely 
susceptible and might be temporarily impaired or even die 
after birth. Over half of all the deaths that occur can be 
attributed to insufficient therapy and misinterpretation of FHR 
[7]. Fetal health diagnosis is a challenging procedure that 
depends on a number of input elements. The identification of 
fetal healthy state is made based on the levels or range of 
values associated with these symptoms. Determining the 
precise amounts for the periods among the provided signs that 
influence the diagnosis's outcome can be challenging with 
occasions. Physicians frequently divide the entire pain phase 
value into smaller segments, examine each segmented 
segment, and determine the person's overall health status 
based on their analysis. These periods frequently convey 
uncertainty and might vary from patient to patient. 
Additionally, distinct patients may respond to similar illnesses 
in varying ways. Women who are getting ready to become 
mothers have begun looking for prenatal guidance and 
knowledge about risks while illness symptoms through online 
resources. Despite approximately 3.7 billion application 
downloads in 2017, there were over 325,000 fitness, health, 
and medical applications accessible; pregnancy-related apps 
make up a significant portion of this category [8]. 

Apps for smartphones and tablet computers can help 
expectant mothers obtain information, track the growth of 
their fetus, comprehend alterations to their own bodies, and 
get comfort when they have worries. A gadget like a video 
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camera, wellness tracker, Kegel "exerciser," fetal heart rate 
"listener," or another kind of device allowing participants to 
monitor and communicate their personal data might be linked 
to maternity applications. On the other hand, nothing exists 
regarding the way smartphone app-based health treatments 
affect mother's behaviours or perinatal well-being [9]. 
However, there is a lack of research on the effectiveness of 
apps, their content, how mothers use them, or the best 
methods to include them into normal prenatal education and 
care. Midwives along with other professionals often speak to 
pregnant women that download and utilize applications. 
Classification systems for fetal health aid in the early 
detection of anomalies, problems, or departures from the 
typical developing processes [10]. Healthcare personnel have 
the ability to swiftly implement suitable treatments since 
earlier diagnosis. Rapidly healthcare treatments might be 
critical towards avoiding or minimizing problems, and early 
diagnosis of fetal health abnormalities facilitates these 
therapies. Based on the severity of the problem, this may 
involve measures including suggesting surgery, giving 
medicine, or altering mom's lifestyle. Pregnant women might 
feel less stressed and anxious when they realize their unborn 
child is well and under constant observation. Improved 
outcomes and fewer needless healthcare procedures might 
arise from personalized care. More precise fetal health 
categorization enables improved delivery process preparation. 
This helps in deciding if early labour inducers or cesarean 
section is required, as well as ensuring the right doctors 
remain on hand for the birth. In healthcare applications, 
selecting features is a critical process that is handled using the 
Bat Algorithm. The research shows how this method may be 
used to improve model accuracy and comprehension by 
identifying the most pertinent characteristics in the 
Cardiotocography (CTG) dataset. 

The following are the main contributions to the suggested 
work: 

 In an initial processing measure, it employs class 
weighting to prevent overfitting when training the 
model. 

 Sequencing and temporal connections in data are 
captured by RNNs. RNNs may simulate how fetal 
heart rate and uterine contraction patterns change over 
time within the framework of fetal health monitoring. 
This is necessary in order to identify any abnormalities 
or anomalies. 

 A hybrid design fuses the RNN and XGBoost models 
together. This combination enables the model to take 
use of RNNs' capacity for capturing temporal dynamics 
and XGBoost's expertise in feature engineering. 

 The output of RNN is fed into XGBoost for 
classification. RNN-XGBoost model had 
hyperparameters tuned using the BAT algorithm. 

 In the end, the optimization process of the Bat 
Algorithm yields a collection of characteristics 
regarded most significant for the goal of classifying 
fetal health. 

This article's remaining sections are organized as follows: 
In Section II, an overview of relevant studies is provided. 
Section III presents the problem description for the current 
system. The approach and architecture of the suggested 
BARXG model for Fetal health classification are explained in 
Section IV of the paper. Section V presents the findings from 
the investigation and the subsequent discussion. Conclusion 
and future application of the suggested paradigm are covered 
in Section VI. 

