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Abstract—The diagnosis and early detection of Alzheimer's 

Disease (AD) and other forms of dementia have become 

increasingly crucial as our aging population grows. In recent 

years, deep learning, particularly the You Only Look Once 

(YOLO) architecture, has emerged as a promising tool in the 

field of neuroimaging and machine learning for AD diagnosis. 

This comprehensive review investigates the recent advances in 

the application of YOLO for AD diagnosis and classification. We 

scrutinized five research papers that have explored the potential 

of YOLO, delving into the methodologies, datasets, and results 

presented. Our review reveals the remarkable strides made in 

AD diagnosis using YOLO, while also highlighting challenges, 

such as data scarcity and research lacking. The paper provides 

insights into the growing role of YOLO in the early detection of 

AD and its potential to transform clinical practices in the field. 

This review aims to inspire further research and innovation to 

enhance AD diagnosis and, ultimately, patient care. 
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I. INTRODUCTION 

There is a surging interest in the application of Artificial 
Intelligence (AI) within the realm of healthcare. Health care-
related AI research has seen a rapid acceleration in publication 
growth since 2012, with a 45.1% increase in the past five 
years, driven by technological breakthroughs and is expected to 
continue doubling approximately every two years based on this 
growth trend [1]. AI has solidified its position as a 
transformative power in the healthcare sector, completely 
reshaping the approaches to diagnosis, treatment, and medical 
condition management. In recent years, AI has emerged as an 
indispensable asset in the healthcare industry, offering 
groundbreaking solutions to some of the most formidable 
challenges in medicine, particularly when addressing 
neurological diseases. Neurological diseases, encompassing a 
diverse spectrum of conditions, such as Alzheimer's disease 
(AD), stroke and Parkinson's disease, pose intricate challenges 
in terms of diagnosis and treatment [2,3]. AI has decisively 
altered the landscape in this context. 

AI applications in the realm of neurological diseases are 
both diverse and promising. AI, particular machine learning 
(ML) and deep learning (DL) architecture have the capability 
to scrutinize extensive volumes of brain imaging data, 
encompassing magnetic resonance imaging (MRI), positron 
emission tomography (PET), and computed tomography (CT) 
scans, in order to unearth subtle anomalies that might elude 
human perception [4,5,6]. In contrast to conventional 
diagnostic and treatment methodologies, these AI-driven 
approaches address several limitations inherent in traditional 

methods, such as subjectivity, delayed diagnoses often 
resulting from inconspicuous early-stage symptoms, or 
findings imperceptible to human observers. This proficiency in 
early detection of neurological disorders offers the potential for 
swifter and more precise diagnoses. 

In particular, the deep learning object detection algorithm 
known as You Only Look Once (YOLO) shows great promise 
in enhancing the accuracy, efficiency, and automation of 
diagnosing neurological diseases, with a special emphasis on 
Alzheimer's disease. The primary aim of this brief review is to 
investigate the present applications of YOLO in the 
classification of neurological diseases with a particular focus 
on Alzheimer's disease. Additionally, we will delve into the 
methods used and the challenges faced when applying AI to 
the diagnosis and treatment of neurological diseases. 

II. MATERIALS AND METHODS 

A. Artificial Intelligence in AD Diagnosis 

AD is a formidable and complex neurological condition 
that has captured the attention of scientists, healthcare 
professionals, and society at large. Named after Dr. Alois 
Alzheimer, who first described the disease in the early 20th 
century [7], Alzheimer's is a progressive and degenerative 
brain disorder that predominantly affects memory, cognitive 
function, and daily life activities. The impact of AD extends far 
beyond the affected individuals themselves, as it profoundly 
affects their families and caregivers, often placing an immense 
emotional and practical burden on them. It is the most common 
cause of dementia, a term that encompasses a range of 
cognitive impairments that interfere with an individual's ability 
to think, reason, remember, and communicate. AD is a 
devastating and relentless neurological disorder that presents a 
profound challenge to both the medical community and society 
as a whole [8]. It is estimated that over 50 million people 
worldwide are currently affected by AD [9]. As the global 
population ages, this number is projected to escalate 
significantly in the coming decades. This ailment has grown 
into one of the most prevalent and impactful health concerns of 
our time [10]. 

