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Abstract—Autonomous robotic navigation has become 

hotspot research, particularly in complex environments, where 

inefficient exploration can lead to inefficient navigation. Previous 

approaches often had a wide range of assumptions and prior 

knowledge. Adaptations of machine learning (ML) approaches, 

especially deep learning, play a vital role in the applications of 

navigation, detection, and prediction about robotic analysis. 

Further development is needed due to the fast growth of urban 

megacities. The main problem of training convergence time in 

deep reinforcement learning (DRL) for mobile robot navigation 

refers to the amount of time it takes for the agent to learn an 

optimal policy through trial and error and is caused by the need 

to collect a large amount of data and computational demands of 

training deep neural networks. Meanwhile, the assumption of 

reward in DRL for navigation is problematic as it can be difficult 

or impossible to define a clear reward function in real-world 

scenarios, making it challenging to train the agent to navigate 

effectively. This paper proposes a neuro-symbolic approach that 

combine the strengths of deep reinforcement learning and fuzzy 

logic to address the challenges of deep reinforcement learning for 

mobile robot navigation in terms of training time and the 

assumption of reward by incorporating symbolic representations 

to guide the learning process, and inferring the underlying 

objectives of the task which is expected to reduce the training 

convergence time. 

Keywords—Autonomous navigation; deep reinforcement 
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I. INTRODUCTION 

Advancements in robot navigation have spurred the 
development of algorithms that leverage basic rules and 
environmental mapping to optimize path planning. Rule-based 
methods, such as Fuzzy logic and Neuro-fuzzy techniques, 
have been extensively explored to enhance navigation 
decisions and tracking performance under uncertain conditions 
[1], [2]. While these methods offer valuable insights, they 
often require extensive justification and may not fully meet 
the demands for efficient and accurate path planning. 

To address this challenge, researchers have turned to bio-
inspired approaches, such as genetic algorithms and swarm 
optimization, which draw inspiration from biological behavior 
and incorporate prior knowledge to simulate human cognitive 
processes [3], [4]. One particularly promising area in 
navigation research is reinforcement learning (RL), which 
enables autonomous agents to learn and make sequential 
decisions in complex environments. Machine learning models, 

including supervised, unsupervised, and reinforcement 
learning, have played a pivotal role in robotics research, 
enabling learning, adaptation, and effective detection and 
classification. Deep reinforcement learning (DRL), a fusion of 
RL and deep neural networks, has emerged as a powerful 
approach for decision-making tasks involving high-
dimensional inputs [5], [6].This article aims to delve into the 
application of RL techniques, specifically Q-learning and deep 
Q-networks, for mobile robot path planning. By seamlessly 
integrating these techniques with widely used frameworks 
such as ROS, Gazebo, and OpenAI, a robust and autonomous 
navigation system can be developed, leading to improved 
performance, optimized routes, and efficient obstacle 
avoidance in complex environments. The evaluation of this 
system will undoubtedly contribute to the advancement of 
autonomous robotics. The trial-and-error learning process 
inherent in RL offers immense potential for building human-
level agents and has been extensively explored in various 
domains [7] [8]. Deep learning (DL), characterized by its 
ability to extract meaningful patterns and classifications from 
raw sensory data through deep neural networks, has 
revolutionized the field of machine learning. When combined 
with RL, in the form of DRL, this integration has shown 
remarkable success in tackling challenges associated with 
sequential decision-making [9], [10]. Notably, DRL excels in 
scenarios involving a vast number of states, making it an ideal 
candidate for addressing navigation complexities. 
Nevertheless, achieving optimal navigation remains an 
ongoing challenge, necessitating further optimization and 
effective handling of high-dimensional data. Reinforcement 
learning methods offer valuable approaches for learning and 
planning navigation, empowering agents to interact with their 
environment and make autonomous decisions. Various studies 
have proposed agent-based DRL approaches for navigation, 
successfully simulating diverse scenarios without the need for 
intricate rule-based systems or laborious parameter tuning. 
However, there is still room for improvement in terms of 
achieving the shortest and fastest routes. To enhance 
navigation performance and optimize evacuation paths, 
researchers have explored techniques such as look-ahead 
crowded estimation and Q-learning, which have demonstrated 
superior results compared to other RL algorithms [6]. 
Additionally, CNN-based robot-assisted evacuation systems 
have been developed to maximize pedestrian outflow by 
extracting specific features from high-dimensional images. 
Furthermore, iterative, and incremental learning strategies, 
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like vector quantization with Q learning (VQQL), have been 
proposed to expedite the learning process and optimize 
navigation by gradually improving interactions among agents 
[11], [12]. These advancements in DRL continue to show 
great promise in addressing the speed of agent learning and 
optimizing navigation processes. In the realm of task planning, 
the ability to find a series of steps that transform initial 
conditions into desired states is crucial. Task planning 
becomes especially important when atomic actions alone 
cannot accomplish a task. Neuro-symbolic task planning has 
emerged as an effective approach, allowing for the 
incorporation of restrictions, guidelines, and requirements in 
each activity. However, traditional task planners often rely on 
detailed hand-coded explanations, limiting their scalability. To 
overcome this limitation, a combination of deep learning and 
symbolic planning, known as a neuro-symbolic approach, has 
shown potential by leveraging visual information instead of 
hand-coded explanations [3], [13], [14]. However, collecting 
image data for neuro-symbolic models in robotic applications 
is a labor-intensive process that involves steps such as creating 
problem instances, defining initial and goal states, operating 
robots, and capturing scene images. The challenges associated 
with data collection have hindered the widespread adoption of 
neuro-symbolic models in robot task planning. Neuro-
symbolic models excel in reasoning, providing explanations 
and manipulating complex data structures. Conversely, 
numerical models, such as neuronal models, are preferred for 
pattern recognition due to their generalization and learning 
abilities. A unified strategy proposes that the characteristic 
properties of symbolic artificial intelligence can emerge from 
distributed local computations performed by neuronal models, 
spanning cognitive functions from the neuron level to the 
structural level of the nervous system. By integrating neuro-
symbolic and numerical models, a comprehensive framework 
can be established to leverage the strengths of both approaches 
in robotics. This integrated approach holds the potential to 
enable efficient task planning, grounding symbols in 
perceptual information, and enhancing pattern recognition 
capabilities. Ultimately, this integration could advance 
cognitive functions and pave the way for the creation of more 
sophisticated robotic systems. 