II. RELATED WORKS 

The research in [11] proposed a fetal health classification 
using T2-FNN method. The fetal medical diagnosis can be a 
challenging procedure which requires a variety of inputs 
elements. An assessment of fetal medical condition has been 
carried out via the numbers or varying numbers associated 
with those given signs. Their will likely be discussion among 
specialized physicians when determining the precise ranges 
that constitute gaps while identifying illnesses. Since a 
consequence, illness diagnosis frequently takes place in 
unreliable circumstances and occasionally results in 
unfavourable mistakes. Precisely a result, choices may be 
questionable due towards the ambiguous aspect of illnesses or 
insufficient patient information. The 21 intake criteria define 
the fetal medical condition. The estimation of these numbers 
included testing and observations. Three outcome diagnoses 
for good stages for fetal growth have been defined using 
potential amounts for these variables. Average, Suspected, as 
well as Abnormal include these. It had been possible to 
establish overall type-2 fuzzy neural networks (T2-FNN) 
method's architecture utilizing the quantity combined inputs 
and outcomes symptoms. Utilizing fetal records, the 
developed T2-FNN is evaluated. The structure of the system 
makes use of a variety of criteria. The design turns out that 
while the number of criteria increases, so does the efficiency 
of the system. Utilizing fetal records, the developed T2-FNN 
is evaluated. The structure of the system makes use of a 
variety of criteria. The design turns out that while the number 
of criteria increases, so does the efficiency of the system. 
Although T2FNNs become more sophisticated than regular 
neural networks, they may be costly to compute and more 
difficult to carry out, particularly for applications that operate 
in real time. 

The research in [12] proposed a fetal health classification 
using machine learning techniques. Cardiotocography (CTG) 
depicts the fetus's condition while in labour within the uterus. 
Yet, based on the obstetrician's experience, evaluating the 
results might be a very biased procedure. Infant monitoring 
digitally collect data (such as baby heart rate, movements and 
accelerating). Many investigators have concentrated their 
efforts on CTG information in order to evaluate fetal health 
utilizing different AI algorithms. Utilizing fetal heart rate data, 
certain investigators utilized neural networks to forecast fetal 
health. The suggested approach used the Fetal Health 
Assessment information set, which consists of CTG files, 
along with five ensembles participants: Random Forest, 
AdaBoost, XGBoost, CatBoost, and LGBM. The voting 
classifier, sometimes referred to by the term Meta classifier, 
classifies the CTG information using the results obtained from 
RF, XGBoost, AdaBoost, CatBoost, and LGBM. To categorize 
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CTG data, a soft voting technique is implemented using the 
mean result from every ensemble classifier. Regarding 
situations when many ensembles learner work identically, a 
soft voting classifier may be useful. The deficiencies of each 
individual ensemble‘s learners might be compensated by 
combining their work. In order to improve the efficiency of 
the entire model, the soft voting classifier ultimately removes 
the flaw of one particular classifier. Ensembles approaches, 
including the majority of machine learning algorithms, were 
dependent on noisy data; particularly the existence of 
disturbance in fetal health surveillance information may have 
an influence overall the model's efficiency. 

The study in [13] suggested a strategy for fetal health 
classification.  It is usual practice to utilize uterine 
contractions (UC) activities to gauge when labour and delivery 
will begin. In order to monitor UC and discriminate between 
effective and unproductive contractions, electro hysterograms 
(EHGs) have lately been adopted. From this investigation, the 
researchers utilized a convolutional neural network also 
known as CNN to detect UC in EHG signals. In order to 
create a CNN model, an open-access database has been 
utilized. Utilizing by five times cross-validation, a model 
based on CNN was created then learned with DB1. The CNN 
framework created with DB1 was utilized with DB2, a 
separate clinical database, to assess its generalizability for 
identifying UCs. Employing the multiple channels of 
communication system as well, the EHG signals in DB2 have 
been collected via 20 pregnant women, as well as 308 parts 
have been retrieved. The number of trials might be increased 
by combining both databases that might be preferable to teach 
the CNN model. The research has shown how CNN would 
effectively distinguish UCs with EHG signals. This technique 
makes it possible to consistently and correctly identify UCs, 
offering a unique tool for keeping track of the status of the 
labour and the health of the mother and fetus. Uneven classes 
might exist in EHG datasets, including UCs occurring less 
frequently than non-UCs. Unbalanced data may generate 
unbalanced models while having an impact on effectiveness in 
reality. It might be challenging and exhausting to integrate the 
CNN approach within present clinical processes and medical 
records systems. 

[14] suggested a fetal health monitoring approach. To 
limit development negotiation, lower mortality, and avert 
premature birth, considerable health care services have been 
devoted toward tracking risky pregnancies. Another crucial 
sign for prenatal health was recently identified as fetal 
movement. Surveys showed that undesirable delivery rates 
occurred in 25% of pregnancy with reduced fetal movement 
during the 3rd trimester. They provide a better iteration of the 
automatic FetMov identification they already recommended. 
FetMov means Processes identified as FetMov by an 
ultrasonographer. Activities not identified from the 
ultrasonographer as FetMovs but with FetMov-like 
characteristics are called artefacts (Artf). They consist of 
parental body motions and sensor shifts. Information from 
accelerometers have been pre-processed using separate 
component analysis while wavelet decomposition over the 
initial time. The categorization set of characteristics has been 
increased by one attribute to 31 factors. Various models have 

been assessed employing a ten-fold cross-validation approach 
with the aim evaluate the performance of the suggested 
parameters. Thirty-one characteristics were taken using 
acceleration information in order to recognize fetal 
movements. Various predictors had been used for 
distinguishing fetal from non-fetal moves according to these 
characteristics. The models' reliability has been investigated 
across various artefact levels within the categorizing 
information. Bagging classifier method produced the most 
effective results. Automatic identification systems could result 
in false positives or false negatives, which could cause worry 
in expectant parents and result in pointless treatments or 
undetected problems in professional settings. Datasets that are 
unbalanced may result from uterine contractions being 
comparatively uncommon occurrences as compared to non-
contraction times. This disparity problem might not be 
sufficiently addressed by bagging, which could lead to skewed 
predictions. 

