
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

75 | P a g e

www.ijacsa.thesai.org

Security in Software-Defined Networks Against

Denial-of-Service Attacks Based on Increased Load

Balancing Efficiency

Ying ZHANG, Hongwei DING*

Hebei Software Institute, Hebei, Baoding 071000, China

Abstract—The goal of software-oriented networks (SDNs),

which enable centralized control by separating the control layer

from the data layer, is to increase manageability and network

compatibility. However, this form of network is vulnerable to the

control layer going down in the face of a denial-of-service assault

because of the centralized control policy. The considerable

increase in events brought on by the introduction of fresh

currents into the network puts a lot of strain on the control

surface when the system is in reaction mode. Additionally, the

existence of recurring events that seriously impair the control

surface's ability to function, such as the gathering of statistical

data from the entire network, might have a negative impact. This

article introduces a new approach that uses a control box

comprising a coordinating controller, a main controller that

establishes the flow rules, and one or more sub-controllers that

establish the rules to fend off the attack and avoid network

paralysis. It makes use of current (when needed). The controllers

who currently set the regulations are relieved of some work by

giving the coordinating controller management and supervision

responsibilities. Additionally, the coordinator controller

distributes the load at the control level by splitting up incoming

traffic among the controllers of the flow rules. Thus, a proposed

method can avoid performance disruption of the flow rule

setter's main controller and withstand denial-of-service attacks

by distributing the traffic load brought on by the denial-of-

service attack to one or more sub-controllers of the flow rule

setter. The results of the experiments conducted indicate that,

when compared to the existing solutions, the proposed solution

performs better in the face of a denial-of-service assault.

Keywords—Security; open balance; denial-of-service attacks;

software-oriented networks

I. INTRODUCTION

The next-generation network approach, known as a
software-oriented network (SDN), allows for programmable
control of the network and makes network management easier
by separating network transmission from control operations
[1]. The Open_ Flow protocol has been utilized the most out of
all the tools that are currently available to actualize the
software-oriented network [2]. The flow rules that the
controller installs in the flow tables of the switches direct the
network traffic in an Open_ Flow network. The controller can
generate flow rules using either the proactive method or the
reactive way, respectively [3]. In the pre-active method, before
launching the software-based network, the controller installs
the flow rules in the switches based on the predetermined
strategy [4]. No special flow rules are put in the switches

beforehand when using the reaction technique [5]. A table loss
event occurs for each new flow that does not match the
installed flow rules [6]. In response, an Open_ Flow request is
delivered to the controller, and the controller chooses a new
flow rule based on this request. The reactive technique, which
is flexible, is typically employed in software-based networks
[7].

Even though Open_ Flow has many benefits for
streamlining network management and expanding its adoption,
its reactive approach to installing flow rules makes it simple for
DoS attacks on the controller to succeed because the controller
must deal with all the packets generated by the absence of the
table in [8]. The Open_ Flow network may receive a high
number of transient phony flows that were created by a hacked
host. Many flow requests (packet_in packets) are made to the
controller when the Open_ Flow switch receives these
malicious flows because they cause events linked to the loss of
the table. Consequently, these high-frequency current requests
deplete the controller's resources, interfering with regular
functioning [9].

A denial-of-service attack on the Open_ Flow network
often has the following effects: a) overloading of switches; b)
congestion in the data plane and control plane communication
channel; c) overloading of the controller; and d) overflowing of
switch flow tables [10]. While the anomaly connected to the
controller's service might cause disruption and failure of the
entire network, overloading the switches and overflowing the
switch flow tables only endanger the victim switch. As a result,
the majority of threats from a denial-of-service attack in the
Open_ Flow network are brought on by the emergence of
congestion in the communication channel of the data level with
the control level and overloading of the controller [11].

The suggested approach for the control level of the
software-based network has been utilized in this article to
strengthen the security of the network against denial-of-service
attacks and boost its availability [12]. In order to increase the
availability of the software-based network against significant
changes in the events brought on by the arrival of new flows
(due to the temporal and spatial characteristics of the network
traffic) and the existence of repeated events, the proposed
method consists of a control box [13]. It is intended to gather
statistical data from the entire network, which overburdens the
controller. A coordinating controller, a primary controller of
the current setter, and one or more (as required) sub-controllers
of the current setter are all included in this control box [14].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

76 | P a g e

www.ijacsa.thesai.org

The current installation controllers' job is essentially decreased
by giving the coordinating controller responsibility for
managing and monitoring the software-based network. It is the
responsibility of flow controllers to install flow rules in line
with the network applications that are operating on them in
order to configure the data level of the software-oriented
network [15].

Additionally, the coordinator controller will categorize the
incoming traffic in a statistical manner after activating one or
more (as necessary) sub-controllers in response to the
network's increased traffic load, which can be brought on by a
denial-of-service assault [16]. Each of them receives a portion
of the incoming traffic that the flow controller divides into
known categories. This results in the flow controller's
controllers sharing the load of incoming traffic, which lessens
the effort of all of the flow controller's controllers. In the
suggested method, the redundancy of the controllers and the
division of labor among them are used to distribute the traffic
caused by the denial-of-service attack to one or more sub-
controllers, taking into consideration the multi-controller
capability offered in Open_ Flow Specification 1.2. The
software-based network controller will experience less of an
impact from the attack thanks to the flow installer, and the
software-based network will be more resilient to unexpected
and severe fluctuations in network traffic. In summary, the
article presents a solution to improve the security and resilience
of SDNs against DoS attacks. The proposed approach, utilizing
a control box with coordinating and sub-controllers, is shown
to be effective in managing traffic during attacks and reducing
response times. However, the article acknowledges the need to
address resource consumption and scalability in future work.

In short, the contribution of the authors in this research is as
follows:

 Introducing a new approach: A new approach has been
introduced to increase the security and resilience of
Software Defined Networks (SDN) against Denial of
Service (DoS) attacks. It lies in the creation of a
"control box" consisting of coordinating, main and sub-
controllers.

 They also contribute to this field by comparing the
proposed solution with four other existing methods for
mitigating DoS attacks in SDN, including Ryu
controllers with different mechanisms. Through this
comparison, they show that their approach consistently
outperforms these alternatives and provides a more
effective way to counter DoS attacks.

The article's structure is described in the paragraphs that
follow. The work that has been done to fortify the software-
based network's control level against denial-of-service assaults
has been mentioned in Section II. The software-based network
controller's input load has been looked into in Section III.
Section IV describes the suggested technique for enhancing the
security of the software-based network control level. In
Sections IV and V, it was examined, respectively, how denial-
of-service assaults would affect the proposed approach and
how a saturation attack on the control surface by the data
surface would affect it. The effectiveness of the suggested
approach against a denial-of-service attack is contrasted with

that of many other solutions in Section VI, and conclusions and
recommendations for further work are provided in Section VII
and Section VIII respectively.