This paper is organized as follows. Section II presents the 
proposed method which integrates the reinforcement learning 
(RL) and fuzzy logic for mobile robot path planning, aiming 
to create a robust autonomous navigation system that 
optimizes routes and efficiently avoids obstacles in complex 
environments. Section III illustrates the simulation set-up, 
while Section IV provides an evaluation of the training 
process of the policy optimization. Finally, Section V presents 
the evaluation and verification of the developed policy based 
on the proposed method, followed by the conclusion. 

II. METHODS 

The methodology for this project involves the utilization of 
simulation tools, namely Gazebo, ROS (Robot Operating 
System), and OpenAI Gym. Gazebo provides a realistic 
environment for simulating the mobile robot path planning 
system, while ROS serves as a comprehensive framework for 
controlling the robot and interfacing with its sensors and 
actuators. OpenAI Gym is used to train and evaluate the 

reinforcement learning algorithms. The main focus of this 
project is to apply reinforcement learning techniques to mobile 
robot path planning. Unlike traditional approaches that rely on 
SLAM or mapping techniques, the project aims to enable the 
robot to learn the optimal path through a reward and 
punishment system. By using reinforcement learning 
algorithms such as Q-learning, SARSA, and DQN, the robot 
can learn to navigate its environment efficiently and safely. To 
facilitate communication between the simulation and the 
robot, ROS integration is implemented. This integration 
allows the robot to receive sensor data, send control 
commands, and interact with the simulation environment 
seamlessly. By leveraging the capabilities of ROS, the 
reinforcement learning algorithms can effectively interface 
with the robot's actions and observations [15]–[17].The 
reinforcement learning algorithms receive feedback through a 
reward and punishment system based on the robot's 
performance in reaching the goal while avoiding collisions 
and obstacles. The training aims to optimize the robot's 
decision-making and path planning abilities. Performance 
analysis is conducted to assess the effectiveness of the trained 
reinforcement learning models. Metrics such as the time taken 
to reach the goal, collision occurrences with static and 
dynamic obstacles, and the number of pathing alterations are 
measured and analyzed. These metrics provide insights into 
the path planning efficiency, collision avoidance capabilities, 
and adaptability of the reinforcement learning approach. In 
conclusion, the methodology of this project involves using 
simulation tools (Gazebo, ROS, and OpenAI Gym) to evaluate 
the application of reinforcement learning algorithms (Q-
learning, SARSA, and DQN) in mobile robot path planning. 
The integration of ROS ensures seamless communication 
between the simulation environment and the robot, while the 
OpenAI Gym environment provides a standardized framework 
for training and evaluating the algorithms. The methodology 
enables rigorous testing and analysis of the robot's 
performance in terms of path planning, collision avoidance, 
and adaptability to dynamic environments. This following 
subsection discusses the mathematical model of Q-learning 
with fuzzy logic approach theory towards navigation 
problems, and experimentation setup that is used in this work. 

