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Abstract—To address the challenges of insufficient 

multimodal information fusion and insufficient long-range 

dependencies features extraction for brain tumor segmentation, 

this paper propose a novel network based on asymmetric encoder 

and multimodal cross-collaboration. The network employs an 

asymmetric encoder-decoder architecture. Firstly, the invert 

ConvNext split convolution (ICSC) block is used in the local 

refinement encoder and improved SwinTransformer with 

DscMLP enhancements (DscSwinTransformer) module is used in 

global associative encoder. The local and long-range 

dependencies of each stage of two parallel encoders can be well 

extracted by hybrid fusion. Moreover, this paper adds a 

multimodal cross-collaboration (MCC) module at the beginning 

of the two encoders to fully exploit the complementary 

information between modalities and reduce the reliance on a 

single modality during model training. Coordinate Attention 

(CA) is used in the bridge part of the encoder and decoder to 

capture important spatial location information. Then, the 

depthwise separable convolution (DscConv) module is used in the 

decoder branch to reduce the computation while maintaining 

good feature extraction ability. Finally, this paper uses a hybrid 

loss function of BCE, Dice and L2 loss to mitigate the problem of 

class datas imbalance. Experimental results show that our model 

achieves Dice coefficients of 0.897, 0.905 and 0.824 in the whole, 

core and enhanced tumor regions, respectively. These results 

show that the performance of our proposed method outperforms 

in comparison with several existing methods in core and 

enhanced tumor regions. 

Keywords—Brain tumor; multimodal cross-collaboration; 

asymmetric encoder; coordinate attention 

I. INTRODUCTION 

A brain tumor is a mass or cluster of aberrant cells in the 
brain that impairs brain tissue function. Brain tumors are 
primarily classified as malignant or benign [1]. Malignant 
brain tumors are one of the most severe cancers at present, 
posing an increasing threat to human health. Brain tumors are 
classified as I-IV by the World Health Organization. Because 
the higher the grade of the brain tumor, the shorter the 
patient’s survival time [2-3], early detection and treatment of 
brain tumors is critical. However, because the shape, size, 
location, and border of MRI images from various brain tumor 
patients vary, it is difficult to properly segment the brain tumor 
area. Manual segmentation of brain tumors by doctors is very 
time-consuming and inconsistent among different doctors for 

the same patient, while automatic segmentation techniques 
based on brain tumor MRI images can automatically locate 
and segment the shape, position and boundary of the brain 
tumor area, thus assisting doctors in diagnosing patients’ 
conditions and alleviating their workload. Therefore, the 
research of brain tumor segmentation algorithm has significant 
scientific value and clinical relevance for efficient diagnosis of 
brain tumors. 

At present, most segmentation networks do not properly 
use multi-modal complementary information. This study 
proposes a multi-modal cross-coordination feature fusion 
module, which reduces the feature dependence on a single 
mode and obtains rich context information of different modal 
complementary information. In order to obtain long-range 
dependencies information while extracting local feature 
information, this paper uses dual encoders to obtain spatial 
and coordinate attention information at different stages. In this 
paper, the mixed loss function is further designed to alleviate 
the problem of class imbalance in brain tumor data sets, so 
that the model can effectively segment different types of brain 
tumor regions. 

II. RELATED WORK 

With the advancement of deep learning technologies, 
convoluted neural networks have emerged as the primary way 
for diagnosing brain tumor locations.  U-net [4] is a typical 
segmentation network based on the encoder-decoder structure. 
Later, the Unet-type structure was further developed, such as 
Unet++ [5] with nested and densely connected structures, 
DenseUnet [7] that combines DenseNet [6]

 
network and U-net, 

and Vnet [8] structure for volumetric segmentation. 
Convolutional neural networks can capture local features, but 
they have difficulty in modeling explicit long-range 
dependencies from the global feature space. 

However, Local and global features are essential for dense 
prediction tasks. Vision Transformer [9] leverages self-
attention mechanism to model long-range information, 
enabling CNN hybrid Transformer to fuse and extract local 
and distant features effectively. In this regard, TransBTS [10] 
network is proposed, which incorporates Transformer into the 
3D CNN encoder-decoder architecture for the first time, 
enhancing global feature extraction. TransBTSV2 [11] further 
improves TransBTS by redesigning the Transformer module 
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and introducing deformable bottleneck module to capture 
shape-sensitive local features. SwinBTS [12] structure 
employs 3D SwinTransformer as both encoder and decoder of 
the network to extract global information from feature maps 
efficiently, using convolution operation for upsampling and 
downsampling. Unetr [13] network connects the Transformer 
encoder to the decoder with different resolutions through skip 
connections, capturing global multi-scale information more 
effectively. 