The research in [15] proposed a Fetal health monitoring 
using IoT method. Digital health apps utilizing the Internet of 
Things provide helpful instruments enabling efficient and 
dispersed automated systems for diagnosis. In order to track 
mother's and baby messages over pregnancy at high risk, this 
research suggests developing a combined approach utilizing 
Internet of Things (IoT) sensors, extracted features from data 
analysis, along with a predictive evaluation assist method built 
around a single-dimensional CNN classifier. In addition to 
recording the heart rate of the fetus, a number of clinical 
indications connected with the mother are also tracked, 
including blood pressure, temperature, heartbeat rate, uterine 
tonus action, and oxygen consumption. A substantial volume 
of data is produced at various speeds along with diverse 
formats by various sources. Utilizing a fog computing layer, a 
critical diagnosis system is suggested, considering the 
acquisition of various features along with the computation of 
both linear and nonlinear measurements, intelligent analytics 
for health system is suggested. Lastly, taking into account six 
potential outcomes, a method of classification is suggested as 
a system of forecasting for the categorization of maternal, 
fetal, and simultaneous health status. The crisis system 
receives information produced by IoT devices and employs it 
to evaluate and figure out whether it detects either severe fetal 
or maternal discomfort. The healthcare team is notified right 
away if a critical situation emerges. Following this analysis 
stage, every feature is computed and transmitted to the 
suggested estimation system using a single-dimensional CNN 
in the cloud-based approach. Lastly, the healthcare 
professional is supplied with a categorization that validates the 
diagnosis of illness. Severe legal requirements have to be met 
by IoT devices utilized in the healthcare industry. It might take 
money and effort to fulfill these criteria. 

When it comes to predicting specific fetal health problems, 
like with a late- difficulties, which might arise following 
regular monitoring happened, the current categorization 
approach may not be very reliable. Several variables, 
consisting as mother health, genetics, and surroundings, might 
affect the health of the fetus. Such factors may lead to fetal 
reaction inconsistency and make categorization more difficult. 
The categorization scheme is predicated on data gathered from 
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typical prenatal visits, although might not necessarily offer an 
all-encompassing picture of fetal health. Reliable evaluation of 
several crucial factors is difficult, including fetal activity along 
with placenta functioning. T-2FNNs are more complex than 
their Type 1 counterparts due to the additional dimension of 
uncertainty they handle. This complexity can make the model 
challenging to understand and implement, especially for 
healthcare professionals who may not be familiar with fuzzy 
logic or neural networks. In contrast to simpler models, 
Random Forest models might be more difficult to read, which 
can make it difficult to comprehend the rationale behind 
certain categorization decisions—a critical skill in medical 
contexts. AdaBoost are very complicated, it may also overfit. 
Despite CatBoost's economical architecture, it could need an 
extended period to train than other algorithms, which could be 
a drawback for healthcare applications that need to respond 
quickly. LGBM may not perform as well with small datasets, 
as it is optimized for large-scale data. 

III. PROBLEM STATEMENT 

There are a number of issues with the current Optimum 
Fetal Health Classification during Pregnancy Monitoring 
which might affect how accurate and useful it is. Compared 
with other classification models, T2FNNs can be harder to 
comprehend, which makes it harder to justify certain 
categorization choices. Readability is essential in medical 
settings to win over healthcare professionals' confidence along 
with approval. Several machine learning models, particularly 
over fitting ones, exhibit weak results with unknown data yet 
good performance on training information. Overfit methods 
can't adjust effectively to novel patients or circumstances in 
healthcare settings, which might result in inaccurate 
diagnoses. The methods used today frequently depend on 
predictive models along with past information, and this may 
not be able to appropriately forecast difficulties in the future 
or account for each person pregnancy variances. Aspects such 
as fetal position, mother bodily habits, and electrode location 
might affect the quantity of EHGs. Errors in categorization 
might result from noisy or unreliable information [16]. The 
deployment of bagging classifiers along with other algorithms 
based on machine learning in healthcare facilities may be 
limited due to their computing demands, which necessitate 

substantial expenditures for both training and real-time usage. 