In the context of agents utilizing visual SLAM, traditional 
algorithms are still employed for final path planning on the 
map. However, RL offers numerous applications, and in 
mobile robot navigation, it can replace the path planning part. 
The RL model, after training, can effectively make decisions, 
enabling the agent to select its path from one location to 
another based on interactions with the environment [18], [19]. 
The environment is abstracted into a grid map representation, 
with each position on the map corresponding to an agent's 
state. Transitioning from one state to another reflects the 
actual movement of the entity, while the agent's behavioral 
decision-making is represented by its state choice at each step 
in the RL model. The reward value plays a pivotal role in 
guiding path selection. Early Q-learning recorded reward 
values between position states in a table, guiding the next state 
selection. As depth-enhanced learning emerges, the DL model 
is integrated, replacing the table with a neural network, which 
provides corresponding decision results by inputting the state 
[20], [21]. The weighting parameters in the neural network 
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influence the choice of the next state. On the other hand, when 
incorporating fuzzy logic into the RL model, the decision-
making process becomes more nuanced and interpretable. 
Fuzzy logic allows for handling uncertainties and imprecise 
information, enabling the agent to reason with vague input and 
output values. By combining RL and fuzzy logic, the agent 
can make more human-like decisions, considering both the 
environment's precise measurements and the agent's subjective 
understanding of the surroundings. This fusion can enhance 
path planning in complex and dynamic environments by 
considering various factors and optimizing the decision-
making process. 

A. Q-Learning Algorithm 

RL defines any decision maker as an agent and everything 
outside the agent as the environment. The agent aims to 
maximize the accumulated reward and obtains a reward value 
as a feedback signal for training through interaction with the 
environment. Beyond the agent (who perform actions) and the 
environment (which made of states), there are three major 
elements of a reinforcement learning system: 

 Policy 𝝅: It is to formalize an agent's decision and 
determine the agent’s behaviour at a given time. A 
policy 𝜋 is a function that maps between the perceived 
state and the action is taken from that state. 

 Reward 𝒓: The agent receives feedback known as 
rewards, 𝑟𝑡+1 for each action at time step t, indicating the 
inherent desirability of that state. The main goal of the 
agent is to maximize the cumulative reward over time. 
The total sum of the rewards (return) is: 

𝑅𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 + 𝑟𝑡+3+... 𝑟𝑇, 𝑇: final time step 

The agent-environment interaction breaks into episodes 
where each episode ends in a state called the terminal state, 
followed by a reset to a standard starting state. In some cases, 

the episodes continue where final time step would be 𝑇 = ∞, 

and the return become infinite. So, a discount factor 𝛾 is 
introduced. The discounted return is defined as: 

Rt = rt+1 + 𝛾 rt+2 +𝛾
 

 rt+3 + … =∑ 𝛾 𝑟     
 
    

0 < 𝛾< 1 

Rewards can be sparse (after a long sequence of actions), 
every time step, or at the end of the episodes. 

 Value function: Most of the RL algorithms are based on 
estimating value functions (states or state action). Value 
function is used to estimate how good a certain state is 
for the agent to be in (state value function), or how 
good a certain action is to perform in a specific state 
(state-action value function). The state value functions 
under the policy 𝜋, denoted 𝑉𝜋(𝑠), is the expected 
return, 

𝑉 (𝑠)     *𝑅  𝑠  𝑠+      {∑𝛾 

 

   

𝑟      𝑠  𝑠}  

The state-action value function under policy 𝜋, denoted 𝑄π 
(𝑠, 𝑎), as the expected accumulated return from state s and 

action a. 𝑄π is also known as action value function or Q-
Learning algorithm. 

𝑄 (𝑠 𝑎)    * 𝑅   𝑠  𝑠 𝑎  𝑎+    *∑𝛾 

 

   

𝑟      𝑠 

 𝑠 𝑎  𝑎+ 

𝑄 (𝑠 𝑎)    ,𝑟    𝛾𝑟    𝛾 𝑟      𝑠 𝑎 - 

Reinforcement learning is about finding an optimal policy 
that achieves a lot of reward over the long-term. A policy 𝜋 is 

defined to be better than or equal to a policy 𝜋′ if its 

expected return is greater than or equal to that of 𝜋′ for all 

states. 

𝜋   𝜋     𝑎              (𝑠)    𝑉  
(𝑠)   𝑟 𝑎   𝑠𝑡𝑎𝑡 𝑠 

Optimal Value Functions must satisfy the below 
conditions: 

𝑉 (𝑠) = 𝑚𝑎𝑥 𝑉. (𝑠), for all states 

𝑄* (𝑠, 𝑎) = 𝑚𝑎𝑥𝑄. (𝑠, 𝑎), for all states and actions 

We get the optimal policy by solving 𝑄  (𝑠, 𝑎) to find the 
action that gives the most optimal state-action value function, 

𝜋 (𝑠)  𝑎𝑟    
 

𝑄 (𝑠 𝑎) 

Q-Learning algorithm is an off-policy value-based RL 
algorithm and very effective under unknown environment [6], 
[21], [22]. The value of a state-action can be decomposed into 
immediate reward plus the value of successor state-
action𝑄π(𝑠  𝑎 ) with a discount factor (𝛾). 