Moreover, different brain tumor regions have large scale 
differences, and the receptive field of ordinary convolution is 
not enough to extract rich contextual feature information. In 
this regard, Liu et al. [14] proposes a lightweight ADHDC-Net 
network that combines hierarchical convolution with different 
dilation rates and tumor region relation-guided attention; 
Chang et al. [15] proposes a dual-path and multi-scale 
attention fusion module that merges feature maps with 
different receptive fields for dense pixel prediction; Rehman et 
al. [16] designs SDS-MSA-Net, which extracts features from 
3D and 2D inputs separately, and uses selective depth 
supervision to assist the output, accelerating the model 
convergence speed, but at the same time processing 3D and 
2D resources increases the computational cost. The above 
improved structures enhance the extraction ability of global 
features and multi-scale attention features respectively, but 
most of the current networks are limited to simple 
concatenation fusion of multi-modal brain tumor data input 
level, which cannot fully utilize the complementary fusion 
information between different modalities. Therefore, Liu et al. 
[17] designs a two-stage network that performs pixel-level 
fusion and feature-level fusion of multi-modal images to 
achieve more fine-grained utilization of multi-modal 
information; Zhou et al. [18] proposes an attention feature 
fusion module that can fuse different modalities and 
selectively extract useful feature information, but the core of 
the above networks still needs to improve the segmentation 
accuracy of the enhanced tumor region. 

To solve the aforementioned challenges, our study offers 
an asymmetric encoder and multimodal cross-collaboration 
brain tumor segmentation network (AEMCCNet). This paper’s 
primary contributions are summarized as follows: 

1) This paper proposes an asymmetric encoder-decoder 

structure, where parallel local refinement encoder and global 

associative encoder use redesigned invert ConvNext split 

convolution (ICSC) block and improved SwinTransformer [19] 

with DscMLP enhancements (DscSwinTransformer) module 

respectively, which can effectively capture the fusion 

information of local details and long-range dependencies 

features in three stages of the encoder. 

2) To reduce the model’s dependence on a single brain 

tumor modality during training, this paper proposes a 

multimodal cross-collaboration (MCC) module, which can 

fully utilize the complementary information between 

modalities. 

3) To obtain more accurate segmentation results, this 

paper uses coordinate attention (CA) Module [20] in 

AEMCCNet, which encodes the channels along horizontal and 

vertical directions. This transformation can capture remote 

features along one spatial direction and preserve precise 

location information along another direction, which is very 

important for generating spatial detail selective information. 

4) To tackle the class imbalance issue, this paper employs 

a hybrid loss function composed of binary cross entropy, Dice, 

and L2, which enhances brain tumor segmentation accuracy 

even further. 

III. METHODOLOGY  

A. AEMCCNet Network  

The overall architecture of the brain tumor segmentation 
network based on asymmetric encoder and multimodal cross-
collaboration proposed within this study is seen in Fig. 1. 

The network model is an asymmetric encoder-decoder 
structure, where T1 and T1ce modalities are the inputs of the 
local refinement encoder; T2 and Flair modalities are the 
inputs of the global associative encoder. Both the local 
refinement encoder and the global associative encoder first use 
MCC module designed in this paper to fully learn the cross-
modal features and reduce the model’s dependence on a single 
modality [21]. Then this paper uses the ICSC Block and 
DscSwinTransformer module designed in this paper 
respectively, and the parallel dual-stream encoders fuse with 
each other at each stage, increasing the link throughout low-
level detail features and high-level semantic features. 
Moreover, CA module is applied to the fused feature maps 
along two dimensions of MRI images to aggregate features, 
model long-range dependencies and channel transformation, 
and enhances the extraction of useful information while 
suppressing the influence of invalid information on tumor 
segmentation performance. Finally, depthwise separable 
convolution (DsConv) [22] is used in the decoder module to 
acquire the semantic details of the fusion information obtained 
from asymmetric dual-stream encoder and low-level decoder 
modalities. 