II. RELATED WORKS

Studies on data-level protection and control-level
protection that aim to lessen the effects of denial-of-service
attacks on software-based networks fall into these two groups.
In order to fight against assault, data layer protection focuses
on enhancing data layer functionality or adding new features
[17]. In order to keep the controller from becoming overloaded
with requests, OF-Guard uses a data-level cache. The strategy,
however, lacks flexibility because it is uncertain whether such
a cache will be established at the data level. The
implementation of SYN Proxy is proposed in AVANT-
GUARD [18] as a unit that performs the TCP Handshake in the
switches before sending the incoming TCP stream to the
network. The pressure on the switch buffer is increased using
this unit, and there is also a cap on the number of proxy ports.
Because LineSwitch can arbitrarily proxy flows from the same
IP source that it has already established a TCP handshake with,
it is suggested that LineSwitch will enhance AVANT-GUARD
[19]. Another AVANT-GUARD-based solution is SDN-
Shield, which employs a number of NFV-based attack
mitigation units to counter distributed denial-of-service attacks
at the software-oriented network data level. However, none of
these SYN Proxy-based techniques work with other network
protocols.

In order to sustain network policy enforcement, Flood-
Guard offers a pre-active flow rule analyzer that can examine
the source code of an Open_Flow-based application and
generate several pre-active rules via running time monitoring
of each application's global state. To produce based on the
protocol, Flood-Guard stores the remaining packets caused by
table loss in a cache at the data level. The source code analyzer,
however, is extremely complicated and unable to be deployed
across a network. Additionally, the same attack flow protocol
was utilized by additional benign flows, so the data level cache
cannot ensure fair behavior against them.

Enhancing the security of the controller policies and
implementing detection and filter techniques to lessen denial-
of-service attacks are the main goals of control level protection
[20]. In Flow Ranger, the controller employs a rating algorithm
to recognize typical users and pre-process packets with a
higher priority. In order to distinguish malicious
communication, SGuard introduces an access control system
that leverages six items as feature vectors in the classification
unit [21]. Researchers in [22] have suggested a scheduling
policy for the proposal controller that divides the flows into
various queues. The controller manages each queue based on
round-robin scheduling, and each queue corresponds to a
switch that is situated on the denial-of-service attack path.
MLFQ creates an equitable sharing of control resources
between the server and hosts in the network by utilizing a
number of expandable and collapsible request queues [23].
Potentially hostile traffic is diverted to the intrusion detection
system by SDN-Shield, and the impact of a denial-of-service
attack is lessened by appropriately building the flow rules.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

77 | P a g e

www.ijacsa.thesai.org

In order to lessen channel congestion between the victim
switch and the controller, Flood Defender suggests a technique
for distributing packets related to table loss from the victim
switch to its surrounding switches. Additionally, for the
purpose of detecting sporadic attacks, Flood Defender employs
a two-stage filter and briefly archives packet_ in packets. To
handle new benign flows, the packet_ in packet buffer
introduces a significant delay. Additionally, the surrounding
switches that are being flooded may suffer damage from the
packet distribution caused by the absence of the table. In order
to counter the denial-of-service attack, FMD employs a
technique based on flow migration at the software-oriented
network control level slow. The master controller, to which
fraudulent requests with a high volume are delivered, is
replaced in this technique by a slave controller. The master
controller handles all typical Open_ Flow requests. In order to
safeguard the channel of communication between the victim
switch and the master controller, FMD sends the threatening
Open_ Flow requests to the slave controller after identifying a
denial-of-service attack. The migrated requests are briefly kept
in the slave controller and transferred to the master controller
for additional processing at a limited rate [24] to prevent the
master controller from becoming overloaded. SGS is offered to
defend the control plane from denial-of-service assaults, and its
key component is the clustered deployment of several
controllers in the control plane. The abnormal traffic detection
and controller dynamic defense units make up the SGS
procedures. Anomalous traffic detection uses quadratic feature
vectors to separate phony flows from real ones by focusing on
switches that already exist at the data level. The impact of the
denial-of-service assault at the control level is minimized by
the controller's dynamic protection, which involves remapping
the controller and sending the access control message to the
switch. As it was already indicated, the majority of the
techniques for data layer protection include modifying Open_
Flow switches or incorporating unique features into the data
layer. However, all techniques in the second category (control
level protection) work to reduce the number of resources that a
denial-of-service assault uses up. In reality, the controller
cannot manage the rate of receiving Open_ Flow packets.
Additionally, the main cause of the denial-of-service attack in
the control level is the congestion of the communication
channel connecting the data level with the control level, which
is of the TCP or TLS type. Source in [42] has demonstrated the
capacity to enhance networks and withstand DDoS attacks.
Thus, the purpose of this survey is to review 65 articles about
DDoS attack detection in SDN. As a result, each reviewed
article's systematic reviews of the suggested methodology are
examined. This work additionally analyzes the performance
metrics and their best assault detection accomplishments from
each research publication. Furthermore, this work reviews the
reduction technique applied in each paper.

In this study, an architecture to handle service source
attacks is developed in order to address the restrictions
indicated above. A suggestion is to have flow rule setter sub-
controllers that are multiples of the main flow rule setter
controller and assign incoming traffic from denial-of-service
attacks to them regardless of the protocol used, as well as from
the channel connecting the data level with the level. Control is
comprehensive since it guards against congestion and shields

the main flow rule controller from denial-of-service attacks to
minimize their negative effects on good new flows.
Additionally, the concept is transparent because it does not
require any adjustments to the network's infrastructure or
application programs to be used.

III. EXAMINING THE SOFTWARE-BASED NETWORK

CONTROLLER'S INPUT LOAD

As depicted in Fig. 1, within a software-oriented network
made up of Open_Flow switches, the Open_Flow controller
periodically sends multi-part messages [25] to the switches
under its control. These messages serve to collect statistical
data from the switches, contributing to the construction of the
network's information base (NIB). The controller can have a
comprehensive view of the entire network under his control
based on the information in this network's information base.
The initial packet of each flow that reaches the input switch is
examined to determine whether it complies with the rules set
up in the switch's flow table. Suppose the switch's flow table
does not contain a match for the packet. In that case, a packet-
in message is provided to the controller containing the lowest
priority flow entry that is compatible with any incoming flow
(flow entry absent from the table). The request in this message
is to begin planning a path for the incoming stream. The
Open_Flow controller determines the appropriate route for the
incoming flow based on information from the network
information base. The route is established by installing the
appropriate flow rules in the flow tables of the switches along
the route, and as a result, all flow packets are directed to their
intended destination. Eq. (1) determines the input load to the
controller resulting from the input currents with the input speed
of the current per second in a data center with N switches,
assuming the average number of switches located in the path is
[N/2] and for each flow in the flow table of switches located in
the path of two flow rules (to forward in two directions)
installed.

