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Abstract—Speech Enhancement aims to enhance audio 

intelligibility by reducing background noises that often degrade 

the quality and intelligibility of speech. This paper brings 

forward a deep learning approach for suppressing the 

background noise from the speaker's voice. Noise is a complex 

nonlinear function, so classical techniques such as Spectral 

Subtraction and Wiener filter approaches are not the best for 

non-stationary noise removal. The audio signal was processed in 

the raw audio waveform to incorporate an end-to-end speech 

enhancement approach. The proposed model's architecture is a 

1-D Fully Convolutional Encoder-to-Decoder Gated 

Convolutional Neural Network (CNN). The model takes the 

simulated noisy signal and generates its clean representation. The 

proposed model is optimized on spectral and time domains. To 

minimize the error among time and spectral magnitudes, L1 loss 

is used. The model is generative, denoising English language 

speakers, and capable of denoising Urdu language speech when 

provided. In contrast, the model is trained exclusively on the 

English language. Experimental results show that it can generate 

a clean representation of a clean signal directly from a noisy 

signal when trained on samples of the Valentini dataset. On 

objective measures such as PESQ (Perceptual Evaluation of 

Speech Quality) and STOI (Short-Time Objective Intelligibility), 

the performance evaluation of the research outcome has been 

conducted. This system can be used with recorded videos and as 

a preprocessor for voice assistants like Alexa, and Siri, sending 

clear and clean instructions to the device. 
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I. INTRODUCTION 

Speech Enhancement has been a topic of interest for five 
decades. Speech enhancement aims to improve speech quality 
(reducing background noise) by various algorithms [1]. The 
purpose of enhancement is to enhance the intelligibility of the 
speech signal degraded by the noise using audio signal 
processing techniques. The conventional methods used for 
noise reduction are Spectral subtraction and the Wiener filter 
[2] and [3]. Still, both approaches leave musical artifacts in 
synthesized speech [4], need multiple sources as noise profile 
information, and distort the desired output. 

Deep Learning approaches can overcome the pitfalls of 
conventional approaches because these systems can learn to 
map between complex nonlinear functions [5]. In addition, 

they have the ability to produce desirable outputs that can be 
used to decrease the Word Error Rate (WER) of automatic 
speech recognition (ASR) systems [6], boost the performance 
of speech-to-text systems [7], and in general, increase the 
intelligibility of speech which can be beneficial for any system 
whose performance is dependent on the intelligibility of 
speech. In Deep Learning, the classical approach to suppress 
noise through the signal is mask-based signal denoising [8], in 
which DNN models produce a TF mask that filters out the 
noise and leaves the speech. Mask-based approaches are 
mostly done on magnitude spectrograms of audio [9], [10]; 
this creates a challenge of reconstructing the audio again to the 
time domain once it is filtered using the predicted spectrogram 
mask and reconstruction of audio is heavily dependent on the 
phase of noisy input audio. 

Another investigated approach is a mapping-based 
approach where a representation of a complex nonlinear noisy 
signal is directly mapped onto a clean signal [11], [12] and 
[13]. Mapping-based approaches directly map noisy signals to 
their clean representations. Due to the fast variation of 
amplitudes in raw audio waveforms, mapping-based 
approaches are based on STFT (short-time Fourier Transform) 
of audio. 

A. Proposed Approach 

Our proposed approach is a mapping-based approach in 
raw audio waveform (time-domain). The loss function is 
optimized for time and STFT of audio. This approach 
eliminates the requirement of reconstruction of the audio from 
the spectrogram output into raw audible audio waveform as in 
[11] and [12], rather it generates the audible enhanced speech 
output directly. The magnitude spectrogram of audio is 
incorporated inside of the loss function rather than as input to 
the model as in [9] and [13], which gives us leverage to do 
speech enhancement on raw audio waveform directly. Given 
an audio, our system directly generates its clean representation 
without any additional post-processing on the output of the 
model. The proposed approach focuses on enhancing the 
speech and suppressing the noise in audio sampled at 22.05 
KHz. To achieve this U-Net architecture is used. The choice 
of this architecture is due to the fact that it takes audio as raw 
waveform without any manual feature extraction and provides 
output also in the raw audio waveform, which can be 
converted to mp3 file and can be saved on disk directly. It 
consists of convolutional layers and a middle layer which is a 
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bottleneck. The middle layer (bottleneck layer) represents the 
data in encoded representation which is then decoded by the 
Decoder architecture connected to the bottleneck layer. 