IV. PROPOSED BAT ALGORITHM-DRIVEN XGB-RNN FOR 

OPTIMAL FETAL HEALTH CLASSIFICATION IN PREGNANCY 

MONITORING 

Compiling information on pregnancy monitoring is the 
initial stage. The information collected might contain the 
fetus's patterns of motion, heartbeat, and additional indicators 
of wellness throughout duration. Before being analysed, the 
gathered data must be cleansed. In order to handle values that 
are absent, normalize the data, and perhaps identify pertinent 
features for the classification task, all of this must be done. 
The framework and hyperparameters for a machine learning 
model are optimized using the Bat Algorithm. It can assist in 
choosing among the most important characteristics, 
determining the ideal model variables, and enhancing the 
efficiency of the framework as a whole. Along with the 
methods for categorization is XGBoost. Most commonly, it's 
employed to offer a preliminary data categorization. 
Sequential data, such as data on fetal health over time, are 
analyzed using the RNN. Utilizing a combined method like 
layering or mixing, merge the outcomes of the RNN and 
XGBoost model. Classification is done after hyperparameter 
tuning by BAT algorithm. Then fetal health is classified using 
BARXG model. Fig. 1 shows the overall diagram of proposed 
BARXG model for Fetal health classification. 

A. Data Collection 

Cardiotocograms (CTGs) are an easy-to-use, reasonably 
priced method of evaluating fetal health that enables medical 
practitioners to implement preventative measures against 
mother and infant death. The gadget essentially functions by 
delivering ultrasonic pulses and interpreting the reaction, 
thereby providing information on a variety of topics including 
uterine contractions, fetal movements, and fetal heart rate 
(FHR). The dataset is collected from fetal health classification 
from the website Kaggle [17]. 2126 sets with features taken 
from cardiotocogram tests are included in this collection of 
data. Three experienced obstetricians divided the 
characteristics among three categories: Normal, Suspect, and 
Pathology. 

 

Fig. 1. Proposed BARXG model for fetal health classification. 
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B. Data Pre-processing 

1) Data oversampling: To describe the relationship 

between variables during the model's development, the 

number of values provided in the dataset were standardized 

through a range from −1 to 1 during the preprocessing stage. 

The imbalanced dataset was handled using progressive class 

weighting following feature extraction. Adding some weight 

to every class to give the minority classes greater significance 

represents one among the easiest approaches to overcome this 

class imbalance and create a classifier which will learn 

similarly from all classes. It easily multiplies the entropy part 

of every class using the associated weight in a tree-based 

model, whereby the best split is defined using a certain metric, 

such lower entropy, to give the minority classes greater 

prominence. 

In Eq. (1), 𝑎1 represents a new value derived using the 
values, illustrates the normalizing and standardized procedure 
for feature extraction. 

   𝑎1 =
𝑎−𝑚𝑖𝑛 (𝑎)

𝑚𝑎𝑥(𝑎)−𝑚𝑖𝑛 (𝑎)
                      (1) 

InEq. (2) provides the extended version that describes the 
polynomial expansion (PE) function utilized in feature 
extraction, where n denotes the degree of expansion and {b,c} 
are the independent variables within the dataset. Although the 
n degree in this study has been set at 2, the dataset in PE 
expands exponentially and horizontally with respect to n. 

(𝑏 + 𝑐)𝑑 = ∑(𝑒
𝑑)𝑏𝑒𝑐𝑒−𝑘                      (2) 

However, computational expenses and horizontal 
expansion were kept to a minimal. Classes might be 
periodically evaluated by calculating their entropy function 
(f), as demonstrated by Eq. (3). 

𝑓 = ∑ 𝑞𝑔𝑔 log (𝑞𝑔)                       (3) 

C. BAT Algorithm Driven RNN-XGBoost Model for Fetal 

Health Classification 

This hybrid model combines the strength of XGBoost and 
Recurrent Neural Networks (RNN) with a feature selection 
method called Bat Algorithm (BA). The first step in the 
procedure is gathering data from fetal health monitoring. 
Numerous factors, such fetal heart rate and uterine 
contractions, are usually included in this data. The process of 
preparing data involves oversampling the dataset. The 
XGBoost and Recurrent Neural Network (RNN) models' 
hyperparameters are adjusted and refined by the BA. The goal 
of this optimization approach is to determine which 
hyperparameters will best fit the models and assist them 
capture intricate patterns in the fetal health data. Because 
RNNs are specifically designed to analyse sequential data, 
they are a good fit for time-series data sets such as fetal health 
monitoring. To increase prediction accuracy, XGBoost is used 
to the characteristics that were taken from the fetal health data. 
To arrive at a final forecast, the outputs of the RNN and 
XGBoost models are fused, or blended. 

 
Fig. 2. Architecture diagram for proposed BARXG model. 

The overall architecture diagram for Proposed BARXG 
Model is shown in Fig. 2. The Bat Algorithm-driven RNN-
XGBoost model's overall design blends sequence modeling, 
combined learning, and bio-inspired optimization to produce a 
potent tool for classifying fetal health in prenatal monitoring. 
This novel strategy has the potential to greatly raise the 
standard of care provided to pregnant moms and their unborn 
kids. 