As is the case with numerous other neurological disorders 
[11], early diagnosis holds a crucial position in the care and 
strategic planning for Alzheimer's disease (AD). The 
classification of AD is based on different levels, which include 
Alzheimer's disease (AD), mild cognitive impairment (MCI), 
and cognitively normal (CN). Early identification in MCI level 
empowers individuals and their families to take proactive steps 
in addressing critical aspects of their future, encompassing 
healthcare preferences, support requirements, and financial and 
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legal considerations [12, 13]. Additionally, early detection 
allows for proactive safety measures to reduce the risk of 
wandering or disorientation-related incidents. Moreover, it 
opens up the possibility of participating in clinical trials for 
innovative treatments during the disease's early stages, 
contributing to advancements in research. 

Despite recent advancements in clinical trials related to 
Alzheimer's disease, several challenges have emerged. These 
challenges include the difficulty of distinguishing AD from 
normal age-related cognitive changes, limited access to 
specialized diagnostic tools in certain geographic regions, and 
the growing number of individuals affected by the disease [14]. 
Consequently, the role of computer applications in AD 
diagnosis has become increasingly crucial. Among these, deep 
learning, which falls under the umbrella of machine learning 
and constitutes a pivotal element of artificial intelligence, has 
showcased impressive accomplishments in fields like object 
recognition and computer vision [15]. This has led to the 
extensive integration of deep learning in the realm of 
neuroimaging analysis, where its neural network architecture, 
featuring non-linear activation functions, plays a pivotal role in 
tasks like image classification [16], particularly in the domain 
of neuroimaging and AD neuroimaging [17]. This 
encompasses various modalities, including MRI, PET, CT, 
fMRI, and more [18]. 

B. Advanced in Machine Learning in Neuroimaging 

Brain imaging can be categorized into distinct types based 
on various criteria. One such classification pertains to imaging 
modality, which can be categorized into structural and 
functional imaging. Structural imaging, exemplified by MRI, 
offers high-resolution images that unveil detailed brain 
anatomy, encompassing gray and white matter, as well as 
cerebrospinal fluid. It detects changes in brain volume and 
atrophy patterns, key indicators of Alzheimer's disease. While 
primarily used for functional studies, fMRI can also provide 
insights into structural connectivity through techniques like 
resting-state functional connectivity. Alterations in functional 
connectivity can be associated with structural changes in AD. 
In recent times, deep learning architectures have demonstrated 
the capability to handle complete 3D brain images seamlessly 
from start to finish (end-to-end) [19, 20, 21]. However, the 
foremost challenge is the high computational cost, which 
demands substantial processing power and can result in 
extended training times. Overfitting is another issue of concern, 
as is the need for ensuring model interpretability. Data 
preprocessing is a critical stage in preparing both 2D and 
intricate 3D data, albeit with the introduction of added 
complexities. 

In more detail, data preprocessing is a fundamental process 
in the preparation of raw data for machine learning algorithms. 
Its significance stems from the fact that real-world data can be 

noisy, incomplete, or poorly formatted. By cleaning and 
structuring the data, data preprocessing significantly enhances 
the accuracy and effectiveness of machine learning models. 
Within the domain of neuroimaging analysis, the pivotal stages 
of data preprocessing and feature extraction hold an 
indispensable role. These critical components serve to enhance 
data quality, mitigate noise, establish data consistency, 
augment statistical power, facilitate data interpretation, and 
enhance research precision. Nevertheless, it is essential to 
recognize that data preprocessing may also introduce certain 
inherent limitations that warrant consideration in the research 
process. 