The objectives of this research are two-fold: 

1) Discusses the common approach in deep learning, 

specifically mask-based signal denoising, where deep neural 

network (DNN) models generate a time-frequency (TF) mask 

to filter out noise from the audio signal. 

2) Reviews mapping-based approaches that directly map 

complex nonlinear noisy signals onto clean representations. It 

distinguishes these approaches from mask-based methods and 

notes that mapping-based methods typically rely on the short-

time Fourier transform (STFT) of audio due to the fast 

variation of amplitudes in raw audio waveforms. 

3) Introduces a novel mapping-based approach 

specifically applied to raw audio waveforms in the time 

domain 

B. Research Distribution 

Section II of this paper covers related work in speech 
enhancement, followed by Section III, which discusses the 
dataset used for this research. Section III also consists of 
discussion on the U-Net Architecture. Section IV covers 
model training, and Section V, the last section discusses 
results and concludes the paper. 

II. RELATED WORK 

Speech enhancement research has been ongoing for the 
last half-century. Earlier, classical linear noise filtering 
approaches were used for reducing noise. Two notable 
examples are spectral subtraction and wiener filter approaches 
[2] & [3]. The former needed multiple sources and works 
average with static noise and below the bar with non-
stationary noises. The latter had its pitfalls, such as it required 
two sources; one of them is a mixed signal, and the other is the 
background sound signal. With the rise of deep learning, these 
pitfalls were eliminated as deep learning made it easier to 
notably reduce the noise in the noisy speech samples. This 
approach made no assumptions regarding the statistical 
attributes of the signals and used a wide variety of noise types 
to provide a variety of noisy speech samples for training [14]. 
Moreover, these systems can learn to map between complex 
nonlinear functions. They can produce desirable outputs that 
can be used to decrease the Word error rate (WER) of 
automatic speech recognition systems (ASR). In general, it 
can increase intelligibility, which can benefit any system 
whose performance depends on speech intelligibility. 

In a notable work [15], a causal model was proposed based 
on auto-encoder architecture. They also proposed effective 
data augmentation techniques, frequency band masking, and 
reverberation. Their results suggest that the proposed system 
is comparable to the SOTA (State-Of-TheArt) model across 
all performance measures while working directly on the raw 
waveform. It also discovered that up-sampling the audio 
before feeding it into the encoder improves accuracy, and then 
they downsampled the outputs by the same amount. 

Another innovative approach, presented in [16] proposed a 
new deep learning-based framework for real-time speech 
enhancement on dual-microphone mobiles for close-talk 
scenarios. They used a masking-based approach using a 
computationally efficient CRN (Convolutional Recurrent 
Neural Network), which was trained for intra-channels and 
inter-channels. Their experimental results showed that their 
proposed approach outmatched the DNN-based and other 
traditional methods. 

Alternatively, authors in [17] used a hybrid approach using 
DSP techniques and deep learning for noise suppression. The 
deep recurrent neural network with four hidden layers was 
used. The resulting lower complexity made it practical to be 
used in video-conferencing systems. Their results showed a 
significant improvement in quality from deep learning, 
especially for non-stationary noise types. 

The authors of [7] also used a hybrid approach consisting 
of noise estimation and speech-to-text block. This paper’s 
focus was on spontaneous speech in the medical domain. As 
the medical terms used in the area are complex, and speech 
recognition systems often fail to recognize those words, the 
idea here was to propose an algorithm that resolves this issue. 
Non-linear spectral subtraction for noise reduction and the 
Hidden Markov Model (HMM) were incorporated for 
converting the speech to text to reduce the word error rate. 