B. MCC Module 

To reduce the dependence on a single brain tumor 
modality during the model training process, and to better 
utilize the complementarity between T1, T1ce modalities and 
T2, Flair modalities to cross-extract features, this paper 
designs a MCC module, as shown in Fig. 2. 

First, modality A and modality B separately go through 
7×7 channel-by-channel convolution (DwConv) to obtain rich 
context information of a single modality, and then cross-
multiply with the features of another modality after 1×1 
convolution to obtain y11 and y21, respectively, as shown in Eq. 
(1) and Eq. (2), to extract recognizable features from one 
modality to assist in correcting another modality; 

11 Dw7 7( ) Conv1 1(   ）y B A
                (1) 

21 Dw7 7( ) Conv1 1( )  y A B
           (2) 
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Fig. 1. Overall architecture of proposed AEMCCNet. 
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Fig. 2. Structure of a MCC module. 

Then, the features of the same modality after 1×1 
convolution are added and fused with the cross-fused features 
to generate the feature maps y12 and y22, as stated in Eq. (3) 
and Eq. (4). 

12 11+ Conv1 1(  ）y y A
                   (3) 

22 21+ Conv1 1(  ）y y B
                  (4) 

Finally, the branch modality features y12and y22 are 
element-wise added and fused to generate the output feature 
map y of the module, as illustrated in Eq. (5). 

12 22 y y y
 (5) 

C. ICSC Block 

As shown in Fig. 3(a), MobileNetV2 [23] swaps the order 
of convolutional dimensionality increase and decrease in the 
Inverted Residuals structure, uses depthwise separable 
convolution to reduce the computational cost, and enhances 
the nonlinear expression ability of the network. As shown in 
Fig. 3(b), ConvNext Block [24] inherits the feature of wide 
convolutional dimension in the middle layer of Inverted 
Residul, and sets the depthwise separable convolution kernel 
size to 7×7, Padding=3. This paper draws on the advantages of 
these two modules and redesigns the ICSC Block of channel-
split, as shown in Fig. 3 (c). 

The input feature map of this module is X∈R
C×H×W

,, where 

C is the number of channels. First, X is split into two C/2 
branches X11 and X21 along the channel dimension. The left 
branch X11 uses 7×7 depthwise separable convolution to 
extract rich spatial context information, and then uses two 1×1 
convolutions to increase and decrease the dimension 
respectively, obtaining the feature map X1. The right branch 
X21 first uses 1×1 convolution to reduce the dimension, then 
uses 3×3 depthwise separable convolution to extract spatial 
rich information and increase the dimension, and then uses 
1×1 convolution to reduce the dimension again, obtaining the 
feature map X2. Then, the outputs of the two branches are 
concatenated and fused along the channel direction. Finally, 
the fused feature map is added with the original input feature 
map by identity connection to obtain the output feature map y 
of this module as shown in Eq. (6) to Eq. (8). 
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1 111( ( 1[ ( 7( ))]))X Conv g Conv L Dw X
  (6) 

2 211( 6 3[ ( 1( ))])) （X Conv Relu Dw B Conv X
   (7) 

1 2[ , ] Y X X X
                      (8) 

where, DW7() is a channel-wise convolution with a kernel 
size of 7×7, Conv1() is a convolution with a kernel size of 1×1, 
L is LN normalization operation, B is BN normalization 
operation, g() is gelu() activation function, Relu6 is activation 
function, [·] is channel-wise concatenation and fusion. 

D. DscSwinTransformer Module 

Encoder-decoder structure based on CNN lacks the ability 
to capture long-range dependencies features, while lightweight 
SwinTransformer Block uses sliding window self-attention 
mechanism to capture global dependencies features 
information. In SwinTransformer Block [19], the multilayer 
perception (MLP) uses two fully connected layers for 
dimension transformation, but using fully connected layers in 
image segmentation causes partial segmentation information 
loss. 

Inspired by the above content, this paper replaces the 
multilayer perception (MLP) in DscSwinTransformer Module 
with the designed depthwise separable perception (DscMLP), 
which can further refine the context information and improve 
the nonlinear transformation of features. As shown in Fig. 4, 
DscMLP takes the feature X after self-attention W-MSA, 
sliding window self-attention mechanism SW-MSA, and 
reshapes the shape of the feature map X first from [B, H×W, C] 
to X1 in [B, C, H, W] dimensions, where B, C, H, and W are 
the batch size, the number of channels, the height, and the 
width, respectively, of the model training settings; Then it 
applies depthwise separable convolution and identity 
connection on X1 in parallel respectively, and performs 
element-wise multiplication on the two-branch results; finally 
it reshapes the feature dimension to [B, H×W, C] dimension 
output feature map Y. 