 [] [] [

] [] (1)

where, stands for the size of the flow_mod packet,

which is the packet delivered from the controller to the
Open_Flow switches to install a new flow rule. Additionally,
 and stand for the sizes of the packets in and out,

respectively. As a result, there is a chance that the controller
will become overloaded by increasing the speed at which fresh
currents enter the input switch in the reaction mechanism
chosen for each incoming current to be passed into the
controller.

The input load brought on by gathering statistical data at
the network level is another element that overburdens the
software-based network controller. Important statistical data
that can be gathered from existing Open_ Flow switches in a
data center includes data about the ports connected to servers
and data about the flows set up in the switches' flow tables. Eq.
(2) can be used to determine the input load to the control level
in a data center as a result of gathering statistical data from
Open_ Flow switches.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

78 | P a g e

www.ijacsa.thesai.org

 ([] [] [] []) [

] (2)

Fig. 1. The software-oriented network's controller operation mechanism creates a path for a new flow.

TABLE I. THE VARIABLES THAT ARE USED TO CREATE THE INCOMING TRAFFIC TO THE DATA CENTER

Parameters Model Name

λ Poisson New flow arrivals

 Bernoulli Internal rack flow ratio

 Bernoulli TCP flow ratio

Pareto Flow duration, Dn

 []

 []
Gaussian Flow transmission rate, Yn

 [] Flow size, Sn

Fig. 2. (a) Incoming traffic to the data center and (b) Incoming load to the controller in a data center with _Ary_Fat_tree4 structure ((-- -) with the load resulting

from the collection of statistical information and (-) without it.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

79 | P a g e

www.ijacsa.thesai.org

where, H is the total number of switch ports linked to
servers, and N is the total number of Open_ Flow switches in
the data center. F is the number of installed currents in the
switches, and T is the controller's periodic request for statistics
data. A simulation has been run in MATLAB 2022b to show
the impact of the load brought on by the gathering of statistical
data (Relation 2) and the admission of fresh flows into the data
center (Relation 1) on the software-based network controller.

The data center in this simulation has an Ary Fat_tree 4
structure. The data center's incoming traffic is generated based
on the findings of Yoonseon Han and his associates [26], who
used the values in Table I. Fig. 2 displays the simulation
outcome based on (1) and (2), as well as the relationships
offered by Bong-yeol Yu and his associates [27]. As seen in
Fig. 2(a), the data center receives 192 flows per second of
incoming traffic in the usual state. This amount is in the
intervals to observe the impact of speeding up this flow rate on
the amount of incoming load to the software-based network
controller. There has been an increase in the current per second
from 20 to 40 seconds, 60 to 80 seconds, and 120 to 140
seconds, respectively. The input load to the software-based
network controller of a data center with an _Ary_Fat_tree4
structure is shown in Fig. 2(b) in two states: (-) with the load
brought on by gathering statistical data and (-) without it. As
might be predicted, as the pace of incoming traffic to the data
center grows, so does the input load on the controller. The
important feature in Fig. 2's lower portion is the sizeable input
load brought on by the controller's statistical data collection,
which has a significant impact on the occurrence of
interference with the transmission of basic controller messages
(such as current installation), delays the arrival of information
to the controller, and ultimately lowers the controller's
efficiency. Therefore, packet_in can improve the controller's
efficiency and availability by separating the load arising from
the gathering of statistical data from the load resulting from the
arrival of packages.

IV. SUGGESTION FOR ENHANCING THE SECURITY OF SDN

CONTROL LEVELS

In software-based networks, the controller is not just in
charge of performing the functions of a straightforward switch
to transfer flows throughout the network in order to take
advantage of its central management. It is required to gather
statistical data from the network level in order to implement
efficient programs, such as balancing the load on
communication lines and servers in the network or quality
control of service provided to flows system by system. For
successful and integrated management, software-oriented
networks need the controller to be highly available.

There are two ways to provide high availability for Open_
Flow controllers in software-based networks [28]. Reduce the
load on controllers as the initial step in the approach. The
Open_ Flow controller communicates with the Open_ Flow
switches frequently, particularly while running in reactive
mode, as was covered in the preceding section. The controller
has become overwhelmed. As a result, making it is unable to
process incoming messages. The second option is to replace
one controller with many controllers to add redundancy.

Fig. 3. The recommended approach for software-based network controllers'

structure.

Both of the aforementioned methods are taken into account
in the proposed control box, which is employed in the proposed
method to increase the availability of Open_ Flow controllers
in software-based networks (see Fig. 3). One of the controllers
in this control box serves as a coordinator, connecting to
Open_ Flow switches only to gather statistical data from them.
Additionally, there is a main controller and one or more
(depending on the demand) sub-controllers in this control box
that are in charge of adding flow rules to the flow tables of
Open_ Flow switches. So, in addition to lessening the strain on
the controller, more controllers have been deployed by splitting
the work between the coordinating controller and the
controllers that establish the flow rules. It is necessary to
employ several controllers to control Open_ Flow switches,
which are accessible in Open_ Flow version 1.2 and later, in
order to implement the control box concept in software-based
networks. Since Open_ Flow version 1.2, it has been possible
to have numerous controllers, each of which can control Open_
Flow switches in one of the three modes of SLAVE,
MASTER, or EQUAL. The MASTER and EQUAL modes
have complete access to the switch and can receive all
asynchronous communications (such as packet-in) from the
switch, among the other two modes [29].

Each Open_ Flow switch is permitted to communicate with
one MASTER controller but numerous EQUAL controllers. In
SLAVE mode, the controller can only read from the switches
through its access to them; it is, therefore, unable to receive
any other asynchronous messages than the answer of the multi-
part message containing the switch's status. Each controller can
modify its state by sending the switches the
OFPT_ROLE_REQUEST message [30]. The switch transmits
the OFPT_ROLE_REPLY message to the controller after
receiving this message.

The other controllers of that switch will convert to the
SLAVE state if the switch gets a message from it instructing it
to change the controller state to MASTER. Due to the switch's
ability to have several Open_ Flow channels, it is not necessary
to re-establish the channel in the event that one of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

80 | P a g e

www.ijacsa.thesai.org

controllers connected to it fails. Open_ Flow switches are able
to transmit packet-in messages solely to the controller whose
ID is in the matching table entry by giving each of the flow
rule set controllers in the control box a distinct ID. Their
direction of flow is known. Utilizing the Nicira features
integrated within the RYU network operating system; this
capability is possible [31]. The NXTSetControllerId function is
used to accomplish this by giving each flow rule controller a
special identification number. The number of flow rule set
controllers that can be used in the control box will thus no
longer be constrained. As a result, the control box is
expandable, allowing the number of active controllers that
establish the flow rules to grow as necessary. This boosts the
availability of the control level of the software-oriented
network by dividing the load associated with packet-in
messages among the controllers of the flow rules and reducing
their individual loads.