C. Limitation of Deep Learning in Alzheimer’s Disease 

Diagnosis 

The increasing importance of deep learning in Alzheimer's 
Disease (AD) classification has become increasingly apparent, 
resulting in a notable upswing in research endeavors from 2017 
onward [17]. These investigations have yielded a spectrum of 
reported accuracy levels, spanning from 70% to 99% [22]. 
Notably, Sarraf et al. (2016) achieved outstanding accuracy 
rates of 98.84% for MRI [23] and an impressive 99.99% for 
fMRI [24] pipelines, while Suk et al. (2013) [25] attained an 
accuracy of 98.8%. However, a common reliance on diverse 
MRI pre-processing techniques to attain optimal results and a 
predominant focus on Convolutional Neural Networks (CNN) 
have contributed to a distinct research gap in the domain of 
deep learning for object detection. Consequently, there exists a 
pressing need to explore new research avenues that minimize 
the dependence on these pre-processing techniques. 

D. Advancement of YOLO for Alzheimer’s Disease Diagnosis 

The diligent efforts of numerous researchers have been 
dedicated to the deployment of deep learning models for object 
detection within the realm of medical imaging, particularly 
within the domain of Alzheimer's Disease diagnosis. This 
dedication has culminated in the emergence of the YOLO 
model and its various iterations, representing significant 
milestones in the development of this innovative approach. 

E. Convolutional Neural Networks 

A key technique within the domain of deep learning is the 
Convolutional Neural Network (CNN) [26]. These networks 
take inspiration from the human system and are designed to 
conduct hierarchical learning using sophisticated algorithms. 
This process involves the modeling of features at various 
levels, allowing the extraction of abstract representations from 
the input data. CNNs are constructed with multiple layers, 
including convolutional, activation, and pooling layers. To 
produce final output predictions, one or more Fully-Connected 
layers (FC) are added to the network. Ang et al. (2017) 
illustrated the architecture of a CNN using a diagram (see Fig. 
1).
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Fig. 1. The concept of a sequential convolutional neural network [27]. 

Various notable variations in the field of deep learning have 
been developed, with some well-known models leading the 
way. These models include LeNet [28], AlexNet [29], ResNet 
[30], and GoogLeNet [31]. Moreover, these models can be 
categorized into two main types: one-stage architectures and 
two-stage architectures. In a two-stage CNN, such as the Faster 
R-CNN (Region-based Convolutional Neural Network) [32], 
the object detection process is divided into two distinct steps: 
region proposal and classification. Initially, the model 
generates region proposals, which are essentially candidate 
regions within an image where objects might be situated. Once 
these region proposals are generated, each one is passed 
through a classifier to determine if it contains an object and, if 
so, to identify the class of the object. On the other hand, one-
stage CNNs are designed for a more streamlined approach, 
where object detection occurs in a single step, without the need 
for a separate region proposal stage. These models directly 
predict bounding boxes and class labels for objects within an 
image, making them efficient and suitable for real-time object 
detection. However, it's worth noting that they may not always 
achieve the same level of accuracy as two-stage models in 
certain situations. Examples of one-stage CNNs include YOLO 
and the Single Shot MultiBox Detector (SSD). 

F. LeNet Architecture 

LeNet, a condensed form of "LeNet-5," represents an 
architectural framework introduced by LeCun et al. in 1998 
[28] as depicted in Fig. 2. This landmark innovation has played 
an integral role in shaping the landscape of deep learning and 
CNN. It was one of the first successful applications of neural 
networks for computer vision tasks particular in handwritten 
digit recognition, specifically for recognizing digits in postal 
codes and zip codes. 