The DscSwinTransformer Module is used in the three 
stages of the global associative encoder, and the repetition 
number of SwinTransformer in each stage is 1; before the first 

stage the output feature map y∈R
C×H×W

 of the multimodal 

cross-collaboration module is partitioned into M patches of 
size P×P,P=2 in the Patch Partition module, and each patch is 

reshaped into a one-dimensional vector 
py ∈R

M×(P×P×C)
, then 

these patches are flattened along the channel direction and 

mapped to D dimensions by the Linear Projection module E∈

R
(P×P×C)×D

, while adding a learnable position variable 
posE ∈

R
(P×P×C)×D

 to obtain the feature z, as shown in Eq. (9): 

 p posz y E E
                            (9) 

In the DscSwinTransformer Module, layer normalization 
(LN) is first used and residual connection is performed on W-
MSA, SW-MSA, DscMLP, as shown in Fig. 4, the above 
process can be expressed as. 

1 1( ( ))


   
k

k kZ W MSA LN Z Z
     (10) 

( ( ))
 

 
k k

kZ DscMLP LN Z Z
      (11) 

1

( ( ))


  
k

k kZ SW MSA LN Z Z
      (12) 

1 1
1 ( ( ))

  
  

k k
kZ DscMLP LN Z Z

      (13) 

To generate 2x downsampling, between the 
DscSwinTransformer modules use patch merging to increase 
dimensionality and decrease token numbers. 
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Fig. 3. Comparison of Convolutional Blocks from left to right as (a) InvertedResidual Block, (b) ConvNeXt Block, (c) ICSC Block. 
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Fig. 4. Structure of DscSwinTransformer module. 

E. CA Module 

In deep network segmentation models, such as SE 
attention and CBAM attention, it has been proven that they 
can significantly enhance channel attention and spatial 
attention weights, and promote the model’s segmentation 
performance, but they typically ignore positional details, 
which is vital for creating selective spatial features.  Therefore, 
this paper introduces CA module [20], which embeds 
positional information into channel attention, as shown in Fig. 
5. 

Residual

X Avg Pool

Re-weight

Y Avg Pool

Concat + Conv2d

BatchNorm + Non-linear

Conv2d Conv2d

Sigmoid Sigmoid

split

X

Y

C×H×1

C×H×1

C×H×1

C×1×W

C×H×W

C/r×1×(W+H)

C/r×1×(W+H)

C×1×W

C×1×W

 

Fig. 5. Structure of CA module. 

Coordinate information embedding alongside coordinated 
attention generation make up the two sections of the CA 
module. The coordinate details embedding implies encoding 
the input feature map X along both vertical and horizontal axes, 
respectively, using pooling kernels of shapes (H, 1) and (1, W) 
within the channels, to create two-dimensional feature maps 
that can capture distant features through one spatial direction 
and retain accurate positioning data along the other. Eq. (14) 
and Eq. (15) illustrate this: 

   
0

1
,

 

 h

c c

i W

Z h X h i
W              (14) 

   
0

1
,

 

 w

c c

j H

Z w X j w
H

            (15) 

where,  h

cZ h  is a result of the Cth channel with height h, 

and  w

cZ w  is similarly. 

The second transformation is the generation of CA module. 

First,  h

cZ h  and  w

cZ w  are concatenated, and then a 1×1 

convolution function F and the feature mapping f of spatial 
data within multiple directions was extracted using an 
activation function that is nonlinear, as shown in Eq. (16). 

( ([ , ])) h wf F Z Z
         (16) 

Then f is decomposed into a pair of distinct tensors hf ∈

R
C/r×H

 and wf ∈R
C/r×W

 , and the convolution function F is used 

to transform them into tensors with the identical number of 
channels just like the input X, and the function of Sigmoid 

activating is utilizing to derive the attention weights hg  and 
wg  on two directions respectively. Ultimately, the module’s 

initial feature map multiplies element by element with the two 
separate attention weights to yield the module’s output Y, as 
indicated in Eq. (17) to Eq. (19). 