1) RNN: An artificial neural network type called a 

recurrent neural network (RNN) is made to handle information 

in repetitions. These perform particularly well in tasks 

involving sequences, including speech, conversation, time 

series data, and numerous other tasks. For the purpose of to 

anticipate the layer's output, RNNs operate on the basis of 

reserving a certain layer's output then feeding it back into their 

input. One layer with recurrent neural networks is created by 

compressing the nodes within the various neural network 

layers. Both the present input data and previous inputs can be 

handled sequentially by an RNN. Because RNNs have 

memory within them, they are able to retain earlier inputs. 

Provide the RNN with a series of values as input at each time 

step. The Hidden state of an RNN, while retains certain details 

regarding a sequence, is its primary and crucial characteristic. 

Because the state retains recall of the prior input within the 

network, this state is known as well as Memory State. In order 

to create the output, it does a similar job on each of the inputs 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

737 | P a g e  

www.ijacsa.thesai.org 

and hidden layers using identical settings for each input. In 

contrast to other neural networks, that lowers the complexity 

associated with the features. During every time step, that 

exists a fixed activation function unit in the recurrent neural 

network. Every unit possesses an internal state known as its 

hidden state. During a particular time, each hidden state 

represents the prior information which the network presently 

possesses. This hidden state gets revised at each time step to 

reflect any modifications to the network's previous 

information. The recurrence relation listed below is used to 

modify the hidden state. The following is the formula to find 

the present state Eq. (4). 

𝑠𝑢 = 𝑓(𝑠𝑢−1,𝑤𝑢)                        (4) 

where, 𝑠𝑢 represents the present state; 𝑠𝑢−1 represents the 
previous state; 𝑤𝑢 represents the input state. 

By using the following Eq. (5) the hidden state can be 
calculated. 

𝐻_𝑡 = 𝑉(𝐺∗𝑤𝑢 + 𝑈∗𝐻_(𝑡 − 1)  + 𝑛)                 (5) 

where, H_t represents the hidden state at time step; G 
represents the weight matrix that multiplies the current 
input 𝑤𝑢; 𝑤𝑢 represents the input at time step; U is a weight 
matrix that is multiplied by H_(t-1) previous hidden state; 
H_(t-1) this refers to the hidden state that was a part of the 
present hidden state at a prior time step. H_(t-1): This refers to 
the hidden state that was a part of the present hidden state at a 
prior time step; n this represents expression for bias. 

2) XGBoost algorithm: Gradient Boosting methods 

operate by learning ensembles on shallow decision trees. The 

framework fits the subsequent decision tree by using its 

remaining error in each iteration. A weighted total is used to 

get the final forecast after several trees have been constructed. 

In contrast, the trees in an Extreme Gradient Boost model are 

constructed parallel to one another rather than sequentially. In 

addition to improving speed, this shortens the period needed to 

fit data into a model. Within the scientific community, this 

framework is highly regarded for its ability to solve a wide 

range of issues. XGBoost is used for classification for fetal 

health. 

For data preparation Let the value X represent the feature 
matrices, whereby the features are contained in a N x M 
matrix. Y, an N-dimensional vector containing the three fetal 
health labels (0 for Normal, 1 for Suspect, and 2 for 
Pathological), should be the desired vector. The total of the 
normalization and loss terms can be used to describe the 
objectives function in XGBoost. The total of the normalization 
and loss terms can be used to describe the objective 
function(o) in XGBoost is mentioned in Eq. (6). 

𝑜 = 𝐿(𝑥, �̂�) + Ω(𝑦)                   (6) 

where, the loss function quantifying the difference 
between the real names (x) and predicted names (�̂�)  is 
represented by the expression L(𝑥, �̂�).The regularization term, 
Ω(y) regulates the ensemble of trees' complexities. The 
anticipated designation for every specimen is acquired by 

adding the forecasts of many decision trees, every one of 
which is influenced using a coefficient α is mentioned in Eq. 
(7). 

�̂�(𝑦) = ∑𝛼∗𝑘(𝑦)                     (7) 

Where, α provides the weight of every decision tree k(y), 
and  �̂�(𝑦) represents the expected labelling for a sample x. 
From an input feature vector x, every decision tree within the 
ensemble appears by the sum of its leaf scores (w) is 
mentioned in Eq. (8). 

𝐼(𝑗) = ∑ 𝑢   (8) 

where, each decision tree's leaf scores are represented 
using the letter u. To regulate the level of complexity of the 
individual trees, the regularization term Ω(y) incorporates 
both L1 and L2 regularization over the leaf scores. XGBoost 
employs a gradient boosting technique to maximize the 
objective function(o) in order to determine the optimum 
combination among decision trees and associated variables, 
including α, u, and Ω(y). 

3) BAT optimization for hyperparameter tuning: The bat 

algorithm, often known as the BA, was an algorithm which 

mimics the echolocation as an activity of bats to enable to 

carry out worldwide optimization. Considering its superior 

performance, the BA is frequently utilized across a variety of 

optimizations situations. The RNN and XGBoost models' 

hyperparameters may be optimized using the Bat Algorithm. 