LeNet's structure is distinctly organized into two core 
components: the Convolutional Part and the Fully-Connected 

Part. Within the Convolutional Part, three vital layer types are 
evident: an Input Layer designed to handle 32x32 grayscale 
images (though adaptability is included for zero-padding, as 
seen in datasets like MNIST), two Convolutional Layers (CL) 
employing 5x5 filters, and two Max-Pooling Layers tasked 
with efficient feature map downsampling. Meanwhile, the 
FullyConnected Part incorporates three FC, also known as 
Dense layers, responsible for capturing intricate data 
relationships, concluding with an Output Layer featuring a 
softmax function to categorize handwritten digits, as 
exemplified in the MNIST dataset, which consisted of images 
of numbers from 0–9 in black and white. Nevertheless, it was 
primarily designed for the specific task of recognizing 
handwritten digits, limiting its applicability to a broader range 
of image classification tasks. 

G. AlexNet Architecture 

In 2012, Krizhevesky et al. [29] introduced AlexNet, a 
pioneering convolutional neural network (CNN) that 
revolutionized deep learning. This innovation significantly 
enhanced the depth of CNNs and incorporated effective 
parameter optimization strategies, marking a breakthrough in 
the prestigious ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC). AlexNet's remarkable achievement was 
evident in its top-5 error rate of just 15.3%, outperforming 
traditional computer vision methods and setting a new standard 
at the time. The concept of AlexNet is illustrated in Fig. 3. 

AlexNet marked a significant milestone in the realm of 
deep convolutional neural networks by pioneering the training 
of complex models on an extensive dataset, comprising more 
than 15 million images and involving millions of model 
parameters. This achievement underscored the capacity of deep 
networks to extract intricate features from massive datasets. 
Moreover, AlexNet popularizedthe adoption of Rectified 
Linear Units (ReLU) [33] as an activation function,
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Fig. 2. The concept of LeNet [28]. 

 
Fig. 3. The concept of AlexNet [29]. 

which not only improved computational efficiency but also 
expedited training convergence. Furthermore, to combat 
overfitting, a key concern in deep learning, the technique of 
dropout was introduced. This involved randomly setting 50% 
of the hidden neuron outputs to zero during training, effectively 
excluding them from the backpropagation process. These 
innovations not only contributed to AlexNet's success but also 
inspired the design of subsequent modern architectures. 

H. GoogLeNet Architecture 

In the 2014 ILSVRC, GoogLeNet, also known as 
Inception-V1, achieved first place [31] (Figure 4). A significant 
innovation of GoogLeNet lies in its use of inception modules, 
which are tailored to capture features at multiple spatial scales. 
These modules employ convolutional filters of different sizes, 
including 5x5, 3x3, and 1x1, to effectively integrate channel 
and spatial information across a range of spatial resolutions, 
enabling the network to extract features at both fine and coarse 
levels simultaneously. This design enhances feature learning 
efficiency. 

Additionally, GoogLeNet incorporates 1x1 convolutions, 
which have the effect of reducing the dimensionality of feature 
maps, resulting in a computationally efficient architecture. This 
not only permits the construction of deeper networks but also 
significantly reduces the number of parameters to 5 million, as 
compared to AlexNet's 61 million. These designs make 
GoogLeNet well-suited for real-time and resource-efficient 
applications. However, GoogLeNet’s limitations include its 
complexity, resource-intensive training, and reduced suitability 
for tasks beyond image classification. 

 
Fig. 4. GoogLeNet inception module [31]. 

I. ResNet Architecture 

ResNet, introduced by He et al. [30], made a significant 
breakthrough in deep learning by winning the ILSVRC 2015 
competition with a remarkably deep architecture of 152 layers, 
over 20 times deeper than AlexNet. The core challenge that 
ResNet addresses is the training of such deep neural networks, 
which previously suffered from issues like vanishing gradients 
and a decline in accuracy with increased depth. In order to 
overcome these challenges, ResNet introduces a 
groundbreaking concept known as residual connections, 
commonly denoted as skip connections. These ingenious 
connections serve to ease the training of exceptionally deep 
networks by promoting the efficient flow of gradients during 
the training process. Each residual block in a ResNet contains a 
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“shortcut connection” that bypasses one or more layers, 
enabling the network to learn residual functions. Essentially, 
this results in a combination of a traditional feedforward 
network and a residual connection. These residual functions 
capture the difference between the desired output and the 
current layer's output, making it easier for the network to learn 
identity mappings. ResNet models are available in various 
depths, including ResNet-50, ResNet-101, and ResNet-152, 
which are widely adopted for image classification tasks. 