( ( ))h hg F f
               (17) 

( ( ))w wg F f
                (18) 

( , ) ( , ) ( , ) ( , )  h wY i j X i j g i j g i j
  (19) 

IV. EXPERIMENTAL SETTINGS 

A. Dataset 

This paper uses the dataset from the Brain Tumor 
Segmentation (BraTS) competition in 2019, which contains 76 
cases of low-grade glioma and 259 cases of high-grade glioma. 
This paper divides the training and testing data of the 
BraTS2019 dataset according to a ratio of 8:2. The 
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segmentation results are evaluated by the performance 
indicators of the whole tumor region (core tumor region and 
edema region), core tumor region (enhanced tumor region and 
necrosis region) and enhanced tumor region. 

B. Data Preprocessing 

Since training with 3D format images takes a long time 
and requires better GPU and more memory, this paper chooses 
to use 2D slices to train the proposed network. The size of the 
3D data for each modality is 240×240×155. Since there is a lot 
of useless background information on the outer edge of the 
brain tumor data, which causes the problem of data class 
imbalance, this paper first crops the spatial size of the 3D data 
to 160×160×155 to eliminate the useless spatial background 
information, and then slices the data along the channel 
direction, transforming the 3D data into 155 slices of 160×160 
2D slices to meet the needs of the model training in this paper. 

Due to different imaging mechanisms, different modalities 
have different image contrast, so normalization is used to 
make the data intensity of different modalities balanced, which 
is conducive to the model using complementary information 
between different modalities. The normalization operation is 
shown in Eq. (20): 






x x
z

 (20) 

In the above equation, x is the cropped 2D sliced image, x  

is the mean value of the input image,  is the standard 

deviation of the input image, and z is the normalized image. 

As shown in Fig. 6, the images of four modalities and the 
ground truth label of a slice of a case after preprocessing in 
this paper are shown from left to right as (a) T1, (b) T1ce, 
(c)T2, (d) Flair and (e) Ground truth (GT) label. In the 
network model prediction image and the ground truth label, 
green represents edema tumor region, yellow represents 
enhanced tumor region and red represents necrosis and non-

enhanced tumor region. 

C. Experimental Environment Configuration 

The software version is PyTorch 1.11.0 with Cuda 11.3, 
and the hardware environment consists of a 32 core CPU 
processor, 30GB RAM, and a GPU with NVIDIA RTX A5000, 
24GB video memory. To update the model weights, this paper 
utilizes the Adaptive Moment Estimation (Adam) algorithm 
[25] as the optimizer; the detailed training experiment 
configuration is shown in Table Ⅰ. 

D. Evaluation Metrics 

Four distinct assessment standards are employed to assess 
the segmentation accuracy of the model in this study to 
evaluate the how effective the suggested model algorithm. As 
described in Eq. (21), the Dice similarity coefficient is a value 
between 0 and 1. The closer to 1, the more similar the brain 
tumor segmentation result is to the manual label result, and the 
better the segmentation effect. 

2

2  


TP FP FN

TP
Dice

      (21) 

Sensitivity is a measure of the model’s ability to predict 
positive pixels. Precision is used to measure the ability of the 
model to correctly predict pixels. As shown in Eq. (22) and Eq. 
(23). 


 P

TP
Precisi

TP
o

F
n

         (22) 

Where TP stands for true positive pixels, FN represents for 
false negative pixels, FP means for false positive pixels, and 
TN indicates for true negative pixels. 


 N

TP
Sensiti i y

TP
v

F
t

                (23) 

(a) T1 (b) T1ce (c)  T2 (d) Flair (e) GT

tumor core

enhanced tumor

edema region

 

Fig. 6. Images after data preprocessing. from left to right as (a) T1, (b)T1ce, (c) T2, (d) Flair and (e) GT label. 

TABLE I. EXPERIMENTAL CONFIGURATION 

Configurations Values 

Software version PyTorch11.0 

GPU NVIDIA RTX A5000 

Optimizer Adam 

Initial learning rate 0.003 

Momentum 0.09 

Weight decay coefficient 0.00001 

Batch szie 24 

Tranning Epoches 300 
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To calculate the distance between the model segmentation 
border and the real label boundary, the Hausdorff distance 
(HD) has utilized, the higher the segmentation precision, the 
lower the Hausdorff distance. Eq. (24) shows the calculation 
formula. 

 max max min ( , ),max min ( , )
  


y Y x Xx X y Y

Hausdorff d x y d x y   (24) 

Here y represents GT and x represents the predicted 
segmentation result, d(x,y) is the Euclidean distance between x 
and y. In this paper, HD95 is used in the evaluation, which 
means taking the 95th percentile result. 