A. Coordinating Controller

All Open_ Flow switches in the domain are connected to
the coordinator controller that is operating in SLAVE mode.
As seen in Fig. 4, the coordinating controller has a variety of

components for regulating the operation of the controllers that
establish the flow rules and for keeping an eye on the network.
Allocating incoming traffic to the flow controller's sub-
controller is the primary responsibility of the coordinating
controller. When the coordinating controller notices that the
main controller is on the verge of overflowing, this is what
happens. By doing this, the existing installation's main
controller's traffic load is lessened, and it is once again able to
function.

In order to prevent the overload of the controller controllers
as the amount of incoming traffic to the network increases, the
coordinating controller repeats this process by turning on new
flow controller sub-controllers and allocating the overload of
incoming traffic to them (see Fig. 5). On the other hand, by
lowering the load of traffic entering the network, the
coordinating controller transfers all of the traffic load entering
the network to the main controller of the flow setter while
deactivating the sub-controller of the flow setter. The
description of the coordinating controller's role as well as
information on each of its component parts, are provided
below.

Fig. 4. Block diagram of the components of the proposed method.

Fig. 5. The process of creating default flow rules and statistically classifying incoming network traffic.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

81 | P a g e

www.ijacsa.thesai.org

B. How to Switch the Sub-controller On and Off

The main controller of the current installation may become
overloaded as a result of changes in the rate at which traffic
enters the network. The current setter's sub-controller is
activated by the coordinating controller when it notices that the
main controller is on the verge of overload as shown in Fig.
6(a). The flow controller's sub-controller receives the be-
Active signal from the coordinating controller in order to
accomplish this. The sub-controller of the flow installer sends
the OFPT_ROLE_REQUEST message to all the Open_ Flow
switches attached to it to alert them that its state has changed to
EQUAL after receiving the be-Active signal. The sub-
controller of the flow installer enters EQUAL mode after
receiving the OFPT_ROLE_REPLY signal from the Open_
Flow switches. The coordinating controller changes its state
from SLAVE to EQUAL upon receiving the activated signal
from the flow controller's sub-controller, and after
implementing the default flow rules related to one of the traffic
categories entering the network, the output of the controller's
classification algorithm. The gate switches activated current
controller switches back to SLAVE mode.

The sub-controller of the current setter is deactivated once
again by the coordinating controller when it notices that the
main controller of the current setter is no longer in overload
mode as shown in Fig. 6(b). The coordinating controller
delivers the be-passive signal to the current setter sub-
controller after switching the mode from SLAVE to EQUAL
and removing the default flow rules connected to the active
current setter sub-controller from the gateway switches. A
remark is sent. The coordinating controller then reverses its
state, going back from EQUAL to SLAVE. The flow installer's
sub-controller sends Barrier request messages to all of the
switches connected to it upon getting the be-passive signal,
causing these switches to complete processing all of the
messages they had been receiving from the flow installer's sub-
controller. The flow controller sub-controller then sends the
OFPT_ROLE_REQUEST message to all the switches
connected to it, changing their status from EQUAL to SLAVE.

The current regulator's sub-controller is rendered inactive as a
result.

C. Investigating How the Proposal is Affected by a Control-

Level Saturation Attack at the Data Level

A UDP flood attack was applied against three scenarios
(the first scenario: using one controller, the second scenario:
using a desaturation controller and a number of flow rule set
controllers, and the third scenario: using the proposed
architecture) in order to demonstrate the impact of redundancy
on the availability of the proposed architecture. This
experiment was carried out using the structure depicted in Fig.
7 and implemented in the Mininet 2.2.2 emulator environment
[32]. According to Table II, this implementation uses
OpenVSwitch [33] software switches for the Open_ Flow
switches and the RYU platform [34] for the controllers.
Additionally, the iPerf [35] tool has been used to produce UDP
flood attack traffic in order to test the scenarios. The attacker
launches a UDP flood assault on the Open_ Flow switch while
a client is corresponding with the load balancer between
servers at a consistent pace of 50 flows per second. In this
experiment, the round-trip time (RTT) of client requests
collected by running the ping command has been used to assess
the performance of various scenarios. The round-trip time of
client requests has been observed for all three situations, as
seen in Fig. 8, despite the fact that the speed of the UDP flood
attack rises linearly up to 800 packets per second (PPS). Fig. 8
shows that the proposal approaches saturation when the attack
speed hits 800 packets per second, whereas for scenarios 1 and
2, this happened at 450 and 500 packets per second,
respectively. In fact, the controllers of the flow rules are out of
reach and are unable to install a new route on the Open_ Flow
switch in exchange for the arrival of fresh flows once the attack
speed surpasses the saturation point of each of the scenarios.
The results show that the proposal has a high availability
compared to alternative scenarios and is particularly resistant to
the assault of saturating the control surface due to the usage of
redundancy in the flow rule controllers.

Fig. 6. How to modify the proposal's state of the existing regulator's sub-controller: a) activation and (b) deactivation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

82 | P a g e

www.ijacsa.thesai.org

Fig. 7. A structure that was utilized for the UDP flood assault test.

Fig. 8. Determining, during the flood attack, the turnaround time for client requests for proposals and scenarios 1 and 2. a) The first scenario: using one

controller, (b) the second scenario: using a coordinating controller and a number of controllers that set the flow rules, and (c) the third scenario: using a proposed

method.

TABLE II. LABORATORY PARAMETERS FOR THE PROPOSED EVALUATION

Oracle VM VirtualBox (Version 5.1.10 r 112026) Virtual Machine

Ubuntu 16.04 Guest OS

Intel core i7-4720hq cpu@2.60ghz CPU

16GB RAM

Mininet 2.2.2 Emulator

RTU 4.15 Network Operating System

OpenVSwitch 2.4.0 Open_Flow Switch

iPerf 2.08b Network Traffic Generator

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 100 200 300 400 500 600 700 800

R
T

T
 (

m
s)

Attack Rate (PPS)

Round Trip Time

Scenario 1 Scenario 2 Proposed Method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

83 | P a g e

www.ijacsa.thesai.org

V. ANALYZING HOW DENIAL-OF-SERVICE ATTACKS

AFFECT THE PROPOSAL

One of the elements affecting the availability of software-
based networks is denial-of-service attacks. This section has
researched how three different denial-of-service attacks affect
the proposal. These attacks include ICMP/Ping flooding, UDP
flooding, and TCP.SYN flooding. These attacks, which are a
subset of volume denial-of-service attacks, were created using
the Hyenae tool version 0.36 [36]. In this section, experiments
were carried out utilizing the topology depicted in Fig. 7 that
was constructed using the.222 Mininet simulator [37] and [38].