𝑄 (𝑠 𝑎)        ,𝑟   𝛾𝑄 (𝑠  𝑎 )  𝑠 𝑎- 

And according to the Bellman optimality, the optimal 
value function can be expressed as: 

𝑄 (𝑠 𝑎)        ,𝑟   𝛾    
 

𝑄 (𝑠  𝑎 )  𝑠 𝑎-  

Update the value function iteratively to obtain optimal 
value function, 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼. [𝑟 + 𝛾 max 𝑎  𝑄(𝑠  𝑎 )  - 𝑄 (𝑠, 𝑎)],  

𝛼: learning rate 

𝑄 (𝑠, 𝑎) converges to 𝑄* (𝑠, 𝑎) as 𝑡 → ∞. 

Algorithm 1 illustrates the overall framework of the 
proposed Q-learning to generate the shortest route for 
navigation mapping. 

Algorithm 1. Overall framework of the Q-Learning 

Initialize Q (s, a) arbitrarily 

repeat for each episode. 

Initialize s. 

  for each step of the episode do 

      Choose a from s using € greedy policy. 

      Do action a and observer r and s’  

       𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼. [𝑟 + 𝛾 max 𝑎′ 𝑄 (𝑠  𝑎 ) - 𝑄 (𝑠, 𝑎)] 

      s ← s’  

  until s is terminal 
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B. Fuzzified Reward Function 

The fuzzy logic-based approach has been adopted to 
enhance the decision-making [23], [24] process of the 
autonomous agent navigating through a maze. This work 
incorporated symbolic representation by adopting fuzzy logic 
into the reward function to guide the learning process and 
address the challenge of the computational demands of 
training. The proposed fuzzy reward function has three input 
variables and one output. The input variables are distance to 
obstacle (near, medium, far), distance to target (near, medium, 
far), and visual range (off target, medium, on target). The 
output variable is the reward points (see Fig. 4). 

By employing three membership levels for each input 
variable (See Fig. 1, 2 and 3), a comprehensive set of 27 fuzzy 
rules has been devised (see Table I), effectively covering all 
possible combinations of the environment states. These rules 
dictate the agent's rewards, which are categorized as 
punishment (least), medium, and reward (most). By leveraging 
the flexibility and adaptability of fuzzy logic, the agent is 
guided through its learning process with a more nuanced and 
context-aware reward system, allowing it to make more 
informed decisions in a variety of maze scenarios and 
significantly improving its learning efficiency. 

Table I presents a comprehensive and systematic overview 
of the fuzzy logic rules governing the agent's decision-making 
process in the maze navigation task. The table showcases the 
various combinations of input possibilities, encompassing 
distance with obstacles, distance with target location, and 
visual range, each categorized into appropriate linguistic 
variables (e.g., near, medium, far; off target, medium, on 
target). For every unique combination, the corresponding 
fuzzy logic "If/Then" rules are defined, determining the 
agent's rewards as punish, medium, or reward. Table I 
highlights the agent's adaptability and versatility through the 
vast array of rules, capturing the intricacies of different maze 
scenarios. With 27 distinct rules, the fuzzy logic system can 
precisely respond to the agent's real-time observations, 
guiding it towards optimal actions that lead to successful 
navigation. This rich and nuanced reward system empowers 
the agent to effectively learn from its experiences, enabling it 
to avoid obstacles, approach the target, and dynamically adjust 
its behavior based on varying visual cues. Consequently, the 
"If/Then Analysis Fuzzy Logic Rules Possibilities" table 
serves as a powerful tool in understanding and implementing 
the complex decision-making process of the agent, fostering 
efficient learning and successful maze navigation. 

 
Fig. 1. Visual range. 

 

Fig. 2. Distance to target. 

 
Fig. 3. Distance to obstacle. 

 

Fig. 4. Output fuzzy: reward points. 

TABLE I.  IF/THEN FUZZY LOGIC RULES FOR REWARDS 

Distance 
Visual 

Range 

Obstacle 

(Near) 

Obstacle 

(Medium) 
Obstacle (Far) 

Target 

(Near) 

Near High Positive High Positive High Positive 

Medium Mid Positive Mid Positive Mid Positive 

Far Low Positive Low Positive Low Positive 

Target 

(Medium) 

Near High Middle High Middle High Middle 

Medium Low Middle Middle Low Middle 

Far Low Middle Low Middle Low Middle 

Target 

(Far) 

Near Low Negative Low Negative Low Negative 

Medium Mid Negative Mid Negative Mid Negative 

Far High Negative High Negative High Negative 
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III. SIMULATION SETUP 

To thoroughly evaluate the enhanced performance of the 
proposed method, this study embarked on constructing a 
detailed 3-D raster map model and crafting two distinct 
simulation maps, meticulously illustrated in Fig. 5(a) and Fig.   
5(b). In this simulated environment, dynamic obstacles, 
symbolized by white cylinders, were strategically placed, 
posing challenges to a TurtleBot simulation machine car, 
visually presented in black. The machine car's laser range, 
portrayed in blue, scanned the surroundings as it navigated 
through the intricate maze. The red square pinpointed a target 
training point, emphasizing the complexity of the assigned 
tasks. 