E. Hybrid Loss Function 

As indicated in Eq. (25), binary cross entropy (BCE) is 
often utilized as a loss function for performing segmentation 
operations for various medical data sets. 

     
1

1
log 1 log 1



      
N

BCE i i i i

i

L y p y p
N   (25) 

Where N denotes the overall amount of output pixels, yi 
means the la-bel value for the ith pixel, and pi defines the 
model prediction value for the ith pixel. Since the BCE loss 
function assigns equal weights to foreground and background 
pixels, but there is a large difference in the proportion of 
foreground and background pixels in multimodal brain tumors, 
and foreground pixels account for only a minority, there is a 
problem of data class imbalance. This study applies the Dice 
loss function to the BCE loss function to overcome the 
problem of data class imbalance, as seen in Eq.  (26): 

Dice 

2

1







 

 



 

N

i i

i

N N

i i

i i

p y

L

p y

(26) 

The value given by the parameter has been set to 10
-6

 to 
ensure data stability. In addition, overfitting is prone to occur 
during the training of the model, so based on this L2 loss is 
introduced to alleviate the overfitting problem during the 
training of the model, which is advantageous to network 
convergence. The L2 loss function is shown in Eq. (27): 

 
2

2

1
  N

i i iy
N

L p
 (27) 

In summary, the hybrid loss function in this paper is shown 
in Eq. (28): 

Dice BCE 2   L L L L
   (28) 

The approach of controlling hyperparameters is applied in 
this paper to evaluate the most effective settings. The variation 
range of hyperparameters α and β values is shown in Table Ⅱ 

First, β is set to 0 to test the best hyperparameter α. As 
shown in Fig. 7, the fluctuation range of α is between 0 and 1. 
When α is 0.5, the model in this work hits the peak point in 
the whole tumor (WT), core tumor (TC), and enhanced tumor 
(ET) regions, implying that its predictive ability is best at this 

time. 

On this basis, the experimentation of the optimal 
superparameter β was continued, as shown in Fig. 8, where the 
fluctuation of β ranges from 0 to 0.1 spacing. The Dice 
coefficient of this paper’s model on WT, TC and ET regions 
reaches 0.897, 0.905 & 0.824 when the finalized parameter α 
is 0.5 and β is 0.05, and the prediction performance of this 
paper reaches the best. 

The best hyperparameters α=0.5 and β=0.05 are 
substituted into the hybrid loss function. When the model 
training iteration number is 295 rounds, as illustrated in Fig. 9, 
the model’s training and validation loss values tend to be 
optimum. 

F. Ablation Experiment 

To evaluate the efficacy of the design along with addition 
of modules in this study, under the same experimental 
conditions of using the same loss function and parameters, this 
paper replaces the original 3×3 convolution module of the 
encoder-decoder structure with depthwise separable 
convolution, which serves as the Baseline structure of our 
model. This paper adds different modules to the Baseline 
structure, and Table Ⅲ displays the outcomes. Where MCC 
stands MCC module, ICSC represents ICSC block CA 
indicates CA module and DscSwinT represents 
DscSwinTransformer Module. By incorporating the MCC 
module to the first layer of the encoder before entering the 
Baseline, the Dice values of the whole tumor, core tumor and 
enhanced tumor regions in the model increase by 0.6%, 0.9% 
and 1.5%, respectively. Based on Baseline, using the ICSC 
block, the performance of the model in the WT, TC and ET 
regions is further improved. Similarly, based on Baseline, 
using the DscSwinTransformer to obtain the accuracy 
indicators of the ET and TC regions are significantly improved. 
Based on Baseline, adding CA module, the Dice indicators of 
the WT and TC are significantly improved. 

TABLE II. VARIATION RANGE OF HYPERPARAMETERS 

Hyperparameters Variation Range 

α Between 0 and 1 

β Between 0 and 0.1 

 

Fig. 7. Effect of hyperparameter α on model performance. 
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Fig. 8. Effect of hyperparameter β on model performance. 

 
Fig. 9. Model training Loss variation. 

Finally, this paper integrates the modules designed and 
used above into our structure. Compared with the Baseline 
structure, the Dice values of the WT, TC and ET increase by 
5.1%, 5.3%, 6%, respectively. The hausdorff distance values 
of the three types of tumors are also the lowest values for 
ablation comparison experiments, proving the effectiveness of 
this method. 

