
(IJACSA) International Journal of Advanced Computer Science and Applications, 

 Vol. 14, No. 11, 2023 

837 | P a g e  

www.ijacsa.thesai.org 

Hotspot Identification Through Pick-Up and Drop-

Off Analysis of Ride-Hailing Transport Service 

Ragil Saputra
1
, Suprapto

2*
, Agus Sihabudin

3
 

Department of Computer Science, Universitas Diponegoro, Jl. Prof. Soedarto SH Tembalang Semarang Indonesia
1
 

Department of Computer Science and Electronics, Universitas Gadjah Mada, Bulaksumur Yogyakarta Indonesia
1, 2, 3

 

 

 
Abstract—It is important to extract hotspots in urban traffic 

networks to improve driver route efficiency. This research aims 

to identify hotspot pick-up and drop-off (PUDO) areas in ride-

hailing transportation services using a clustering approach. 

However, there are challenges in applying clustering algorithms 

to trajectory data in the coordinates of the Global Positioning 

System (GPS). So this research proposes modifications to the 

Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) algorithm by considering the radius from the center 

of the cluster to determine the presence of amenities around the 

cluster. We used a dataset containing 55,988 trip trajectories of 

Grab drivers over a two-week period in Jakarta. A preliminary 

statistical analysis was carried out to understand the distribution 

of trips. Next, we identify the PUDO point of each trip for use in 

the clustering analysis. The research explores the various 

parameters and settings of the clustering method and their 

impact on the results. The study found that the results obtained 

from the clustering method are sensitive to parameter selection, 

including epsilon radius and minimum number of points needed 

to form a cluster. The optimal cluster with the best parameters 

(eps: 0.25, minpts: 100) in the pick-up (PU) location analysis 

produced 17 clusters with the silhouette coefficient of 0.752, while 

in the drop-off (DO) location there are 18 clusters with a 

silhouette coefficient of 0.694. Overall, the research highlights the 

potential of the clustering analysis method for ride-hailing 

transportation. 

Keywords—Hotspot identification; ride-hailing; transportation; 

PUDO location; clustering analysis 

I. INTRODUCTION 

A. Background 

The rise of application-based transportation services, such 
as ride-hailing has revolutionized the way people move around 
in modern cities [1]. In the context of transportation services, 
"pick-up" often denotes the time when a vehicle (such as a taxi, 
or ride-hailing service) arrives at a designated location to 
collect passengers or packages. While “drop off” can refer to 
the time when a vehicle arrives at the destination location, and 
passengers or packages are left at that location.  

The exponential growth in the use of these services has 
created enormous opportunities to analyze and understand 
urban mobility patterns [2]. In the study of Zhang et al [3], 
mobility-based data analysis has become the main focus in 
uncovering complex urban movement patterns. There have 
been many studies that use taxi data to examine urban mobility, 
such as Veloso et al [4] use of taxi trajectory data from Lisbon 
to discuss the spatiotemporal variation of taxi services, 
correlations between pick-up and drop-off (PUDO) sites, and 

driver behavior, and Liu et al [5] use of taxi trajectory data 
from Shanghai to explore human movement patterns. The taxi 
traces were also mined for characteristics and behaviors of the 
vehicular network, including anomalous and driver behavior, 
dynamics of mobility patterns, interactions between vehicles, 
and the relationship between gender and mobility [6]. 
Additionally, Keler et al [7] examined where automobile routes 
connect at specific rush hours in urban locations. 

By identifying origin and destination (OD) flow clusters in 
urban travel data, it is possible to determine prospective routes 
for public transportation service settings [8]. In order to locate 
the taxi OD hotspot, the available OD pairs from empirical 
mobility traces are first grouped [9]. A deep understanding of 
hotspots, namely areas with heavy travel activity, has great 
potential for shaping more efficient transportation planning and 
better traffic management [10]. Although there have been 
previous studies exploring hotspot analysis in urban mobility, 
Dutta et al [11], use of more sophisticated and comprehensive 
clustering methods is still an important area of exploration.  

Exploring urban mobility patterns has become a main focus 
in recent years, with previous research analyzing trajectory 
data [12]. Therefore, in this context, it is essential to define 
several key terms and assumptions that will form the basis of 
this study before presenting the main theorem. We define a 
hotspot as a location with a high concentration of PUDO points 
are adapted from [13]. We assume that the dataset used in this 
study is representative of the overall ride-hailing transportation 
system in the study area. Additionally, we assume that 
variables like the time of day, day of the week, and the location 
of well-known destinations have an impact on drivers' PUDO 
patterns.  