Additionally, the attacker conducts denial-of-service
assaults on the Open_ Flow switch while a client is interacting
with it (the switch is an Open_ Flow load balancer between
servers) at a constant speed of 50 flows per second. The
intended parameters in this test are the input load on the
controllers in the proposed method, the round-trip time (RTT)
of customer requests, and the impact of denial-of-service
attacks on the proposed method's availability and performance.
The ping command is used in conjunction with the 062bwm-ng
v. utility to acquire these parameters. These attacks and the
outcomes of their use have been addressed in the paragraphs
that follow.

A. Study of the ICMP / Ping Flood Attack's Effects

This kind of attack involves the attacker bombarding the
target with ICMP echo requests, which interfere with other
services that the target's other programs rely on. This kind of
attack requires the attacker to rapidly transmit to the victim a
large number of echo_request packets that appear to be coming
from various sources and have random addresses. By having
many flows, the attacker can interfere with the network. Each
time a new packet-in is generated when an attacker attacks a
victim using many sources with random addresses, the
controller will experience a significant increase in traffic. The
controller begins to sink when it receives a lot of packet-in
packets, and after some time, it begins to disregard fresh
incoming packets. The amount of production traffic described
in terms of bytes, packets, or streams can be used to identify
this kind of assault. Fig. 9 displays the outcomes of an
ICMP/Ping flood assault conducted on the software-oriented
network using the suggested technique, whose topology is
depicted in Fig. 7. The volume of incoming traffic using the
suggested method before, during, and after the attack is
depicted in Fig. 9(a). Fig. 9(b) also depicts the duration of
back-and-forth for client inquiries. The ICMP/Ping flood attack
begins at 10 seconds and ends at 40 seconds, as can be shown.
As soon as the attack begins, the time it takes for the
customer's requests to move back and forth dramatically
increases due to the main controller of the flow rules being
overloaded and unable to handle requests entered as packet-in
packages. The amount of incoming traffic load to the main
controller of the flow rules setter is decreased by the activation
of the sub-controller of the flow rules setter by the coordinating
controller due to the detection of overloading of the main flow
rules setter controller and the allocation of additional load

resulting from the attack on it. The amount of incoming traffic
to the main controller of the flow rules is decreasing, and as a
result, this controller is once more able to handle and process
requests that are received as packet-in packages. As a result,
the amount of time required to go back and forth for customer
requests returns to a reasonable value. This test demonstrates
that the proposed method's availability is unaffected by an
ICMP/Ping flood attack, save for a brief period of time (the
time needed for the coordinating controller to notice that the
main controller of the flow rules setter is overloaded before
activating the sub-controller and adding additional load to it).

B. Investigating the Effect of UDP Flood Attack

A UDP flood assault aims to bombard the target with a
large volume of UDP packets. A host employs a huge number
of bogus sources IP addresses when launching a UDP flood
attack. The buffer overflow occurs in the victim as a result of a
huge quantity of UDP packets arriving at the victim. Since
sending a large number of bytes to the victim is the primary
characteristic of UDP flood attacks, they produce the most
traffic among denial-of-service attacks. In this attack, bogus
source IP addresses are used to produce UDP packets that
appear to send the target a lot of fresh streams per second. As a
result, the software-based network controller starts pouring
new flows after a given amount of time. The results of a UDP
flood assault on a software-based network using the suggested
technique, whose structure is depicted in Fig. 7, are displayed
in Fig. 10. The volume of incoming traffic using the suggested
method before, during, and after the attack is depicted in Fig.
10(a).

Additionally, Fig. 10(b) displays the amount of time spent
responding to client inquiries. The UDP flood attack begins at
10 seconds and stops at 50 seconds, as can be shown. As soon
as the attack begins, the time it takes for the customer's
requests to move back and forth dramatically increases due to
the main controller of the flow rules being overloaded and
unable to handle requests entered as packet-in packages. Fig.
10(b) shows that this increase in time is caused by the
software-based network controller receiving more incoming
traffic than during the ICMP/Ping flood attack.

The amount of incoming traffic load to the main controller
of the flow rules setter is decreased by the activation of the
sub-controller of the flow rules setter by the coordinating
controller due to the detection of overloading of the main flow
rules setter controller and the allocation of additional load
resulting from the attack on it. The main flow rule controller's
ability to handle and process requests received in the form of
packet-in packets is restored with the reduction of incoming
traffic load, and as a result, the time required for the customer's
requests to move back and forth to its reasonable value.
Therefore, in this instance, similar to the ICMP/Ping flood
attack, the UDP flood attack has no impact on the proposed
method's availability other than for a brief time (the time
needed for the coordinating controller to detect the main
controller of the flow rules setter's load before activating the
sub-controller and allocating additional load to it).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

84 | P a g e

www.ijacsa.thesai.org

(a)

(b)

Fig. 9. (a) The amount of incoming traffic in the proposed method before the ICMP / Ping flood attack, during the attack and after it and (b) the round trip time

(RTT) of customer requests.

(a)

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100

tr
a

ff
ic

 l
o

a
d

 (
k

b
/s

ec
)

time (sec)

Trafic load of proposed method

cordinator cont. primary flow setup cont. secondary flow setup cont.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100 120 140

R
T

T
 (

m
se

c
)

Measurement ID

Round trip time extracted from ping command

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100 120 140 160

tr
a

ff
ic

 l
o

a
d

 (
k

b
/s

ec
)

time (sec)

Traffic load of Proposed method

cordinator cont. primary flow setup cont. secondary flow setup cont.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

85 | P a g e

www.ijacsa.thesai.org

(b)

Fig. 10. (a) The amount of incoming traffic in the proposed method before the UDP flood attack, during the attack and after it and (b) the round trip time (RTT) of

the client's requests.

C. Investigating the Effect of TCP_SYN Flood Attack

A TCP_SYN flood attack bombards the target with bogus
SYN requests that were generated using fictitious source IP
addresses. The victim never gets an answer to their SYN/ACK
packets because the source IPs are faked. As a result, the
attack's port is still open unnecessarily. All of the victim's ports
are blocked as a result of several bogus SYN requests, making
it impossible for the victim to connect to trustworthy people. It
only takes a small amount of bandwidth for this kind of attack
to keep the false connections open and render the victim
unreachable. Hyenae tool version 0.36 was used [39] to
develop a TCP_SYN flood attack, which begins by sending the
victim a large number of low-speed streams containing
TCP_SYN packets.