Fig. 5(a) specifically delves into a scenario where the 
TurtleBot is tasked with locating a singular target location 
represented by the red square amid a set of four cylindrical 
obstacles. This intricate setting simulates real-world challenges 
where the robot must efficiently identify and navigate towards 
a specific point among various hindrances. 

Fig. 5(b) presents a more intricate scenario where the 
TurtleBot is assigned the mission of identifying two specific 
cylinders as target locations within a maze of block obstacles. 
This heightened complexity mirrors scenarios where the robot 
must discern and navigate through a maze-like environment to 
pinpoint multiple objectives. This detailed simulation 
environment allows for a comprehensive assessment of the 
proposed method's effectiveness in handling diverse and 
intricate navigation tasks. 

The computer used for the simulations was equipped with 
a 4-core Intel i5 7400 CPU running at 3.00 GHz, 8 GB of 
RAM, running on the Ubuntu 16.04 operating system, and 
utilizing the ROS kinetic system. The article leveraged certain 
parameters for the 3-D environment model, which were 
sourced from the ROS open-source community. The 
corresponding parameter settings are as follows: 

rgoal = 100, robstacle = -100, ɛ = -100, σx = σy = 1 

γgoal = 0.9, robstacle = 0.9, rcritical = 0.8, rotherwise = 0.75 

In the context of this work: 

 " r " signifies a single reward. 

  σx and σy represent the obstacle center coordinates. 

 γ (gamma) serves as the discount factor, influencing the 
importance of future rewards. 

In this context, r represents a reward, with rgoal and robstacle  
being specific awards assigned to reaching the goal and 
encountering obstacles, respectively. The term γ serves as the 
discount factor, influencing the importance of future rewards 
in the context of reinforcement learning. The parameters ε, σx, 
and and σy represent the grid center coordinates, contributing 
to the spatial representation of the environment and the 
localization of obstacles. 

Fig. 6 depicts The Turtlebot2 which is a popular mobile 
robot platform widely used in robotics research and 
applications. 

 
(a) 

 
(b) 

Fig. 5. (a) and (b) Showcase maze circuits in the Gazebo simulation 

environment to test and evaluate the robot's path planning capabilities. 

 

Fig. 6. The Turtlebot2 robot equipped with a lidar sensor. 

IV. TRAINING PERFORMANCE OF THE PROPOSED METHOD 

The visual representations in Fig. 5(a) and Fig. 5(b) aimed 
to illustrate the improved method's performance across 
different simulation maps. While these figures may not 
directly demonstrate capabilities, they serve as visual aids to 
showcase the distinct scenarios and complexities encountered 
by the agent in each environment. It's essential to 
acknowledge that the term "validation" in the context of 
comparing results from Reinforcement Learning (RL) and 
Fuzzy Logic (FL) approaches refers to a qualitative 
assessment rather than a formal validation process. 

In Fig. 5(a), the experiment showcased the performance of 
the improved method on the first simulation map, providing 
insights into how the agent navigates a specific environment. 
On the other hand, Fig. 5(b) illustrated the capabilities of the 
improved method on the second simulation map, highlighting 
its adaptability to different scenarios. By comparing the results 
from RL and FL approaches, the article qualitatively validated 
the effectiveness of the enhanced technique in the complex 3-
D environment. These visual representations offered a 
valuable qualitative assessment, helping to understand the 
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nuanced behaviors of the agent, its path planning strategies, 
and obstacle avoidance mechanisms in diverse settings. The 
improved method consistently demonstrated superior 
performance, efficiently finding optimal routes to reach the 
target point while navigating around obstacles effectively. The 
simulations offered valuable insights into the agent's behavior, 
path planning, and obstacle avoidance, elucidating 
fundamental aspects of autonomous robot navigation. The 
superior performance of the enhanced method was evident in 
its ability to navigate efficiently, choosing optimal routes 
while circumventing obstacles effectively. 

Furthermore, the deliberate choice of Fig. 5(b) as a test run 
was made to rigorously assess the proposed method's 
robustness in scenarios with increased complexity and 
multiple target points. This strategic selection adds an 
additional layer of validation, demonstrating the algorithm's 
efficacy in handling intricate navigation tasks. 

 

Fig. 7. Q-value comparison. 