B. Motivation 

The majority of previous research on ride-hailing has been 
on the routing method, with little emphasis paid to optimizing 
PUDO locations that are sensitive to the spatial and temporal 
need distribution [14]. When taking a shared trip with multiple 
riders, the PUDO optimization is vital to prevent pointless 
detours. Whereas in the conventional system, the vehicle is 
frequently obliged to pick up passengers at certain locations 
[15]. Detours are made in order to pick up additional riders 
frequently result in longer travel times and higher costs. The 
PUDO position, where all potential PUDO points must 
therefore be optimized urgently. 

Shen et al [2], suggests a cluster analysis approach for 
identifying various metropolitan online ride-hailing operation 
trends. Based on the suggested intensity and stability indicators 
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of ride-hailing vehicle operational characteristics, k-means++ 
clustering technique is applied. The results show that there are 
three distinct operating patterns for online ride-hailing services. 
In the study of Zhang et al [3], the goal is to identify the 
distribution of areas with high travel demand as well as the 
relationship between travel demand and Point of Interest 
(POIs). Tang [16], utilizes taxi GPS trajectory data to analyze 
urban human activity and mobility in Harbin city. The 
researchers employ the DBSCAN algorithm for PUDO 
location clustering and develop four spatial interaction models 
to understand pick-up location searching behavior.  

However, with the rise of ride-hailing services, there is a 
need to develop new methods for analyzing PUDO patterns of 
drivers. Gunawan and Susilawati [17], addresses limitations in 
current ride-hailing PUDO location selection practices, which 
often prioritize spatial distribution and company interests over 
passenger needs. Research using neural networks was carried 
out by [18], seeks to examine the integration of clustering 
models and deep learning techniques. The model, which can 
concurrently capture the spatial and temporal fluctuations of 
taxi hotspots, was proposed for taxi hotspot prediction.  

There have been several studies interested in discussing the 
applications for the clustering analysis method in transportation 
systems. Zhang et al [19], used DBSCAN to cluster PUDO 
data from a ride-hailing service in China. A pick-up points 
recommendation model (PPRM) is introduced, utilizing 
DBSCAN to cluster historical orders. This clustering enables 
finding contextually relevant candidate PU points. The other 
research by Wang and Ren [20], introduces a two-level divide 
approach and enhances the K-means++ algorithm to refine the 
clustering of taxi passenger hot spots based on GPS location 
data. The method is validated using a week of New York City's 
green taxi data, demonstrating superior accuracy and 
comparable time efficiency when compared to traditional K-
means and DBSCAN methods.  

Based on previous research, clustering analysis method has 
become an increasingly popular approach in the field of data 
mining and machine learning. Rafiq and McNally [21], use 
clustering these data points, ride-hailing companies can gain 
insights into traffic patterns and usage trends of their 
customers, which can help them optimize their operations and 
improve their overall service quality.  

To build on prior research that examined trajectory data to 
investigate urban mobility patterns, this study employs a 
clustering approach to identify hotspot PUDO areas for ride-
hailing transportation services. The DBSCAN algorithm was 

chosen due to its ability to identify clusters of varying shapes 
and sizes. However, it has limitations in handling spatial 
datasets, therefore, this study proposes modifying the 
DBSCAN algorithm to take into account the radius from the 
cluster's center to determine the presence of facilities in the 
cluster's vicinity. Our method identifies concentrations of 
PUDO locations that can be used to determine potential 
hotspots. While this study does not provide a direct comparison 
with previous methods, the proposed method is superior to 
previous approaches because it considers the radius from the 
center of the cluster to determine the presence of amenities 
around the cluster, uses a large dataset of ride-hailing 
trajectories. 

The paper is structured as follows. Section II describes data 
processing, and proposed method. The findings and results 
gleaned from the methodology are discussed in Section III. 
Section IV concludes by summarizing the work and offering 
recommendations for the future. 

II. METHODOLOGY 

A. Data Collection 

The dataset is derived from Grab's food delivery and 
logistics in Jakarta, and it includes 4,000 daily trajectories 
collected from 2019-04-08 to 2019-04-21 (inclusive, UTC/ 
Universal Time Coordinated). The trajectories were gathered 
from drivers' phones while they were on the road. The total 
number of GPS pings in the collection is 61.549.964; each GPS 
ping has values for its trajectory ID, latitude, longitude, 
timestamp, accuracy level, bearing, and speed [22]. The raw 
data sample is shown in Table I. 

The names of the fields in Table I are covered below. 

1) Trajectory ID: A number used to identify different GPS 

mobility trajectories.  