To test the effectiveness of adding different attentions to 
the bridging part between the asymmetric dual-stream encoder 
and decoder, this paper compares the CA module mechanism 
with SE [26] channel attention, CBAM [27]

 
channel spatial 

attention, and ECA [28] efficient channel attention, 
respectively, as shown in Fig. 10 (a) and Fig. 10(b). After 
using the improved CA module in the decoder branch, the 
Dice similarity coefficient and HD95 of the model reach the 
best. 

G. Experimental Results 

To further verify the effectiveness of our method for 
multimodal brain tumor MR image segmentation, this paper 
uses part of the BraTS2019 dataset as the test set to compare 
with other advanced methods, and the results are shown in 
Table Ⅳ. 

Compared with the classic 2D U-net and Unet++ networks, 
our model has a significant performance improvement in the 
whole, core and enhanced tumor regions. When compared 
with the advanced 3D models TransBTSV2, SwinBTS and 
MBANet, the 3D models have an advantage in segmenting the 
whole tumor due to their spatial continuity, but our 2D model 
uses DscSwinTransformer Module to strengthen the extraction 
of long-range dependencies features, making the Dice value of 
the whole tumor region close to the advanced 3D 
segmentation methods, and having the most optimal values in 
the overall evaluation indicators. 

Finally, this paper segments some samples from the 
BraTS2019 test dataset and compare them with the input 
images and segmentation results as shown in Fig.11, where 
each row represents a patient case. U-net has over-
segmentation phenomenon in the edema region of the second 
case, and also over-segments the core and enhanced tumor 
regions of the third case; The current advanced SwinBTS and 
TransBTSv2 networks have good segmentation effects on the 
edema region due to their spatial continuity, but they mis-
segment part of the enhanced tumor region as necrotic tumor 
region in the second and third cases. Our proposed 
segmentation model improves by 5.7% and 2.2% respectively 
on the TC and ET tumor regions compared to the advanced 
TransBTSV2 network, showing that our method has better 
segmentation effects on the tumor core and enhanced regions. 

TABLE III. MODULE ABLATION COMPARISON EXPERIMENTS 

Baseline MCC ICSC DscSwinT CA 
Dice Hausdorff95(mm) 

WT TC ET WT TC ET 

√     0.846 0.852 0.764 6.617 5.509 3.155 

√ √    0.852 0.861 0.779 6.613 5.516 3.167 

√  √   0.855 0.879 0.802 6.607 5.498 2.948 

√   √  0.863 0.886 0.798 6.594 5.195 2.935 

√    √ 0.877 0.873 0.788 6.539 5.504 3.026 

√ √ √ √ √ 0.897 0.905 0.824 5.508 4.892 2.790 
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Fig. 10. Comparison of dice and hausdorff95 values with different attention modules added. 

TABLE IV. COMPARATIVE EXPERIMENTS OF ADVANCED NETWORKS 

Models 
Dice↑ Precision↑ Sensitivity↑ Hausdorff95(mm) ↓ 

WT TC ET WT TC ET WT TC ET WT TC ET 

U-net [4] 0.834 0.823 0.769 0.871 0.898 0.800 0.856 0.908 0.813 6.648 6.596 4.062 

Unet++ [5] 0.848 0.860 0.784 0.868 0.899 0.805 0.849 0.910 0.795 6.256 6.131 3.967 

TransBTSv2 [11] 0.902 0.848 0.802 0.852 0.893 0.789 0.902 0.922 0.860 5.432 5.473 3.696 

SwinBTS [12] 0.903 0.825 0.796 0.856 0.909 0.788 0.890 0.908 0.864 8.560 15.78 26.84 

MBANet [29] 0.898 0.831 0.782 0.892 0.905 0.809 0.896 0.896 0.794 5.881 5.090 3.086 

Ours 0.897 0.905 0.824 0.884 0.916 0.819 0.921 0.915 0.859 5.508 4.892 2.790 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

952 | P a g e  

www.ijacsa.thesai.org 

(a) Flair (b) T2 (c)  GT (d) U-net (f) TransBTSV2 (g) Ours(e) SwinBTS
 

Fig. 11. Visual comparison of segmentation results: (a) Flair; (b) T2; (c) GT; (d) U-net; (e) SwinBTS; (f) TransBTSV2; (g) Ours. 