Typically, bats utilize echolocation to locate food. Bats 

typically emit small pulses while removing it, but once they 

come upon food, they start sending off pulses more often 

along with higher rates. A frequencies-tuning result from a rise 

within frequency, which decreases overall echolocation period 

and improves the precision of location is men. 

𝑓𝑗(𝑟 + 1) = 𝑓𝑗(𝑟) + 𝑚𝑗(𝑟 + 1)                         (9) 

𝑐𝑙(𝑟 + 1) = 𝑐𝑙(𝑟) + (𝑓𝑗(𝑟) − 𝑤(𝑟)) . 𝑥𝑘  (10) 

𝑥𝑘 = 𝑥𝑚 + (𝑥𝑎 − 𝑥𝑚). 𝛽                     (11) 

When the quantity of repetitions rises, every k within the 
typical bat algorithm has a determined location 𝑓𝑗 is 

mentioned in Eq. (9) and 𝑐𝑙 velocity in the search space is 
mentioned in Eq. (10). One may compute the new coordinates 
𝑥𝑘 along with velocities in the following way Eq. (11). where 
𝛽  is a uniformly distributed randomized vector with a range 
of [0, 1]. The entire optimum solution at the moment is 𝑤(𝑟) , 
where 𝑥𝑚 = 0 , 𝑥𝑎 = 1 is mentioned in Eq. (11). 

𝑓𝑗(𝑟 + 1) = 𝑒(𝑟) + 𝜀�̅�(𝑟)                       (12) 

where, 𝜀 is a random value between -1 and 1 is represented 
in Eq. (12). d signifies a random integer between -1 and 1 and 
l(d) is the population's average loudness. Furthermore, it 
accomplishes worldwide search via managing pulse rate 
𝑓𝑗(𝑟 + 1) and loudness (Loudness (𝑡 +1) is mentioned in Eq. 

(13). 

𝐷𝑛(𝑟 + 1) =∝ 𝐷𝑛(𝑟)                      (13) 
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𝑤𝑖(𝑟 + 1) = 𝑤𝑖(0)[1 − 𝑒𝑥𝑝(−𝛾𝑟)]                       (14) 

where, 𝛼 >0, 𝛾 >0} when 𝛼  and 𝛾  are constants. The 
starting ranges for pulse rate and loudness are denoted by (0)} 
and 𝐷𝑛 (0)}, correspondingly is mentioned in Eq. (14). 

The bat algorithm's processing phases are described in the 
following. 

Step 1: Using Eq. (3), randomly create the frequency along 
with the location, velocity, and       parameters for each bat. 

Step 2: Use Eq. (1) as well as Eq. (2) to update each bat's 
location and velocity. 

Step 3: Choose a random number (0<𝑟 𝑎 𝑛 𝑑 1<1) for 
every bat. If 𝑟𝑎𝑛𝑑1 < 𝑤𝑖(𝑡) then update the temp location 
and compute the fitness level for the relevant bat using Eq. 
(4). 

Step 4: Choose a random number (0<𝑟 𝑎 𝑛 𝑑 2<1) for 
every bat. If 𝑟 𝑎 𝑛 𝑑 2<(𝑡 ) and  

𝑥 (𝑓𝑗(𝑟)) < 𝑥(𝑤(𝑟)), then update (𝑡 ) and 𝑟 𝑖 (𝑡 ) using 

Eq. (5) along with Eq. (6), respectively. 

Step 5: Sort each person according to fitness values, and 
then mark the top spot. 

Step 6: When the condition is satisfied, the algorithm is 
complete; if not, proceed to Step 2. 

The optimal configuration for both the RNN along with 
XGBoost models is represented by the optimum solution, or 
collection of hyperparameters, after the algorithm has finished 
running. 

V. RESULTS AND DISCUSSION 

The results section provides a comprehensive overview of 
the outcomes and findings obtained from the experimental 
evaluation of the Bat Algorithm-Driven XGB-RNN For 
Optimal Fetal Health Classification in Pregnancy Monitoring. 
To ensure the quality of the dataset, preparation and data 
collection are the first steps in the procedure. XGBoost and 
RNN model modifying need independent optimization of 
hyperparameters, that's where the Bat Algorithm excels. The 
method of optimization includes the adjustment of 
hyperparameters such as RNN, tree depths, and learning rates. 
The Bat Algorithm runs repeatedly, assessing the accuracy of 

the models at each stage and modifying the hyperparameters 
according to ideas borrowed from echolocation. A measure of 
fitness that takes into account classification parameters such 
accuracy, F1-score, is used to gauge how well the framework 
performs. Whenever a termination criterion—such as a 
number of iterations or adequate model performance—is 
satisfied, the optimization loop keeps going. The hidden key 
to the model's performance is the resulting optimal selection 
of hyperparameters. The proposed framework is implemented 
in python. A device with an Intel(R) Core, 8GB of RAM, and 
windows 10 operating system is utilized. 