2) Latitude: A GPS location's latitude coordinate. 

3) Longitude: A GPS location's longitude coordinate. 

4) Timestamp: Time the GPS locations were recorded is 

shown by the timestamp. The UTC standard is used in the 

format. One second is the quickest sample interval for each 

GPS point. 

5) Accuracy level: Shows the radius of the circle that, 

with a certain probability, contains the real location. 

6) Bearing: The degrees relative to true north. 

7) Speed: The immediate speed is expressed in meters per 

second. 

TABLE I. TEST RAW DATA 

Trajectory ID Latitude Longitude Timestamp Accuracy Level Bearing Speed 

4820 -6.591032 106.834468 09/04/19 10.33 4 194 20.42 

46324 -6.247526 106.977663 10/04/19 05.22 10.72 101 4.22 

15007 -6.267404 107.036016 19/04/19 02.57 3.149 108 1.99 

4239 -6.293342 106.820029 10/04/19 01.31 10 288 1.01 
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B. Data Preprocessing 

The next step is to pre-process the data to create trajectory, 
the data includes the point of trajectory of captured trips. The 
trips were divided based on the trajectory ID, and the minimum 
and maximum trajectory times recorded for each trip were used 
to determine the PUDO information. The result of dataset 
contains in total 55,988 trajectories with the distribution of 
number of trips is show in Fig. 1. 

The daily distribution of trips is depicted in Fig. 1. We 
simply display the relative frequency of travel requests 
discussed in this article in order to maintain data 
confidentiality. As seen in Fig. 1(a) pick-up (PU) time, the 
temporal travel demand is typically distributed over the normal 
working day. Between 6 P.M and 12 noon, it is relatively high, 
but after that, the tendency begins to decline until 9 P.M. The 
trend then went upward once more until 10 P.M. The same 
trend also occurs in drop-off (DO) time, presented in Fig. 2(b). 

C. Proposed Method 

The main analysis involves applying the Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN) 
method to the preprocessed data to identify clusters of PUDO 
locations. DBSCAN was introduced by Ester et al [23], which 
is a clustering algorithm commonly used in data analysis to 
identify clusters of data points based on their spatial density. 

It's particularly useful when dealing with data where 
clusters might have irregular shapes and varying densities. The 
algorithm categorizes data points into three main types [24]: 
core points, border points, and noise points. A core point is a 
data point that has at least a specified number of neighbor 
points (minpts) within a certain distance ( ). These points are at 
the heart of a cluster. A border point is a point that is within the 
   distance of a core point but doesn't have enough neighbors to 
be considered a core point itself. And finally, noise points are 
any points that are neither core nor boundary points. 

The following steps make up the algorithm [25]: 

1) Identify the core points or points visited by more than 

minpts neighbors by locating all neighbor points within  . 

2) Make a new cluster for each core point if it hasn't 

already been done so. 

3) Find all points connected to it by density recursively, 

then group them with the core point in the same cluster.  

4) Points   and   are said to be density connected if point 

  has a significant number of points in its neighbors and both 

of those points are close to the  . Chains are used in this 

process. Inferring that   is a neighbor of  , if   is a neighbor 

of  ,   is a neighbor of  , and   is a neighbor of  , then   is a 

neighbor of  . 

5) Iteratively go over the remaining unexplored points in 

the dataset. All points that do not form a cluster are considered 

noise. 

In this paper, we modified the DBSCAN algorithm from 
Kambe and Pe [25] to better suit the ride-hailing context by 
creating a function called DBSCAN_FIT that takes three 
parameters: x (dataset),   (epsilon, the maximum distance 
between two points to be considered in the same cluster), and 
minpts (the minimum number of samples in a cluster). This 
function utilizes the DBSCAN algorithm to cluster the data and 
produces visualizations of the clusters, including those labeled 
as noise (points not belonging to any cluster). Additionally, the 
function calculates centroids for each cluster and assesses the 
amenity around each centroid. The pseudocode for the 
DBSCAN_FIT is shown in Algorithm 1. 

To obtain the amenity information with function 

get_amenity, we used OpenStreetMap (OSM) data to 
identify the facilities or points of interest around each centroid. 
Specifically, we used the OSM API to query the database for 
the amenities within a certain radius of each centroid. We then 
used the OSM tags to extract the names of the amenities and 
assigned them as labels to the corresponding clusters. At a 
given average latitude on Earth, we use the number 111,320 as 
a conversion factor to translate differences in degrees of 
latitude or longitude into distances in kilometers. 