H. Complexity Comparative Analysis 

To better evaluate the performance of the model, we 
compare the number of parameters (Params) and the amount 
of computation (FLOPs) of the network model under the same 
input size, as shown in Table Ⅴ. The quantity of parameters of 
our modelis reduced by about 75.45% compared to the CNN 
hybrid SwinTransformer structure SwinUnet, and the amount 
of computation is reduced by about 44.66%. Moreover, 
compared with the advanced 3D model SwinBTS, the number 
of parameters of our model is reduced by about 14.68%, and 
the amount of computation is reduced by about 70.09%. In 
summary, our model embeds depthwise separable convolution 
in each proposed module, and only uses one 
DscSwinTransformer Module in each stage of the global 
associative encoder. This substantially minimizes the number 
of parameters and the amount of computation required by the 
model, resulting in excellent segmentation performance for 
TC and ET regions. 

TABLE V. COMPARATIVE ANALYSIS OF COMPLEXITY 

Method Params/M FLOPs/G 

U-net [4] 69.71 28.46 

TransUnet [30] 96.07 48.34 

TransBTS [10] 32.99 333.00 

SwinBTS [12] 27.64 89.46 

Unetr [13] 92.58 41.19 

Ours 23.58 26.75 

V. DISCUSSION 

Due to insufficient hardware resources, this article only 
changed the number of rounds of model training on the basis 
of the same training parameters. The results showed that in the 
295th round of model training, Dice, Precision, and HD95 in 
the model validation set were optimal. The sensitivity values 
in the TC and ET regions still had a gap compared to the 
optimal values of the network. This may be related to the 
removal of slices without lesion information during the 
process of slicing 3D images into 2D images in data 

preprocessing. Considering the segmentation performance 
presented by the four evaluation indicators, this article retains 
the 295th training model as the optimal model for the network 
to test the test set. If the GPU computing resources are 
sufficient, further increasing the training rounds can be 
considered to find the optimal value of the comprehensive 
evaluation indicators during the training process as the optimal 
model. 

A lightweight AEMCCNet network model is proposed in 
this paper. It can be seen from subsections F and G of Section 
IV that compared with other network models, the proposed 
model has better segmentation effect in the core and enhanced 
tumor regions. In addition, the AEMCCNet network in Section 
IV, subsection H, reaches the optimal values of the number of 
parameters and the amount of computation. For the whole 
tumor area, 2D network cannot capture the information of 
adjacent sections of 3D brain tumor cases, but AEMCCNet is 
close to the segmentation effect of 3D network, and multiple 
adjacent sections can be combined for segmentation in the 
future. 

VI. CONCLUSION 

To address the problems of insufficient fusion of 
multimodal brain tumor information and inadequate extraction 
of long-range dependencies features, this paper adopts an 
asymmetric encoder-decoder structure, which incorporates the 
MCC module, ICSC block, DscSwinTransformer module, and 
CA module designed in this paper into the architecture, and 
offers an asymmetric encoder-based brain tumor segmentation 
algorithm with multimodal cross-collaboration. The MCC 
module can reduce the model’s dependence on a single brain 
tumor modality during training and fully utilize the 
complementary information between modalities; the local 
refinement encoder branch uses the ICSC module to split 
channels and extract local detail features, enhancing the 
network’s non-linear expression ability; the global associative 
encoder uses DscSwinTransformer module to strengthen the 
capture ability of long-range dependencies features; the bridge 
part between the asymmetric encoder and decoder uses the CA 
module to enhance the location weight of spatial detail 
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selective information; the decoder branch uses DscConv to 
maintain good feature extraction ability while reducing 
computation; During network training, a hybrid loss function 
is redesigned to handle the class imbalance and overfitting 
issues.  The findings from the experiments reveal that the 
model’s accurate segmentation of WT region is comparable to 
that of advanced 3D segmentation algorithms., while the Dice 
coefficient of TC and ET regions is better than other advanced 
models. At the same time, in the comparative experiment, it 
has the best values of other evaluation indicators, and uses 
DscConv throughout the model to minimize model parameters 
and calculations, but the extraction of edge detail information 
of enhanced tumor is still insufficient. Therefore, in future 
work, we will explore using an efficient encoder-decoder 
structure enhanced by edge operator attention or a low-
parameter 2.5D network to further improve the segmentation 
accuracy of enhanced tumor region. 
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