J. Faster R-CNN 

Ren et al. [32] proposed Faster R-CNN algorithm, with the 
idea of introducing the idea of integrating region proposal 
generation within a deep neural network. Faster R-CNN 
introduces the RPN, also known as region proposal network, a 
neural network module designed to generate region proposals 
directly from the input image. This replaces the need for 
external algorithms like selective search or edge boxes. 

The RPN take an image from any size and suggests 
candidate object bounding boxes based on learned features 
from the image. The RPN employs anchor boxes, which are 
pre-defined bounding box shapes at various scales and aspect 
ratios. These anchor boxes are used to propose object regions 
efficiently. Faster R-CNN uses a two-stage detection approach. 
In the initial stage, the Region Proposal Network (RPN) is 
responsible for generating region proposals. Subsequently, the 
second stage entails the involvement of another CNN, known 
as Fast R-CNN [34], which carries out object detection and 
precise bounding box regression based on the generated region 
proposals. 

K. YOLO Architechture 

The primary innovation in Faster R-CNN lies in its Region 
Proposal Network (RPN), which generates high-quality region 
proposals directly within the network. This advancement 
results in faster inference times while upholding the required 
accuracy for object detection tasks. However, Faster R-CNN's 
two-stage architecture introduces a complex pipeline, 
demanding precise tuning of each stage independently, 
resulting in a system with significant computational overhead. 

In an attempt to simplify the process and make it more 
efficient, YOLO (see Fig. 5), created by Redmon and his team 
[35], takes a unique approach. YOLO partitions the input 
image into a grid    cells, grid cell is tasked with object 
detection if the object's center is located within it. These grid 
cells make predictions for B bounding boxes, complete with 
confidence scores and C class probabilities. These predictions 
are organized as a tensor with dimensions           
  .Within this framework, the input image is effectively 
partitioned into     sub-images, where 'five' signifies the 
detection of attributes like height, width, confidence score, and 
central coordinates       for each bounding box. 

Moreover, YOLO consolidates the various aspects of object 
detection into a unified neural network, utilizing information 
from the entire image to make predictions for each bounding 
box. This integration enables YOLO to simultaneously forecast 
bounding boxes for all categories within a given image. 
YOLO's architecture offers the advantages of end-to-end 
training and real-time processing speed, all while upholding a 
high level of precision in object detection. Taking cues from 
the architectural advancements of GoogLeNet, YOLO is 
structured with a series of 24 CL, supplemented by 2 FC 
layers. In contrast to GoogLeNet's inception modules, YOLO 
follows a more straightforward approach, integrating 1×1 
reduction layers followed by 3×3 CL. Additionally, YOLO 
exhibits certain similarities with R-CNN, particularly Faster R-
CNN, where each grid cell generates potential bounding boxes 
and assigns scores to them. Subsequently, a Non-Maximum 
Suppression (NMS) mechanism is employed to eliminate 
redundant or overlapping bounding boxes after predictions are 
computed across all grid cells using convolutional features. 

Since its initial introduction in 2016, YOLO has undergone 
a series of evolutionary iterations, adapting to the specific 
requirements of diverse fields within human life. Each 
subsequent version of YOLO has been meticulously refined to 
meet the ever-evolving challenges and demands of real-time 
object detection and various computer vision applications. 

 
Fig. 5. The concept of YOLO [34]. 