  
(a) (b) 

Fig. 1. Distribution average of (a) pick up time and (b) drop off time.
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Algorithm 1. DBSCAN_FIT 

Input  : x (dataset), eps, minpts 

Output : labels, centroid, amenity 

Funnction DBSCAN_FIT(x, eps, minpts){ 

 dbs = DBSCAN(eps,minpts) 

     dbs.fit(X) 

     labels = dbs.labels_ 

     label_unique = pd.Series(labels).value_counts() 

 if label_unique.shape[0]>2 { 

  cent = [] 

         amen = [] 

     for i in range(max(labels)+1){ 

           centroid = (X[labels==i].mean().values/111.320) + np.array([min_lat,min_lon]) 

           centroid += [centroid] 

           amenity = get_amenity(centroid[0], centroid[1], eps*4*1000) 

           amenity += [amenity] 

  } 

 } 

      else  

  return 0 

return labels, centroid, amenity  

} 

D. Cluster Performance Measure 

To evaluate the quality and coherence of clusters obtained 
through clustering algorithms, the Silhouette Coefficient (SC) 
was used. It quantifies the cohesion and separation between 
clusters. Ranging from -1 to 1, a higher SC indicates well-
defined clusters where data points are closer to their own 
cluster members than to others. A score close to 0 suggests 
data points on cluster boundaries, while negative scores 
indicate potential misassignments [26].  

A higher SC would indicate well-defined clusters of PUDO 
points, highlighting their coherence and separation from other 
clusters. This metric becomes essential in assessing the 
accuracy of clustering results and validating the effectiveness 
of algorithms. The silhouette score guides the determination of 
how accurately identified hotspots represent distinct patterns, 
thereby enhancing the credibility of the hotspot identification 
approach in ride-hailing transport services. 

III. RESULT AND DISCUSSION  

A. Experimental Result 

Our research focuses on the complex interaction of epsilon 
( ) values in the DBSCAN_FIT algorithm in order to do a 
thorough study of clustering results. To achieve this goal, we 
conducted a preliminary analysis of the data and found that 
minpts values below 50 did not produce enough clusters to be 
useful for hotspot identification, while values above 100 
resulted in too many clusters, making it difficult to identify 
meaningful patterns. Therefore, we chose to focus on minpts 
values of 50 and 100 in our analysis and visualization, as these 
values produced the most meaningful results for hotspot 
identification. In Fig. 2, the outcomes of this investigation are 
graphically summarized. Fig. 2(a) shows the silhouette value 
for pick up and Fig. 2(b) shows the silhouette value for drop-
off. 

 

  
(a) (b) 

Fig. 2. Variation epsilon (ε) value for the (a) pick up and (b) drop off.
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The graph on Fig. 2, the graph illustrates the variation in 
the silhouette coefficient with changing values of  . Two 
curves are depicted, one for a minimum number of points 
(minpts) set at 50, and the other for minpts set at 100. The 
results indicate that, for minpts 50, the silhouette coefficient 
(SC) tends to decrease as   increases, suggesting a negative 
impact on clustering quality. In contrast, for minpts 100, the SC 
exhibits fluctuations, with some   values resulting in higher 
coefficients. From the graph, it can be inferred that for minpts 
100, the SC is more stable and potentially yields better 
clustering results compared to minpts 50 within a specific 
range of   values. 

Furthermore, it is evident that the minpts value plays a 
pivotal role. The minpts 100 configuration consistently 

outperforms minpts 50, yielding higher SC values. So in this 
study minpts 100 is used as a reference to find the optimal 
number of clusters. Compare the value of the SC with the 
number of clusters formed presented in the Fig. 3. 

The number of clusters formed ranging from 3 to 37 
presented by Fig. 3. In the context of hotspot identification, a 
higher number of clusters can provide a more detailed picture 
of variations in the distribution of hotspots. However, on the 
other hand, the SC value is also important because it 
determines the quality and coherence between clusters. So the 
optimal number of clusters was chosen as 17 clusters for the 
PU location and 18 clusters for the DO location. So that the 
map distribution of PUDO locations is illustrated in Fig. 4. 

  

(a) (b) 

Fig. 3. Silhouette coefficient and number of clusters of (a) pick up and (b) drop off.

  
(a) (b) 

Fig. 4. The map distribution of (a) pick up location and (b) drop off location.
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(a) (b) 

Fig. 5. Number of trips (relative frequency) in cluster (a) pick up and (b) drop off.