This paper [18] discussed the classical approaches for 
noise reduction by using filters. It also discusses stationary 
and non-stationary noise and its subtypes. This approach [19] 
combined a short-time Fourier transform (STFT) and a learned 
analysis and synthesis basis in a stacked-network method with 
less than one million parameters for real-time noise 
suppression. [20] an improved approach to their previous 
research was proposed, where the Deep Denoising 
Autoencoder (DAE) is trained on only clean speeches. In this 
paper, they trained DAE on pairs of noisy signals and clean 
output using a mapping-based approach stack AE approach 
where AE is stacked to form DAE to estimate the noise from 
the noisy signal. This paper [21] explores a greedy layer-wise 
pretraining strategy to train a DAE for speech restoration and 
then applies that restored speech for noisy robust speech 
recognition. 

III. METHODOLOGY 

A. Dataset 

Datasets consist of pairs of corresponding audios sampled 
at 22.05 KHz stored in WAV format in a Linux environment. 
The dataset is created using two publicly available datasets. 
From one dataset noisy environment audio samples are 
obtained and from another dataset, clean human speech audio 
samples are obtained later these two samples of datasets are 
mixed together using simple arithmetic addition in order to 
create noisy simulated environments and their corresponding 
clean speech pairs. 

Noise samples are from the DEMAND dataset to generate 
simulated noisy environments [22]. The DEMAND dataset is 
recorded with an array of sixteen microphones with an 
original sampling rate of 48kHz. It is publicly available in 
48kHz or a downsampled version of 16kHz. In this paper, the 
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48khz version is downsampled to 22.05kHz utilizing the 
librosa module of Python and later used in the dataset. Three 
noise profiles (noise environments) are chosen from the 
DEMAND dataset namely DKITCHEN, PRESTO, and 
OMEETING. DKITCHEN includes recordings of kitchen 
noises while cooking. At the same time, PRESTO consists of a 
set of noise recordings taken from the university restaurant 
during lunchtime, and OMEETING, consisting of meeting 
room sounds during discussions from the microphone array. 
At first, all 16 channels of DKITCHEN, PRESTO, and 
OMEETING are mixed together respectively in order to create 
a single noise profile for each environment. 

Next, the first eight channels of PRESTO and 
OMEETING are mixed together. This was done because it is 
observed that in the case of PRESTO and OMEETING with 
all sixteen channels added together, the noise profile was 
overruling the speech components in raw audio and also in 
spectrograms. Our proposed model takes 2.97sec windows of 
inputs, so eight sections of length equal to 2.97sec are used 
from each noise profile. Eight sections are used because for 
each speaker eight utterances are chosen. Later these noise 
sections are mixed with each speaker. 

For clean speech representations, eight unique utterances 
of 47 notable speakers from the Valentini dataset are used 
[23]. Then mixed the noisy environment samples and the clean 
samples from the Valentini dataset, to create simulated noisy 
environment signals, and their correspondence clean speech 
representation. These pairs of audio are converted to pickle 
format and saved on the disk. 

There are a total of five batches of data, each with 376 
utterances of 47 unique speakers. Batch-1 represents the 
DKITCHEN (sixteen channels mixed) noise condition, Batch-
2 represents the PRESTO (sixteen channels mixed) noise 
condition, Batch-3 represents the OMEETING (sixteen 
channels mixed) noise condition, Batch-4 represents PRESTO 
(eight channels mixed) noise condition and Batch-5 represents 
OMEETING (eight channels mixed) noise condition.  

B. Notations and Problem Settings 

Targeting speech enhancement in mono-aural signals, 
where x ∈ RT is the given signal composed of additive 
background noise as n ∈ RT and clean speech y ∈ RT. so that x 
= y + n. The length T is of a fixed duration, which equals 
65536 samples when audio is sampled at 22.05 KHz. Our 
main objective is to find a function f through the non-linear 
architecture of the neural network that reduces the 
enhancement function to f(x) ≈ y. 

In this problem set, the function f is the neural network 
architecture, producing the clean speech y at its output layer. 

C. UNET Architecture 

As presented in Fig. 1, the adopted neural network 
architecture is a one-dimensional UNET encoder-to-decoder 
architecture with skip connections [24] and gated linear units. 
The input shape of the model is equal to the number of 65536 
samples when audio is sampled at 22.05 KHz; the output 
shape is also the same as this is an end-to-end approach.  