As shown in Fig. 7, in the Q-value map, the Fuzzy Logic 
(FL) example has a faster convergence speed, especially in 50 
K training sessions, and after approximating 25 K trainings, 
the Q value of the FL algorithm is still richly transformed, 
showing the FL is less likely to fall into local optimum. This 
segment of our analysis offers a glimpse into the noteworthy 
performance attributes of the FL local search approach. As 
depicted in Fig. 8, which illustrates the bonus map, the FL 
example stands out due to its utilization of a multiple reward 
mechanism and a loop memory network. This distinction is 
most evident in the greater reward values attributed to the FL 
path, which correspondingly signify a reduced occurrence of 
repeated errors. In essence, a higher reward value in this 
context indicates a superior capacity to identify and follow an 
optimal path with fewer deviations. Turning our attention to 
Fig. 9, we delve into the loss diagram. Here, we observe a 
compelling trend: the loss associated with the FL example is 
consistently lower compared to that of the RL example. This 
finding is particularly significant, as it underscores the model's 
proficiency in minimizing error during the learning process. A 
lower loss value reflects a more accurate prediction and action 
selection by the model, emphasizing the effectiveness of the 
FL approach in optimizing path planning. To provide a closer 
examination of this phenomenon, Fig. 10 offers a magnified 
view of the loss diagram from Fig. 9. This detailed perspective 
reaffirms the rationality and effectiveness of the loss function 

employed in our model. The stability in parameter learning, 
particularly evident in the FL example, facilitates faster 
convergence to the optimal values. This not only enhances the 
efficiency of path planning but also showcases the model's 
robustness in navigating complex environments. 

 
Fig. 8. Cumulative Rewards based on the proposed method vs. pure RL 

algorithm. 

 
Fig. 9. Loss comparison. 

 
Fig. 10. Loss comparative enlarged view. 
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V. EVALUATION AND VERIFICATION OF THE DEVELOPED 

POLICY 

This work conducted three comprehensive tests to 
rigorously evaluate the performance of the proposed method. 
Each simulation aimed to assess the effectiveness of the 
respective algorithm in enabling the mobile robot to learn and 
navigate its environment autonomously. 

To verify the practical performance of the model, physical 
tests were conducted on the robotic machine based on the 
robot operating system (ROS). The TurtleBot machine car was 
employed for these experiments to ensure consistency and 
reliability. The test environment comprised an obstacle zone 
constructed in the laboratory terrain, with the ideal distance 
from the starting point to the target point set at 8.3 meters. Fig. 
5(a) and Fig. 5(b) depict the laser environment after its 
construction. It's important to note that the use of TurtleBot in 
these experiments is not meant to directly reduce errors in the 
algorithm. Instead, TurtleBot provides a standardized platform 
for testing, ensuring consistency and reliability across multiple 
trials. The choice of TurtleBot contributes to the creation of a 
controlled and reproducible testing environment, minimizing 
potential errors arising from variations in hardware and 
environmental conditions. This emphasis on error reduction 
pertains to the establishment of a robust and reliable basis for 
evaluating the proposed method's performance in real-world 
scenarios rather than directly mitigating errors in the algorithm 
or system. Following the integration of the trained model into 
the navigation function package, a meticulous series of 
verification tests was carried out to assess its performance. 
Each testing round consisted of five restarts, with three 
experiments conducted within each round to ensure the 
robustness of the evaluation process. For instance, in the first 
round of experiments, the robot's performance was tested 
through three individual trials: the first trial covered a distance 
of 8.8 meters in 77 seconds; the second trial covered 9.0 
meters in 78 seconds, and the third trial spanned 8.6 meters in 
73 seconds. By calculating the mean of these results, we 
obtained an average performance of 8.8 meters covered in 76 
seconds. 

Table III presents the detailed results of the first round, 
where the robot covered distances of 8.8 meters in 65 seconds, 
8.6 meters in 53 seconds, and 8.7 meters in 56 seconds during 
the three tests. The calculated mean for Table II was 8.7 
meters covered in 58 seconds. Notably, Table II exhibited a 
higher learning rate compared to Table II, indicating improved 
efficiency in path planning and execution. 