The distribution of PUDO locations inside each cluster is 
shown in the Fig. 5. The cluster number is represented on the 
x-axis, while the number of trips inside each cluster is 
represented on the y-axis, in relative frequency. This 
information is crucial in our effort to locate hotspots for 
application-based transportation services. These findings are 
directly related to our study's primary objective, which was to 
develop a special technique for identifying hotspots by closely 
analysing PUDO patterns. We have learned a lot from the 
clustering analysis. With the parameters  : 0.25 and minpts: 
100, the ideal cluster structure specifically produced 17 clusters 
for the PU localization analysis, showing an outstanding SC of 
0.752. On the other hand, the DO location analysis revealed 18 
clusters with a silhouette coefficient of 0.694. These clusters 
have varied levels of activity, as seen by the bar chart in Fig. 5, 
indicating the existence of distinct hotspots throughout the 
transportation network. 

Based on Fig. 4 and Fig. 5 show that the highest hotspots 
for both pick-up and drop-off sites. It follows that these places 
represent prospective areas that could be used to enhance 
driver trips. Using the methods we propose, most potential 
hotspots are presented in Table II along with their amenity 
labels. 

B. Discussion 

To assess the performance of clustering, we conducted a 
comparative analysis with two distinct inpuvts values: 50 and 
100, while exploring the influence of the   parameter across a 
range from 0.15 to 0.5. The Silhouette Coefficient (SC) served 
as our evaluation metric [26]. Our findings are consistent with 
previous studies that have examined the impact of the   
parameter on DBSCAN clustering [23] [24]. For example, [23] 
found that larger values of   can lead to the formation of overly 
large clusters, which can reduce the effectiveness of the 
clustering algorithm. Similarly, [24] found that larger values of 
  can lead to a decrease in the quality of the clustering results. 
Our study builds on these findings by examining the impact of 
both the   parameter and the minpts value on the performance 
of clustering in the context of ride-hailing services. 

One important aspect of the study is the influence of 
algorithm parameters on the clustering results. The study found 

that the results obtained from the clustering method are 
sensitive to parameter selection, including epsilon radius and 
minimum number of points needed to form a cluster. The study 
explored the influence of the   parameter across a range from 
0.15 to 0.5 and found that for minpts 50, the SC tends to 
decrease as   increases, suggesting a negative impact on 
clustering quality. In contrast, for minpts 100, the SC exhibits 
fluctuations, with some eps values resulting in higher 
coefficients.  

Although our study does not explicitly mention the most 
surprising results, we found that our approach of analyzing 
pick-up and drop-off (PUDO) patterns was effective in 
identifying hotspots in ride-hailing transport services. Our 
analysis revealed commuting patterns of users and different 
hotspots in the transportation network. In this study, several 
limitations were identified that require careful consideration. 
Firstly, the dataset utilized in this research was limited to a 
single ride-hailing service, which may limit the generalizability 
of the analysis results to other services. Secondly, this study 
only accounted for factors such as time and location in the 
PUDO analysis, while other factors such as weather or special 
events in certain areas may influence PUDO patterns and were 
not considered in this study. 

TABLE II. THE POTENTIAL HOTSPOT 

Cluster Type 
Center 

Latitude 

Center 

Longitude 
Amenity 

0 PU 
-
6.2210668 

106.824997 

restaurant: Planet Hollywood 
Jakarta / cinema: Setiabudi 

21 / fuel: SPBU / restaurant: 

Loewy / restaurant: Bakso 
Solo  

2 DO 
-
6.1999132 

106.824234 

nightclub; restaurant: 

DanceSignal Spot - 

Immigrant / 
parking_entrance: restaurant: 

Lanna Thai / cafe: nan / 
restaurant: Skye 

IV. CONCLUSIONS 

Our study reveals that DBSCAN_FIT clustering with    
0.25 minpts: 100 and yields 17 clusters for PU locations and 18 
clusters for DO locations, demonstrating their potential as 
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hotspots in ride-hailing services. However, the limitation lies in 
the trade-off between cluster quantity and quality. A more 
comprehensive understanding of ride-hailing hotspots is 
achieved, emphasizing the need for a balance between cluster 
granularity and silhouette coefficients. Other researchers can 
use our method of analyzing hotspots through PUDO patterns 
to find hotspots in other transportation networks. This approach 
can help improve efficiency and help drivers optimize the 
routing of transportation services. 

Future studies should consider utilizing datasets from 
multiple ride-hailing services to enhance the generalizability of 
the analysis results. And, additional factors such as weather or 
special events in certain areas should be taken into account in 
the PUDO analysis to provide a more comprehensive 
understanding of the factors that influence PUDO patterns. 
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