Additionally, the Open_Flow load balancing switch only
distributes a load of incoming traffic across three servers to
analyze the effect of the TCP_SYN flooding attack on the
software-based network controller. From the fourth server, the
round-trip time is measured. Customer requests are employed
in (RTT). The software-based network controller can see a
significant number of flows in this assault since random source
IPs are being used to produce flow towards the target. This
significantly hinders the efficiency of the software-based
network controller by adding a lot of traffic to it.

The results of the TCP_SYN flooding assault on the
software-based network using the suggested technique, whose
structure is depicted in Fig. 7, are displayed in Fig. 11. The

volume of incoming traffic using the suggested approach
before, during, and after the attack is depicted in Fig. 11(a).
Fig. 11(b) also depicts the duration of back-and-forth travel in
response to customer demands. The TCP_SYN flood assault
begins in three seconds and concludes in 45 seconds, as can be
shown. As soon as the attack begins, the time it takes for the
customer's requests to move back and forth dramatically
increases due to the main controller of the flow rules being
overloaded and unable to handle requests entered as packet-in
packages. Due to the software-based network controller
receiving far less incoming traffic than the UDP flood attack,
the time increase seen in Fig. 11(b) is noticeably reduced. The
amount of incoming traffic load to the main controller of the
flow rules setter is decreased by the activation of the sub-
controller of the flow rules setter by the coordinating controller
due to the detection of overloading of the main flow rules setter
controller and the allocation of additional load resulting from
the attack on it. The main controller of the flow rules can once
again handle and process requests that are received in the form
of packet-in packets by reducing the amount of incoming
traffic. As a result, the time it takes for the customer's requests
to go back and forth returns to a reasonable value. As a result,
in this instance, similar to ICMP/Ping and UDP flood attacks,
the TCP_SYN flood attack has no effect on the proposed
method's availability other than for a brief period of time (the
time needed to detect the coordinator controller loading the
main controller of the flow rules and then the activation of the
installer) Flow rules and allocation of additional load to it.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

20 40 60 80 100 120 140

R
T

T
 (

m
se

c
)

Measurement ID

Round trip time extracted from ping command

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

86 | P a g e

www.ijacsa.thesai.org

(a)

(b)

Fig. 11. (a) The amount of incoming traffic in the proposed method before the TCP_SYN flooding attack, during the attack and after it and (b) the round trip time

(RTT) of customer requests.

VI. COMPARING THE EFFECTIVENESS OF THE PROPOSED

SOLUTION TO THOSE ALREADY IN USE

This section compares the effectiveness of the proposed
strategy with four different ways of preventing denial-of-
service attacks. The four options are as follows: Ryu controller
[40] without any protection method, Ryu controller [41] with
MLFQ mechanism, Ryu controller [18] with Flood Defender
mechanism, and Ryu controller [40] with FMD-ARA system.
The method used by the researchers in [19] provides the basis
for this comparison. Fig. 12 (implemented in the Mininet 2.2.2
emulator) depicts the network structure utilized to conduct this
comparison [36], [37].

The control layer network in this experiment was out-of-
band (a different network from the data layer network), in
contrast to the prior tests where the control layer had an in-
band network (using the data layer network to communicate
with switches and other controllers).

As seen in Fig. 12, in the scenario taken into consideration
for the test, 2h interacts with 3h, and 7h communicates with 8h
while attackers 1h and 5h perform a UDP flood attack and

steadily speed up this attack. Response Request Time (RRT) is
measured at about 2h with 3h and 7h with 8h as a standard to
evaluate the effectiveness of each solution. RRT is the average
response time from the controller and demonstrates the
efficiency of the controller in producing network connections.
Yes, that is doable. The response request time in Fig. 13 is in
relation to 2h and 3h demonstrates the effectiveness of the
approach against the denial-of-service attack. The coordinating
controller speeds up the attack until it reaches 1000 packets per
second (PPS), at which point it activates the sub-controller of
the flow rules setter and sends the traffic produced by the UDP
flood attack to it. As demonstrated in Fig. 13, this operation has
significantly lowered the average response time to legitimate
and safe requests to build the flow by reducing the traffic load
on the main controller that establishes the flow rules. Fig. 13's
findings, derived from the researchers' article from [20],
indicate that while the efficiency of the other four techniques
improved as the attack speed increased, so did their average
response times. The control level is resistant to denial-of-
service attacks and performs better thanks to its unique
structure (the presence of sub-controllers that determine the
flow rules in the main and coordinating controllers).

0

200

400

600

800

1000

0 20 40 60 80 100 120 140 160

tr
a

ff
ic

 l
o

a
d

 (
k

b
/s

ec
)

time (sec)

Trafic load of proposed method

cordinator cont. primary flow setup cont. secondary flow setup cont.

0

200

400

600

800

1000

1200

1400

20 40 60 80 100 120 140

R
T

T
 (

m
se

c
)

Measurement ID

Round trip time extracted from ping command

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

87 | P a g e

www.ijacsa.thesai.org

Fig. 12. Network architecture consisting of Open_Flow switches to evaluate the proposed efficiency against denial-of-service attacks.

Fig. 13. For current approaches, the typical reaction time is between 2 and 3 hours.

Fig. 14. Based on current techniques, the average reaction time in communication is between 7 and 8.

0

100

200

300

400

500

600

200 400 600 800 1000 2000 4000 6000 8000

A
v
e
r
a

g
e
 r

e
sp

o
n

se
 t

im
e
 (

m
s)

Attack rate (PPs)

Ryu MLFQ Flood Def. FMD ARA Proposed Method

0

100

200

300

400

500

600

200 400 600 800 1000 2000 4000 6000 8000

A
v
e
r
a

g
e
 r

e
sp

o
n

se
 t

im
e
 (

m
s)

Attack rate (PPs)

Ryu MLFQ Flood Def. FMD ARA Proposed Method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

88 | P a g e

www.ijacsa.thesai.org

Fig. 14 illustrates the typical response time for
communications between 7 and 8 hours. In contrast to the
previous instance, a connection is established between two
hosts not directly linked to the switch targeted in the attack. In
this instance, the recommended efficiency is not much different
from the prior state. Among the four solutions, with the
exception of Flood Defender, which relies on a pre-processing
system and must temporarily store each new Open_Flow
request in a packet buffer before reacting to it, all show better
performance than the previous setup. This situation results
from the fact that the main factor causing an increase in the
reaction time delay in the three solutions, MLFQ, Ryu, and
FMD-ARA, is the presence of congestion in the
communication channel of the switch with the controller. If, as
proposed, the switch's communication channel with the main
controller of the flow rules becomes congested and the main
controller becomes overloaded, increasing the response time
delay, the additional load that caused the congestion is sent
through a different communication channel to the main
controller. The set of flow rules acts as a guide for a sub-
controller. The coordinating controller activates the sub-
controller of the flow rules when it notices that the main
controller of the flow rules is overloaded. This not only
overloads the main controller but also creates a separate
communication channel between the sub-controller and the
switch. To avoid clogging up the main controller's
communication channel with the switch.