TABLE II.  THE EXAMPLE OF RL ALGORITHM 

Examples 
length/time 

Test 1 Test 2 Test 3 Mean 

First Round 8.8 m/77 s 9.0 m/78 s 8.6 m/73 s 8.8 m/76 s 

Second 
Round 

9.3 m/86 s 9.1 m/83 s 8.9 m/74 s 9.1 m/81 s 

Third Round 8.9 m/68 s 8.6 m/63 s 9.2 m/70 s 8.9 m/67 s 

Fourth 

Round 
9.1 m/78 s 8.9 m/73 s 8.7 m/71 s 8.9 m/74 s 

Fifth Round 9.2 m/80 s 9.2 m/77 s 8.6 m/77 s 9.0 m/78 s 

TABLE III.  THE EXAMPLE OF REINFORCEMENT LEARNING WITH FUZZY 

LOGIC ALGORITHM 

Examples 
Length/Time 

Test 1 Test 2 Test 3 Mean 

First Round 8.8 m/65 s 8.6 m/53 s 8.7 m/56 s 8.7 m/58 s 

Second Round 8.8 m/63 s 8.9 m/69 s 8.7 m/60 s 8.8 m/64 s 

Third Round 8.7 m/66 s 8.7 m/70 s 8.5 m/68 s 8.6 m/68 s 

Fourth Round 8.7 m/73 s 8.8 m/65 s 8.6 m/66 s 8.7 m/68 s 

Fifth Round 8.4 m/71 s 8.7 m/73 s 8.4 m/69 s 8.5 m/69 s 

The overarching analysis of these comprehensive tests 
reveals that the Fuzzy Logic approach consistently 
outperforms other methods in terms of both time consumption 
and path length, particularly in the scenario represented in Fig. 
5(b). It consistently finds shorter paths in less time, 
highlighting its superior efficiency. Additionally, the Fuzzy 
Logic method demonstrates remarkable stability in locating 
multiple paths, underscoring its prowess in complex 
environment path-finding. 

However, it's important to acknowledge certain limitations 
associated with the Fuzzy Logic-based approach. While it 
excels in various aspects of path planning, it may face 
challenges when confronted with highly dynamic and rapidly 
changing environments. Fuzzy Logic, being rule-based and 
reliant on predetermined membership functions, might 
struggle to adapt swiftly to unpredictable obstacles or 
situations. Additionally, its performance could be impacted by 
the complexity and size of the environment, as processing a 
vast amount of data can introduce computational overhead. 

Therefore, while the Fuzzy Logic approach proves highly 
effective in many scenarios, it may not be the optimal choice 
for applications demanding real-time adaptability in extremely 
dynamic settings. Exploring its boundaries and considering 
alternative approaches for such specific scenarios remains a 
valuable avenue for future research and development. 

VI. CONCLUSION 

This research introduced a novel navigation method based 
on Q- learning and fuzzy logic for efficient path planning of 
agents in diverse environments. The proposed approach 
combines the strengths of deep learning with symbolic 
reasoning, specifically Fuzzy Logic, to overcome the 
challenges faced by traditional DRL methods in mobile robot 
navigation, reducing the global path search time by 6-9% and 
shortening the average path search length by 4-10% compared 
to pure Q-learning. The incorporation of symbolic 
representations in the learning process leads to reduced 
training convergence time and more practical path planning 
results. The experimental results demonstrate its efficiency 
and effectiveness in complex environments, making it a 
promising solution for autonomous robotic navigation in 
urban megacities. As future work, the effectiveness of new RL 
algorithms will be explored in even more challenging 
environments, further advancing the field of autonomous 
robotic navigation. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

942 | P a g e  

www.ijacsa.thesai.org 

REFERENCES 

[1] U. Rakhman, J. Ahn, and C. Nam, “Fully automatic data collection for 
neuro-symbolic task planning for mobile robot navigation,” in 
Conference Proceedings - IEEE International Conference on Systems, 
Man and Cybernetics, Institute of Electrical and Electronics Engineers 
Inc., 2021, pp. 450–455. doi: 10.1109/SMC52423.2021.9658822. 

[2] A. Zhu and S. X. Yang, “Neurofuzzy-based approach to mobile robot 
navigation in unknown environments,” IEEE Transactions on Systems, 
Man and Cybernetics Part C: Applications and Reviews, vol. 37, no. 4, 
pp. 610–621, Jul. 2007, doi: 10.1109/TSMCC.2007.897499. 

[3] P. Coraggio and M. De Gregorio, “A Neurosymbolic Hybrid Approach 
for Landmark Recognition and Robot Localization.” 

[4] O. Castillo, R. Martínez-Marroquín, P. Melin, F. Valdez, and J. Soria, 
“Comparative study of bio-inspired algorithms applied to the 
optimization of type-1 and type-2 fuzzy controllers for an autonomous 
mobile robot,” Inf Sci (N Y), vol. 192, pp. 19–38, Jun. 2012, doi: 
10.1016/j.ins.2010.02.022. 

[5] Y. Li, “Deep Reinforcement Learning: An Overview,” Jan. 2017, 
[Online]. Available: http://arxiv.org/abs/1701.07274. 

[6] H. Van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning 
with Double Q-Learning.” [Online]. Available: www.aaai.org. 

[7] K. Zhang, F. Niroui, M. Ficocelli, and G. Nejat, “Robot Navigation of 
Environments with Unknown Rough Terrain Using deep Reinforcement 
Learning,” in 2018 IEEE International Symposium on Safety, Security, 
and Rescue Robotics, SSRR 2018, Institute of Electrical and Electronics 
Engineers Inc., Sep. 2018. doi: 10.1109/SSRR.2018.8468643. 

[8] N. Altuntas, E. Imal, N. Emanet, and C. N. Öztürk, “Reinforcement 
learning-based mobile robot navigation,” Turkish Journal of Electrical 
Engineering and Computer Sciences, vol. 24, no. 3, pp. 1747–1767, 
2016, doi: 10.3906/elk-1311-129. 