III. RESULTS 

While YOLO's recent trends have leaned towards real-time 
applications, its potential in the medical imaging field, 
particularly for diagnosing Alzheimer's disease (AD), has 
drawn significant interest. Originally developed for object 
recognition, the adoption of YOLO in AD diagnosis has shown 
promise. Nevertheless, the need for further research, as 
highlighted in Table I, emphasizes the importance of ongoing 
investigations to advance AD diagnosis and treatment. 
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TABLE I. SUMMARY OF ALZHEIMER’S DISEASE DIAGNOSIS STUDIES  

Article Data DL Architecture Results 

Alon et al. 

(2020)[36] 

1000 MRI images (70% for training, and 

30% for validation) 
20 images for testing 

YOLOv3 80% testing accuracy 

Islam et al. 

(2023)[37] 

400 images for training and 100 images 

for validation 
From YOLOv3 to YOLOv7 Illustrated in Table II. 

Fong et al. 
(2021)[38] 

500 raw MRI image Faster R-CNN, YOLOv3, SSD Illustrated in Table III. 

Abd-Aljabar 

et al.[39] 
300 raw MRI images YOLOv2 98% accuracy 

Uddin  
et al. 

(2022)[40] 

6400 MRI images (Training and test in 

4:1 ratio) 

YOLOv4, AlexNet, 

Faster R-CNN 

YOLOv4: 99% accuracy 
Faster R-CNN: 84% accuracy 

AlexNet: 99% 
 

IV. DISCUSSION 

Uddin et al. [40] conducted a comparative analysis of three 
distinct deep learning architectures, namely YOLOv4, 
AlexNet, and Faster R-CNN. Their research encompassed a 
substantial dataset comprising 6400 MRI images, making it the 
largest dataset among the studies reviewed. However, a notable 
aspect of their dataset was the relatively limited number of CN 
(cognitively normal) images, which stood at 2560 training 
images. This dataset composition, characterized by an 
abundance of CN images and a scarcity of AD (Alzheimer's 
disease) and MCI (mild cognitive impairment) images, raised 
concerns about the potential for overfitting. The resulting 
models exhibited a propensity to classify most images as CN 
due to the skewed distribution of classes. This highlights the 
need for improved dataset balance, including a more 
representative inclusion of AD and MCI images. Addressing 
this class imbalance could lead to more reliable and accurate 
classification results, reducing the risk of overfitting and 
enhancing the model's overall performance. 

In a study conducted by Alon et al. [36], the YOLOv3 
architecture demonstrated an accuracy rate of 80%, which was 
notably the lowest among the studies under review. It's 
important to highlight that this study employed a significant 
dataset comprising 1000 MRI images for training and 
validation, achieving impressive results with training accuracy 
reaching 98.617%, validation accuracy at 98.8207%, and a 
mean average precision (mAP) of 96.17%. However, it's 
crucial to consider certain factors that might impact the 
reliability and generalizability of these findings. One notable 
concern is the study's reliance on a relatively small subset of 
only 20 MRI images for testing. The limited size of the testing 
dataset introduces an element of uncertainty into the model's 
performance, as it may not fully capture the intricacies and 
variations present in a more extensive dataset. Additionally, the 
absence of information regarding any pre-processing 
procedures applied to the dataset raises questions about the 
data's quality and its readiness for deep learning analysis. To 
enhance the credibility of these findings and ensure their 
generalizability, it is advisable to conduct further evaluations 
on larger and more diverse datasets. This would not only 
provide a more comprehensive assessment of the model's 
robustness but also validate its performance across a broader 
range of MRI images. 