The key findings of the study highlight the effectiveness of
a novel approach to enhance the security and resilience of
software-defined networks (SDNs) against denial-of-service
(DoS) attacks. The introduced "control box" solution,
consisting of coordinating, main, and sub-controllers,
successfully manages and distributes incoming traffic during
DoS attacks, reducing response times and maintaining network
availability. Experimental validation, using various DoS attack
scenarios, demonstrates the method's superiority over existing
solutions. Furthermore, comparisons with alternative methods,
including Ryu controllers with various mechanisms,
consistently show that the proposed approach outperforms
them. While the solution offers promising results, the study
acknowledges the need for further research to address resource
consumption and scalability issues, paving the way for more
resource-efficient and scalable network security solutions in
the future.

VII. CONCLUSION

In this article, a new solution for the control layer has been
developed with the aim of increasing access to software-based
networks by increasing the security of its control layer. The
control box is the main part of the proposed method. This
control box consists of a main controller that adjusts the flow
rules, one or more sub-controllers that adjust the flow rules,
and a coordinating controller. The task of the coordinator
controller is to monitor the controllers that define the flow rules
and monitor the network by collecting statistical data from the
Open_Flow switches. Controllers that install flow rules are also
responsible for installing flow rules. Based on network
information base (NIB) data obtained from the coordinating
controller, these flow rules are generated by network programs
running on the controllers that install the flow rules. Based on

the traffic load entering the network, the coordinating
controller also coordinates the operation of the main and sub-
controllers of the flow rules. The high tolerance of the
proposed method for attacks that lead to the saturation of the
control plane by the data plane of SDN networks is due to the
redundancy of flow rule set controllers in the method. In
summary, the importance of the proposed solution to increase
the security and resilience of Software Defined Networks
(SDN) against Denial of Service (DoS) attacks is emphasized.
They highlight the unique contribution of their "control box"
approach, which effectively manages and distributes incoming
traffic during DoS attacks, thereby reducing response time and
maintaining network availability. The following are the
limitations and future works.

 The proposed solution, while effective in reducing DoS
attacks, requires the deployment of additional resources, which
can lead to increased energy consumption and cost. This
limitation highlights the need for further optimization to reduce
the resource overhead associated with the approach. This
article also mentions a limitation on the number of available
switch ports for adding sub-controllers to a flow rules
installation. This scalability limitation needs to be addressed to
ensure that this approach can be applied to larger and more
complex SDN environments.

VIII. FUTURE WORK

1) Resource efficiency: Future research should focus on

optimizing the proposed solution to reduce resource

requirements, making it more resource efficient and

environmentally sustainable.

2) Scalability solutions: Addressing scalability limitations

is a priority. Researchers could explore ways to scale the

approach to accommodate larger SDN deployments, possibly

through innovations in controller communication and load

distribution techniques.

3) Security extensions: Expanding research to cover a

wider range of cyber threats and security challenges in SDNs

would be valuable. This could include exploring ways to

increase security against other types of attacks beyond DoS,

ensuring comprehensive network protection.

REFERENCES

[1] O. E. Tayfour and M. N. Marsono, “Collaborative detection and
mitigation of distributed denial-of-service attacks on software-defined
network,” Mobile Networks and Applications, vol. 25, pp. 1338–1347,
2020.

[2] H. Farhady, H. Lee, and A. Nakao, “Software-defined networking: A
survey,” Computer Networks, vol. 81, pp. 79–95, 2015.

[3] M. A. Aladaileh, M. Anbar, I. H. Hasbullah, Y.-W. Chong, and Y. K.
Sanjalawe, “Detection techniques of distributed denial-of-service attacks
on software-defined networking controller–a review,” IEEE Access, vol.
8, pp. 143985–143995, 2020.

[4] E. Khezri and E. Zeinali, “A review on highway routing protocols in
vehicular ad hoc networks,” SN Comput Sci, vol. 2, pp. 1–22, 2021.

[5] A. F. Abdullah, F. M. Salem, A. Tammam, and M. H. A. Azeem,
“Performance analysis and evaluation of software defined networking
controllers against denial-of-service attacks,” in Journal of Physics:
Conference Series, IOP Publishing, 2020, p. 012007.

[6] W. Li, W. Meng, and L. F. Kwok, “A survey on OpenFlow-based
Software Defined Networks: Security challenges and countermeasures,”

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

89 | P a g e

www.ijacsa.thesai.org

Journal of Network and Computer Applications, vol. 68, pp. 126–139,
2016.

[7] M. F. Hyder and T. Fatima, “Towards crossfire distributed denial-of-
service attack protection using intent-based moving target defense over
software-defined networking,” IEEE Access, vol. 9, pp. 112792–
112804, 2021.

[8] J. Benabbou, K. Elbaamrani, and N. Idboufker, “Security in OpenFlow-
based SDN, opportunities and challenges,” Photonic Network
Communications, vol. 37, pp. 1–23, 2019.

[9] M. Sakthivel, R. Kamalraj, S. Sivanantham, and V. Krishnamoorthy,
“An Analysis of Machine Learning Depend on Q-MIND for Defencing
The Distributed Denial of Service Attack on Software Defined
Network.,” International Journal of Early Childhood Special Education,
vol. 14, no. 5, 2022.

[10] Cao, Y., Xu, N., Wang, H., Zhao, X., & Ahmad, A. M. (2023). Neural
networks-based adaptive tracking control for full-state constrained
switched nonlinear systems with periodic disturbances and actuator
saturation. International Journal of Systems Science, 54(14), 2689-2704.

[11] B. Mladenov and G. Iliev, “Optimal software-defined network topology
for distributed denial-of-service attack mitigation,” Bulletin of Electrical
Engineering and Informatics, vol. 9, no. 6, pp. 2588–2594, 2020.

[12] E. Khezri, E. Zeinali, and H. Sargolzaey, “SGHRP: Secure Greedy
Highway Routing Protocol with authentication and increased privacy in
vehicular ad hoc networks,” PLoS One, vol. 18, no. 4, p. e0282031,
2023.

[13] Wang, T., Zhang, L., Xu, N., & Alharbi, K. H. (2023). Adaptive critic
learning for approximate optimal event-triggered tracking control of
nonlinear systems with prescribed performances. International Journal of
Control, 1-15.

[14] H. Wang, L. Xu, and G. Gu, “OF-GUARD: A DoS attack prevention
extension in software-defined networks,” The Open Network Summit
(ONS), no. 2014, 2014.

[15] D. Agnew, S. Boamah, R. Mathieu, A. Cooper, J. McNair, and A.
Bretas, “Distributed Software-Defined Network Architecture for Smart
Grid Resilience to Denial-of-Service Attacks,” arXiv preprint
arXiv:2212.09990, 2022.