A. Outcome of Fetal Health Classification by Proposed 

BARXG Model 

Fig. 3 shows the categorization of fetal health dataset in 
percentage. As can be seen in the dataset, out of the 2126 
samples, 1655 are normal, 295 are suspicious, and 176 are 
abnormal entries. Within the dataset, the fetal heart rate (FHR) 
patterns were classified as normal (0), suspicious (1), and 
abnormal (2). 

The statistical summaries of the CTG data properties are 
displayed in Table I. This shows the outcome after the 
classification. The default Standard Scaler Python package is 
used to normalize the CTG data. By calculating the f-score 
along with bringing it into the same range, the Standard Scaler 
adjusts the data, facilitating computation and comparison. 

 

Fig. 3. Categorization of fetal health dataset. 

TABLE I. ATTRIBUTES FROM THE DATASET 

Attribute Description and Unit Mean Std Min Max 

Baseline value Beats per minute 133.3039 9.840844 106 160 

Accelerations Accelerations per second 0.003178 0.003866 0 0.019 

Fetal movement Fetal movements per second 0.009481 0.046666 0 0.481 

Uterine contractions Uterine contractions per second 0.004366 0.002946 0 0.015 

Fetal health Fetal state class (0: normal (N); 1: suspect (S); 2: pathological (P)) - - 0 2 

  

78% 

14% 

8% 

DISTRIBUTION OF 

DATASET 

Normal Suspect Pathological
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TABLE II. RESULTS OF PROPOSED BARXG MODEL 

Category 
Accuracy 

(%) 
Precision 

(%) 
Recall (%) 

F1 Score 
(%) 

Normal 0.98 0.98 0.96 0.97 

Suspect 0.93 0.88 0.84 0.85 

Pathology 0.90 0.87 0.86 0.86 

Table II summarizes the results of the proposed BARXG 
model for the categorization of fetal health. The total accuracy 
provided by the proposed BARXG model was 98.2%. 
Precision, recall, and F1-score outperformed for each of the 
three classes. The accuracy of the forecast for healthy fetal 
cases is 98%, that of suspected fetus cases is 93%, and that of 
pathological fetus cases is 90%. 

B. Performance Evaluation 

For comparison the SVM, Random Forest Classifier, 
LGBM, EHG methods performance is compared with the 
proposed BARXG model. Precision, recall, F1-score, and 
accuracy were utilized as segmentation of the driver 
drowsiness evaluation criteria for comparison. The model was 
evaluated using these parameters. They are shown below: 

A frequently used indicator to assess the effectiveness of 
categorization tasks is accuracy. The accuracy is computed by 
dividing the total number of predicts by the number of right 
predictions. It is described using an Eq. (15). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑅𝑁+𝑅𝑃

𝑅𝑃+𝐴𝑃+𝑅𝑁+𝐴𝑁
                 (15) 

where, ‗RN‘ means true negative; ‗RP‘ means true 
positive; ‗AP‘ means false positive; ‗RN‘ means true negative; 
‗AN‘ means false negative. 

A classification model's positive predictions are evaluated 
using a measure called precision. When false positive mistakes 
are expensive or undesired, it is especially crucial. To compute 
precision, use the formula below Eq. (16). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑅𝑃

𝑇𝑃+𝐹𝑃
                         (16) 

where, ‗RP‘ represents true positive and ‗FP‘ represents 
false positive. 

Recall, sometimes referred to as sensitivities or real-
positive rate, is a statistic used to evaluate a classification 
model's capacity to accurately identify every relevant 
occurrence of a given class. The following Eq. (17) is used to 
calculate recall. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑅𝑃

𝑅𝑃+𝐴𝑁
                             (17) 

The F1 score is a statistic that combines accuracy and 
recall to give a fair evaluation of the effectiveness of a 
classification model. It is especially helpful when you're trying 
to balance reducing inaccurate results (precision) and avoiding 
false negatives (recall) while maintaining accuracy. Eq. (18), 
which calculates the F1 score, is as follows. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                  (18) 

The suggested model's accuracy is displayed in Table III. It 
compares the suggested approach's accuracy (98.2%) with 
existing approaches' recall (96.7%), precision (97.7%) and F1-
score (98%) values. The proposed methodology, BARXG 
outperforms the currently used methods, Random Forest 
classifier (93%), EHG (88%), SVM (84%), Voting classifier 
(95%) and LGBM (96%), in terms of accuracy (98.2%) and 
precision (97.7%). 

Fig. 4 depicts the graphic depiction of the performance 
metrics of proposed with existing approaches. The proposed 
BARXG method demonstrates the highest accuracy across all 
five categories Random Forest Classifier, EHG, SVM, Voting 
Classifier, LGBM, with 98.2% high accuracy. On tiny or noisy 
datasets, Random Forests may overfit, which will lower their 
capacity for generalization effectiveness. EHG is an invasive 
technique for measuring fetal growth since it requires affixing 
sensors onto the uterine wall. Because of their computational 
complexity, SVMs could not scale well to very big datasets. 
The variety of a Voting Classifier's base models determines 
how effective it is. It might not result in appreciable gains if 
the basic models are comparable. For LGBM models, 
hyperparameter tuning can be complex and time-consuming. 