In a concurrent research effort, Islam et al. [37] undertook a 
comprehensive investigation into the use of various YOLO 

versions for image classification. Their study aimed to evaluate 
the performance of different YOLO iterations in the context of 
object recognition. Comparatively, the findings revealed that 
YOLOv3 and YOLOv4 outperformed YOLOv5. This 
difference in performance was attributed to the adaptable 
Darknet3 backbone, a crucial component of YOLOv3 and 
YOLOv4, which excels in the task of object detection. The 
Darknet3 backbone's architecture and capabilities enhanced the 
accuracy and efficiency of these YOLO versions. A 
noteworthy advancement came in the form of YOLOv6 and 
YOLOv7, which surpassed the capabilities of YOLOv4. This 
improvement was achieved by passing the input through 
multiple (CNN) layers in the backbone, resulting in increased 
computational efficiency and better overall performance. 
However, it's important to note that these models primarily 
focused on single-class detection, which may limit their 
applicability in scenarios where multi-class detection is 
required. The detailed results are presented on Table II. 

TABLE II. ISLAM ET AL. [37] STUDY RESULT 

 
AD-Level Accuracy (%) mAP 0.5 

YOLOv3 

AD  

MCI 

CN 

95 

90 

93 

0.98 

0.92 

0.93 

YOLOv4 

AD  

MCI 

CN 

87 

85 

85 

0.99 

0.97 

0.98 

YOLOv5 
AD  
MCI 

CN 

90 
85 

84 

0.99 
0.99 

0.99 

YOLOv6 
AD  
MCI 

CN 

92 
90 

91 

0.96 
0.80 

0.90 

YOLOv7 

AD  

MCI 
CN 

97 

96 
97 

0.99 

0.99 
0.99 

TABLE III. FONG ET AL. [38] STUDY RESULT 

Image 

Interference 

Size (IMF) 

                              

YOLOv3 

Accuracy 
99.66 99.66 99.83 99.83 99.49 99.66 

SSD Accuracy 94.18 96.23 98.12 97.77 98.29 97.43 

Faster R-CNN 
Accuracy 

- - 74.14 94.86 98.12 98.8 
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Concurrently, Fong et al. [38] (see Table III) embarked on 
an extensive investigation aimed at streamlining the pre-
processing stage in the context of medical image analysis. 
They achieved this by implementing YOLOv3 and employing 
a dataset consisting of Abd-Aljabar et al. [39] also utilized 
YOLOv2 with a dataset of 300 raw MRI images, achieving a 
result of 98% accuracy, which is slightly lower than Fong et 
al.'s research at 99.8%. Nevertheless, this outcome reaffirms 
the effectiveness of YOLO variations in handling raw and 
unprocessed MRI images, offering an alternative approach to 
streamline the pre-processing stage in medical image analysis. 
These findings collectively emphasize the adaptability and 
robustness of YOLO-based models in handling diverse image 
data without the need for extensive pre-processing, potentially 
simplifying the workflow for neuroimaging analysis individual 
predictions. 

In summary, YOLO has proven to be a promising tool for 
tasks related to Alzheimer's disease diagnosis and 
classification. However, it's crucial to acknowledge the 
persistent challenges that hamper progress in the field of 
neuroimaging research. These challenges encompass the 
scarcity of available data, a pronounced imbalance in class 
distribution within datasets, and a noticeable research gap. 
Addressing these issues through further data collection, careful 
dataset curation, and expanded research efforts is essential to 
fully unlock the potential of YOLO and other deep learning 
approaches in the critical domain of neuroimaging research. 

V. CONCLUSION 

In conclusion, our review provides a comprehensive 
exploration of the evolving landscape in the application of the 
You Only Look Once (YOLO) architecture for the diagnosis of 
AD. In a world where an aging population underscores the 
critical need for early and accurate AD detection, deep learning 
methods have emerged as a promising solution. YOLO, with 
its lightweight design, rapid processing, and impressive 
accuracy, showcases immense potential for reshaping the 
landscape of neuroimaging in AD classification. As we look 
ahead, further research in YOLO and deep learning is strongly 
encouraged. Moreover, techniques like explainable AI (X-AI) 
could be applied, or specific architectures based on or inspired 
by YOLO could be developed. This continued exploration 
promises to advance the quality of care for individuals afflicted 
by AD and various neurodegenerative disease. 
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