[16] M. Ambrosin, M. Conti, F. De Gaspari, and R. Poovendran,
“Lineswitch: Tackling control plane saturation attacks in software-
defined networking,” IEEE/ACM Transactions on Networking, vol. 25,
no. 2, pp. 1206–1219, 2016.

[17] M. Trik, A. M. N. G. Molk, F. Ghasemi, and P. Pouryeganeh, “A hybrid
selection strategy based on traffic analysis for improving performance in
networks on chip,” J Sens, vol. 2022, 2022.

[18] Yue, S., Niu, B., Wang, H., Zhang, L., & Ahmad, A. M. (2023).
Hierarchical sliding mode-based adaptive fuzzy control for uncertain
switched under-actuated nonlinear systems with input saturation and
dead-zone. Robotic Intelligence and Automation, 43(5), 523-536.

[19] K. Chen, A. R. Junuthula, I. K. Siddhrau, Y. Xu, and H. J. Chao,
“SDNShield: Towards more comprehensive defense against DDoS
attacks on SDN control plane,” in 2016 IEEE conference on
communications and network security (CNS), IEEE, 2016, pp. 28–36.

[20] T. Semong et al., “Intelligent load balancing techniques in software
defined networks: A survey,” Electronics (Basel), vol. 9, no. 7, p. 1091,
2020.

[21] Zhao, H., Wang, H., Xu, N., Zhao, X., & Sharaf, S. (2023). Fuzzy
approximation-based optimal consensus control for nonlinear multiagent
systems via adaptive dynamic programming. Neurocomputing, 553,
126529.

[22] A. K. A. Al-Mashadani and M. Ilyas, “Distributed Denial of Service
Attack Alleviated and Detected by Using Mininet and Software Defined
Network,” Webology, vol. 19, no. 1, pp. 4129–4144, 2022.

[23] Zhang, H., Zou, Q., Ju, Y., Song, C., & Chen, D. (2022). Distance-based
support vector machine to predict DNA N6-methyladenine modification.
Current Bioinformatics, 17(5), 473-482.

[24] O. Polat and H. Polat, “An intelligent software defined networking
controller component to detect and mitigate denial-of-service attacks,”

Journal of Information and Communication Technology, vol. 20, no. 1,
pp. 57–81, 2021.

[25] Cao, C., Wang, J., Kwok, D., Cui, F., Zhang, Z., Zhao, D., ... & Zou, Q.
(2022). webTWAS: a resource for disease candidate susceptibility genes
identified by transcriptome-wide association study. Nucleic acids
research, 50(D1), D1123-D1130.

[26] S. Sharathkumar and N. Sreenath, “Distributed Clustering based Denial
of Service Attack Prevention Mechanism using a Fault Tolerant Self
Configured Controller in a Software Defined Network,” 2023.

[27] Arefanjazi, H., Ataei, M., Ekramian, M., & Montazeri, A. (2023). A
robust distributed observer design for Lipschitz nonlinear systems with
time-varying switching topology. Journal of the Franklin Institute,
360(14), 10728-10744.

[28] E. Khezri, E. Zeinali, and H. Sargolzaey, “A novel highway routing
protocol in vehicular ad hoc networks using VMaSC-LTE and DBA-
MAC protocols,” Wirel Commun Mob Comput, vol. 2022, 2022.

[29] Wang, Z., Jin, Z., Yang, Z., Zhao, W., & Trik, M. (2023). Increasing
efficiency for routing in internet of things using Binary Gray Wolf
Optimization and fuzzy logic. Journal of King Saud University-
Computer and Information Sciences, 35(9), 101732.

[30] M. Samiei, A. Hassani, S. Sarspy, I. E. Komari, M. Trik, and F.
Hassanpour, “Classification of skin cancer stages using a AHP fuzzy
technique within the context of big data healthcare,” J Cancer Res Clin
Oncol, pp. 1–15, 2023.

[31] J. Sun, Y. Zhang, and M. Trik, “PBPHS: a profile-based predictive
handover strategy for 5G networks,” Cybern Syst, pp. 1–22, 2022.

[32] M. Trik, H. Akhavan, A. M. Bidgoli, A. M. N. G. Molk, H. Vashani, and
S. P. Mozaffari, “A new adaptive selection strategy for reducing latency
in networks on chip,” Integration, vol. 89, pp. 9–24, 2023.

[33] G. Shang, P. Zhe, X. Bin, H. Aiqun, and R. Kui, “FloodDefender:
Protecting data and control plane resources under SDN-aimed DoS
attacks,” in IEEE INFOCOM 2017-IEEE Conference on Computer
Communications, IEEE, 2017, pp. 1–9.

[34] P. Wu, L. Yao, C. Lin, G. Wu, and M. S. Obaidat, “Fmd: A DoS
mitigation scheme based on flow migration in software‐defined
networking,” International Journal of Communication Systems, vol. 31,
no. 9, p. e3543, 2018.

[35] Y. Wang, T. Hu, G. Tang, J. Xie, and J. Lu, “SGS: Safe-guard scheme
for protecting control plane against DDoS attacks in software-defined
networking,” IEEE Access, vol. 7, pp. 34699–34710, 2019.

[36] Y. Han, J.-H. Yoo, and J. W.-K. Hong, “Poisson shot-noise process
based flow-level traffic matrix generation for data center networks,” in
2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM), IEEE, 2015, pp. 450–457.

[37] D. Mokhlesi Ghanevati, E. Khorami, B. Boukani, and M. Trik, “Improve
replica placement in content distribution networks with hybrid
technique,” Journal of Advances in Computer Research, vol. 11, no. 1,
pp. 87–99, 2020.

[38] M. Trik, S. P. Mozaffari, and A. M. Bidgoli, “Providing an adaptive
routing along with a hybrid selection strategy to increase efficiency in
NoC-based neuromorphic systems,” Comput Intell Neurosci, vol. 2021,
2021.

[39] B. Yu, G. Yang, and C. Yoo, “Comprehensive prediction models of
control traffic for SDN controllers,” in 2018 4th IEEE Conference on
Network Softwarization and Workshops (NetSoft), IEEE, 2018, pp.
262–266.

[40] Q. Gao, “Recommended System Optimization in Social Networks based
on Cooperative Filter with Deep MVR Algorithm,” 2022.

[41] Y. Ashgevari and M. Karami, “Study of Atmospheric Discharge Effects
in Distribution Networks with a Novel Residential Buildings Protection
Approach,” Advances in Engineering and Intelligence Systems, vol. 2,
no. 02, 2023.

[42] Karthika, P., & Karmel, A. (2023). Review on distributed denial-of-
service attack detection in software defined network. International
Journal of Wireless and Mobile Computing, 25(2), 128-146.