Gated Linear Units [25] are incorporated in the encoding 
and decoding blocks of the model; there are no GLU in the 
bottleneck section of the model; convolution layers throughout 
the model are one-dimensional. 

A detailed overview of the proposed Fully Convolutional 
Gated Encoder-to-Decoder architecture is shown in Fig. 2. 
The proposed model has three sections Encoder Section, 
Bottleneck section, and Decoder section, which is in the end is 
connected to the output layer producing clean speech output. 
Each section of the model and their connection with each 
other is discussed as follows. 

 

Fig. 1. Proposed fully convolutional gated encoder-to-decoder architecture 

with bottleneck for speech enhancement. Input and output shapes are the 

same. 

1) Encoder section: The encoder section compresses the 

data of the input from a higher dimension to a lower 

dimension while reducing the noise from the data. The input 

of the encoder is the raw audio, and its output is a compressed 

data format that represents the input raw audio. Leaky ReLU 

is used as an activation function so that the model can learn to 

flow the gradient from most neurons. Most of the input data 

consists of negative values and the range of input data is [-

1,1]. ReLU was also used as an activation function in order to 

obtain a sparse network but with ReLU, a dead ReLU problem  

was observed as input data is in the range of [-1, 1]. One-

dimensional convolutional layers are used with batch 

normalization, Leaky Relu activation, and Gated linear Units 

are applied. The encoder section contains two layers of 

convolution than the max pooling layer. 

2) Bottleneck section: The tanh activation function is used 

in the bottleneck section to apply a non-linear transformation 

on the signal at the most encoded layer. The input of the 

bottleneck section is the output of the encoder section, there 

are no Gated linear units applied at the bottleneck section, and 

it is also fully convolutive as the encoder section. In the 

bottleneck section, the one-dimensional convolutive layer is 

used with batch normalization, and the tanh activation 

function is applied. The bottleneck section contains two 

convolution layers only. 

3) Decoder section: Transpose one-dimensional 

convolution is applied to convert back the original shape of 

the data. The decode section consists of one-dimensional 

convolution transpose along with gated linear units and 
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concatenation layers which serve as skip connections so that 

the model uses the features learned in the encoder section of 

the model. 

4) Output layer: The output layer consists of a single 

channel focusing on mono-aural speech enhancement; Tanh 

activation is applied at the output layer, which provides the 

final denoised signal. In the output layer, a single one-

dimensional convolutional layer is used which acts as a dense 

layer with a shape of (65536,1). The output layer is connected 

to the decoder layer. And it gives the same data shape as the 

input layer. 

D. Objective 

Mean Absolute Error (L1 Loss) is used as a loss function 
to minimize the error between the predicted signal y' and the 
clean signal y. L1 loss is incorporated over the time domain of 
signals to reduce the loss over the sequential time domain and 
to minimize the loss over the spectral domain, L1 loss is used 
over on STFT (short-time Fourier transform) of the signals. 

 

Fig. 2. Detailed overview of each separate block of the model and their 

connections with each other. The input and output shapes are the same. 

Lastly, these L1 losses are added together to optimize the 
model in both the time domain (on amplitude vectors) and the 
spectral domain (on STFT). 

A minimal epsilon value = 1e-10 is used to omit the 
undefined log error. 

𝐿𝑠𝑡𝑓𝑡 (𝑦, 𝑦′) = 𝐿𝑚𝑎𝑔  (𝑦, 𝑦′) 

𝐿𝑚𝑎𝑔  (𝑦, 𝑦′) ⇒
1

𝑇
|| 𝑙𝑜𝑔 |𝑆𝑇𝐹𝑇(𝑦)|  + 𝜀 − 𝑙𝑜𝑔|𝑆𝑇𝐹𝑇(𝑦′)|  

+ 𝜀||1  
And, 

𝐿𝑡𝑖𝑚𝑒  (𝑦, 𝑦′) = ||𝑦 − 𝑦′||1 

Overall, we wish to minimize the following: 

𝐿1 ⇒ 𝐿𝑚𝑎𝑔  (𝑦, 𝑦′) + 𝐿𝑡𝑖𝑚𝑒  (𝑦, 𝑦′)  

IV. TRAINING 

Proposed model is trained on our custom dataset, 100 
epochs for each of the three batches. The best model is saved 
for each of the three batches while monitoring the lowest L1 
loss over the spectral domain, as discussed in Section 3.3.  