[9] C. Pérez-D’Arpino, C. Liu, P. Goebel, R. Martín-Martín, and S. 
Savarese, “Robot Navigation in Constrained Pedestrian Environments 
using Reinforcement Learning,” in Proceedings - IEEE International 
Conference on Robotics and Automation, Institute of Electrical and 
Electronics Engineers Inc., 2021, pp. 1140–1146. doi: 
10.1109/ICRA48506.2021.9560893. 

[10] V. Zambaldi et al., “Relational Deep Reinforcement Learning,” Jun. 
2018, [Online]. Available: http://arxiv.org/abs/1806.01830. 

[11] D. Dong, C. Chen, J. Chu, and T. J. Tarn, “Robust quantum-inspired 
reinforcement learning for robot navigation,” IEEE/ASME Transactions 
on Mechatronics, vol. 17, no. 1, pp. 86–97, Feb. 2012, doi: 
10.1109/TMECH.2010.2090896. 

[12] Y. Zhu, Z. Wang, C. Chen, and D. Dong, “Rule-Based Reinforcement 
Learning for Efficient Robot Navigation With Space Reduction,” 
IEEE/ASME Transactions on Mechatronics, vol. 27, no. 2, pp. 846–857, 
Apr. 2022, doi: 10.1109/TMECH.2021.3072675. 

[13] J. Priya Inala et al., “Neurosymbolic Transformers for Multi-Agent 
Communication.” [Online]. Available: https://github.com/jinala/. 

[14] P. Coraggio, M. De Gregorio, and M. Forastiere, “ROBOT 
NAVIGATION BASED ON NEUROSYMBOLIC REASONING 
OVER LANDMARKS,” 2008. [Online]. Available: 
www.worldscientific.com. 

[15] M. Sokolov, R. Lavrenov, A. Gabdullin, I. Afanasyev, and E. Magid, 
“3D modelling and simulation of a crawler robot in ROS/Gazebo,” in 
ACM International Conference Proceeding Series, Association for 
Computing Machinery, Dec. 2016, pp. 61–65. doi: 
10.1145/3029610.3029641. 

[16] K. Takaya, T. Asai, V. Kroumov, and F. Smarandache, Simulation 
Environment for Mobile Robots Testing Using ROS and Gazebo. 2016. 
doi: 10.0/Linux-x86_64. 

[17] K. Sukvichai, K. Wongsuwan, N. Kaewnark, and P. Wisanuvej, 
“Implementation of Visual Odometry Estimation for Underwater Robot 
on ROS by using RaspberryPi 2.” 

[18] N. Botteghi, B. Sirmacek, K. A. A. Mustafa, M. Poel, and S. Stramigioli, 
“On Reward Shaping for Mobile Robot Navigation: A Reinforcement 
Learning and SLAM Based Approach,” Feb. 2020, [Online]. Available: 
http://arxiv.org/abs/2002.04109. 

[19] A. V. Bernstein, E. V. Burnaev, and O. N. Kachan, “Reinforcement 
learning for computer vision and robot navigation,” in Lecture Notes in 
Computer Science (including subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, 
2018, pp. 258–272. doi: 10.1007/978-3-319-96133-0_20. 

[20] A. Newman, G. Yang, B. Wang, D. Arnold, and J. Saniie, “Embedded 
Mobile ROS Platform for SLAM Application with RGB-D Cameras,” in 
IEEE International Conference on Electro Information Technology, 
IEEE Computer Society, Jul. 2020, pp. 449–453. doi: 
10.1109/EIT48999.2020.9208310. 

[21] Q. Jiang, “Path Planning Method of Mobile Robot Based on Q-
learning,” in Journal of Physics: Conference Series, IOP Publishing Ltd, 
Feb. 2022. doi: 10.1088/1742-6596/2181/1/012030. 

[22] K.-H. Park, Y.-J. Kim, and J.-H. Kim, “Modular Q-learning based multi-
agent cooperation for robot soccer,” 2001. [Online]. Available: 
www.fira.net. 

[23] G. Antonelli, S. Chiaverini, and G. Fusco, “A fuzzy-logic-based 
approach for mobile robot path tracking,” IEEE Transactions on Fuzzy 
Systems, vol. 15, no. 2, pp. 211–221, Apr. 2007, doi: 
10.1109/TFUZZ.2006.879998. 

[24] E. Ayari, S. Hadouaj, and K. Ghedira, “A fuzzy logic method for 
autonomous robot navigation in dynamic and uncertain environment 
composed with complex traps,” in Proceedings - 5th International Multi-
Conference on Computing in the Global Information Technology, 
ICCGI 2010, 2010, pp. 18–23. doi: 10.1109/ICCGI.2010.47. 

 