Fig. 5 shows the training and testing accuracy of proposed 
BARXG model. During training, the BAT Algorithm-Driven 
RNN-XGBoost model for fetal health classification performed 
well, with a training accuracy of almost 99%. 

Nonetheless, it retained strong extrapolation to novel data, 
with an approximate 98% testing accuracy. This suggests that 
the model is a viable method for assessing fetal health in real-
world clinical situations as it is capable of learning effectively 
via the training data and produce precise predictions on 
previously encountered cases. 

TABLE III. PERFORMANCE METRICS OF PROPOSED BARXG MODEL IS EVALUATED WITH EXISTING METHODS 

Method Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

SVM [18] 84 86 88 85 

EHG [13] 88 87 86 86 

LGBM [19] 96 95 94 95 

Voting Classifier [12] 95 94 93 94.8 

Random Forest Classifier [20] 93 91 92 94 

Proposed BARXG Model 98.2 97.7 96.7 98 
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Fig. 4. Graphical depiction of the performance metrics of proposed BARXG with existing approaches. 

 
Fig. 5. Graphical depiction for training and testing accuracy of proposed 

BARXG model. 

 
Fig. 6. Graphical depiction for training and testing loss of proposed BARXG 

model. 

Fig. 6 shows the training and testing loss of the proposed 
model. The main goal of this model's training phase is to use 
the Bat Algorithm to fine-tune the RNN and XGBoost models' 
parameters. During the testing phase, the model's 
generalization skills are evaluated by analysing how well it 
performs on untested data. This step involves computing the 
testing loss. 

The accuracy of the model and its ability to generalize to 
new, untested fetal health data are measured by the testing 
loss. The testing loss evaluates the model's capacity to produce 
accurate predictions on fresh, untested data, ultimately 
determining the efficacy of this novel approach in fetal health 
classification. The training loss is minimized by optimizing 
model parameters using the Bat Algorithm. 

C. Discussion 

Recurrent neural networks (RNNs) and XGBoost in 
combination with the Bat Algorithm (BA) show promise as a 
way to categorize fetal health in pregnancy monitoring. The 
accuracy of prediction of the XGB-RNN model is improved 
by the creative application of BA for parameter optimization. 
BA modifies model parameters by mimicking the echolocation 
behaviour of bats, which may enhance the precision of fetal 
health forecasts. The combination of XGBoost's gradient 
boosting and RNNs' sequence modelling allows for the 
effective processing of time-series data, such as fetal 
monitoring records. With the help of BA, this innovative 
method provides insights into complex data patterns, which 
could improve our comprehension of the dynamics of fetal 
health. Further research could improve scalability by 
addressing adaptability issues and convergence rates in a 
variety of data distributions, as well as handling bigger 
datasets and real-time processing. Larger datasets will be used 
in future research to assess BARXG's adaptability and 
continuous processing capabilities. The Bat Algorithm's 
continued adaptation to a variety of datasets and its 
implementation into healthcare systems are important future 
directions. A few of the research limitations are that enormous 
datasets may not scale well, validation of continuous 
processing is required, and the Bat Algorithm may not be as 
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flexible with various data distributions. In order to classify 
fetal health throughout pregnancy monitoring, BARXG's 
wider application will need to carefully validate and take these 
factors into consideration when investigating extension in 
various healthcare environments. 

VI. CONCLUSION AND FUTURE SCOPE 

In conclusion, a potential advancement in the field of 
maternal-fetal medicine is the investigation concerning the Bat 
Algorithm-Driven XGB-RNN for optimal fetal health 
categorization in pregnancy monitoring. Fetal health 
assessment becomes more potent and precise when the 
synergistic powers of XGBoost and RNNs are combined with 
the optimization inspired by nature of the Bat Algorithm. This 
method's benefits—such as enhanced precision, reliable 
analysis of time series, and clinical applicability highlight its 
potential to transform pregnancy monitoring and enhance 
outcomes for pregnant women and their unborn babies. It is 
obvious that the knowledge gathered by refining and 
validating this approach will have a significant influence upon 
clinical practice, ultimately resulting in healthier pregnancies 
and better care for the mother and fetus. Future improvements, 
thorough clinical validation, and continuous development will 
be necessary as this research develops in order to fully realize 
the potential of this novel strategy, which will ultimately help 
pregnant women and their kids as well as improve the present 
level of healthcare in the area of pregnancy monitoring. 
Maternal-fetal medicine may be profoundly impacted by more 
validation and clinical practice integration of this strategy. 
Working together with organizations and healthcare 
practitioners is essential to guaranteeing the method's efficacy 
in practical settings. It is crucial to investigate strategies for 
elucidating the model's predictions. Because they can 
comprehend and confirm the reasoning behind each 
categorization, healthcare professionals' trust may be 
increased through the development of interpretable models. 
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