Table I reports the training parameters, using the Adam 

optimizer, which has a learning rate of 1
e-4

, with a momentum 

of β1=0.9 and a denominator momentum of β2=0.999.  

TABLE I. TUNING HYPER-PARAMETERS OF ADAM OPTIMIZER USED FOR 

TRAINING THE UNET MODEL 

Optimizer Tuning hyper-parameters 

optimizer Adam 

lr (learning rate) 1e-4 

β1 (momentum) 0.9 

β2 (denominator) 0.999 

 

The audio samples used for training are sampled at 22.05 
KHz. The first 282 samples are used for the training set and 
the remaining 94 samples are used for the validation set. A 
batch size of 4 is used, dividing the data into 71 batches, each 
consisting of four unique utterances of the same speaker and 
the next batch containing the. The model optimizes the loss 
function and adjusts the weights. The next batch includes four 
different unique utterances of the previous speaker. After that, 
the next batch focuses on different speakers. The random 
order of data was not utilized. In each training session with 
varying noise conditions, the utterances' order remains 
consistent with their corresponding pairs in the noisy 
environment. 

Gated linear units are used in order to control the 
information flow inside the model. It is observed that Gated 
liner units act as voice activity detection layers. Where clean 
speech is present, the neurons have greater weight and lower 
weight where noise is present. The output layer acts as a 
normalization layer for the denoised output. 

V. RESULT 

The performance of the model is calculated over 
cumulative loss of Mean Absolute Error of predicted and 
actual audio samples in both the time domain which is WAV 
MAE and also is spectral domain which is STFT MAE. 

It is observed that the addition of STFT MAE in loss 
function improved the audible quality of speech in noisy 
environments and preserved the speech components of audio 
by making them sound less distorted. 

Firstly, performance is evaluated over sixteen channels of 
respective noise environments that were present in the 
DEMAND dataset [22], this is reported in Table II. Then 
performance is evaluated over only eight channels of 
respective noise environments. It is observed that in the case 
of 16 channels of PRESTO and OMEETING audile quality of 
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audio was distorted, the reason behind this is that in the case 
of PRESTO and OMEETING noise environment babble noise 
is present and when it gets mixed with human speech it is hard 
for model to differentiate between noise and speech. We 
reported the performance of PRESTO and OMEETING with 
eight channels mixed together in Table III and a significant 
drop in Loss is observed while preserving the speech quality 
with less distortion. 

TABLE II. PERFORMANCE OVER SIXTEEN CHANNEL MIX 

Noise 

Environment 

All Sixteen 

Channel 

Mixed 

Train Test 

LOSS 
WAV 

MAE 

STFT 

MAE 
LOSS 

WAV 

MAE 

STFT 

MAE 

DKITCHEN 0.755 0.011 0.744 0.777 0.012 0.764 

PRESTO 0.734 0.017 0.716 0.811 0.018 0.792 

OMEETING 0.537 0.010 0.527 0.573 0.010 0.563 

This table represents the cumulative loss, the wav loss over signals, and the STFT loss of the signals. 

This metric represents the performance of the model where the lowest STFT MAE is observed in each 

noise condition. All sixteen channels of noise are added together in all of three noise profile cases.  

TABLE III. PERFORMANCE OVER EIGHT CHANNEL MIX 

Noise 

Environment 

First Eight 

Channel Mixed 

Train Test 

LOSS 
WAV 

MAE 

STFT 

MAE 
LOSS 

WAV 

MAE 

STFT 

MAE 

PRESTO 0.665 0.012 0.653 0.744 0.013 0.730 

OMEETING 0.494 0.008 0.486 0.510 0.009 0.500 

This table represents the cumulative loss, the wav loss over signals, and the STFT loss of the signals. 

This metric represents the performance of the model where the lowest STFT MAE is observed in each 

noise condition. Eight channels of noise are added together in all of the two noise profile cases. 

A significant drop in STFT Loss is observed in Table III. 
When the first eight channels are mixed, and the output audio 
quality is better than the previous setting in the case of 
PRESTO and OMEETING. Reducing the number of channels 
in DKITCHEN is not tested because the audible intelligibility 
of the clean speeches was satisfactory, this shows that the 
model is giving better results on the DKITCHEN environment 
despite higher STFT MAE as reported in Table II. 

On Objective measures, intelligibility, and speech quality 
is measured as reported in Tables IV and V. The metrics used 
are PESQ [26] and STOI [27]. Baseline PESQ and STOI are 
calculated over denoised signals by using the noisereduce 
library of Python. Then it is compared with PESQ and STOI 
of denoised signals of the model. 

TABLE IV. PERFORMANCE ON OBJECTIVE MEASURES USING PESQ AND 

STOI (SIXTEEN CHANNELS MIXED) 

Noise Environment All Sixteen 

Channel Mixed 

Test Set 

PESQ wb STOI 

Baseline_DKITCHEN 1.16 0.83 

DKITCHEN 1.60 0.85 

Baseline_PRESTO 1.30 0.66 

PRESTO 1.31 0.73 

Baseline_OMEETING 1.30 0.82 

OMEETING 2.46 0.88 

Objective measures of enhanced speech on PESQ and STOI.  Sixteen channels of noise are added 
together in all three noise profile cases. 

TABLE V. PERFORMANCE ON OBJECTIVE MEASURES USING PESQ AND 

STOI (EIGHT CHANNELS MIXED) 

Noise Environment First Eight 

Channel Mixed 

Test Set 

PESQ wb STOI 

Baseline_PRESTO 1.24 0.74 

PRESTO 1.38 0.81 

Baseline_OMEETING 1.35 0.85 

OMEETING 3.24 0.90 

Objective measures of enhanced speech on PESQ and STOI.  Eight channels of noise are added 
together in all of the two noise profile cases. 

In Tables IV and V, our performance of the model in 
objective measures using PESQ and STOI is reported. 
Improvement in the audible quality of denoised speech is 
observed when the human voice is more prominent (audible) 
in signal than in the noise environment. There is a significant 
improvement in both objective measures over the baseline 
model, baseline measurement is carried with PESQ and STOI 
on our test set using spectral gating. 

VI. DISCUSSION 

In summary, this research addresses the challenges in 
speech enhancement by examining a mapping-based approach 
on raw audio waveforms using the U-Net architecture. The 
study identifies limitations in conventional methods like 
Spectral subtraction and the Wiener filter, prompting an 
exploration of deep learning solutions. 

The proposed approach optimizes the loss function for 
both time and short-time Fourier transform (STFT) of audio, 
enabling the direct generation of clean audio representations 
without additional post-processing. The research 
systematically evaluates mask-based and mapping-based deep 
learning approaches, revealing the effectiveness of the latter in 
various noise environments through a comprehensive metric. 

Objective measures, including PESQ and STOI, indicate 
notable improvements in audible quality and intelligibility of 
denoised speech compared to baseline models. The research 
findings have practical implications for applications such as 
automatic speech recognition and speech-to-text systems. The 
mapping-based approach on raw audio waveform emerges as a 
viable strategy for addressing the inherent challenges in 
speech enhancement, offering tangible advancements in audio 
quality assessment. 

VII. CONCLUSION 

The proposed approach can be scaled by incorporating all 
the noise profiles into one single dataset and training a model 
in a single pass over the entire dataset, the hypothesis is that 
the model may generalize better to each noise condition, and a 
reduction in Loss is observed. It is observed that the 
intelligibility of output speech samples is improved when 
STFT is included with the Loss Function, as discussed in the 
objective of this paper. In the future, the proposed approach 
can be scaled with the use of multiple-resolution STFT loss as 
used in [28, 29]. 
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