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Abstract—Brain tumors originating from uncontrolled 

growth of abnormal cells in the brain, presents a significant 

challenge in healthcare due to their various symptoms and 

infrequency. While Magnetic Resonance Imaging (MRI) is 

essential for accurately identifying and diagnosing malignant 

tumors, manual interpretation is often complex and sensitive to 

mistakes. To address this, we introduce BrainTumorNet, a 

specialized convolutional neural network (CNN) created for 

MRI-based brain tumor diagnosis. We ensure improved image 

quality and a robust dataset for model training by including 

preprocessing approaches involving CLAHE and data 

augmentation. Additionally, we integrated a blockchain-based 

data retrieval technology to enhance the security, traceability, 

and collaboration in MRI data management across several 

medical institutions. This blockchain framework ensures that 

MRI data, once input from hospitals, stays immutable and can be 

safely retrieved based on unique hospital IDs, promoting a 

trustable environment for data exchange. Performance 

assessments conducted on multiple MRI datasets showcased 

BrainTumorNet’s commendable proficiency, with accuracy rates 

of 98.66%, 97.17% and 94.24% on the dataset 1, dataset 2, and 

dataset 3, respectively. The model’s performance was evaluated 

using a comprehensive set of metrics, including accuracy, 

specificity, recall, precision, f1-score, and confusion matrix. 

These measures are essential for evaluating a model's strengths 

and limits, emphasizing BrainTumorNet’s ability to generate 

accurate and relevant predictions and its effectiveness in 

determining negative classification. BrainTumorNet's 

performance was compared with six renowned deep learning 

architectures: VGG16, ResNet50, AlexNet, MobileNetV2, 

InceptionV3, and DenseNet121. Our work highlights 

BrainTumorNet's potential capabilities in simplifying and 

boosting the accuracy of MRI-based brain tumor diagnosis while 

ensuring data integrity and collaboration through blockchain. 

Keywords—Brain tumor; MRI imaging; BrainTumorNet; deep 

learning; image classification; augmentation 

I. INTRODUCTION 

Brain tumors develop from abnormal cell growth in the 
brain [1]. While cells normally follow a regular development 
and death cycle, sometimes they expand uncontrolled, resulting 
to harm in the brain. There are around 120 distinct forms of 
brain tumors and central nervous system (CNS) exist. In 2021, 
the American Cancer Society anticipated that brain and CNS 
cancers will cause 18,600 adult and 3,460 child deaths. The 
probability of surviving five years after being diagnosed is 
roughly 36%, and 10 years is 31% [2]. In 2019, the National 
Cancer Institute recorded 86,010 new cases of brain and CNS 
cancers in the U.S. It's believed that roughly 700,000 
Americans live with a brain tumor, with 60,800 of them being 

non-malignant and 26,170 being cancerous [3]. Globally, the 
World Health Organization recorded roughly 9.6 million new 
cancer diagnoses in 2018 [4]. 

Early diagnosis of brain tumors is vital for patient survival. 
Analyzing brain tumor images effectively is vital to 
determining a patient's health state. Physicians and radiologists 
traditionally scan magnetic resonance (MR) images to discover 
abnormalities. However, this strategy depends greatly on the 
medical skill of the practitioner [5]. Differences in experience 
and the complexity of the imagery may make diagnosis with 
the human eye challenging. Doctors may struggle to rapidly 
analyze MR images because they often include several 
abnormalities or unnecessary data. The difficulty of accessing 
this large quantity of information increases as the number of 
data increases, making manual tumor identification time-
consuming and costly. There's a rising demand for an 
autonomous computer-aided diagnostics (CAD) system to 
solve these issues. Such technologies may help doctors and 
radiologists by enabling fast and precise identification of 
cancers, thereby contributing to preserving human lives. 

Artificial intelligence (AI) provides automation with 
capacities following human brain functions, such as learning 
and problem-solving. In the field of brain tumor identification 
and diagnosis, AI's accuracy provides crucial help, particularly 
considering the sensitive nature of the task. There are several 
initiatives to improve brain tumor categorization. However, the 
variation in tumor properties, such as their form, texture, and 
contrast variations across people, continues to be a problem. 
Machine learning (ML) and deep learning (DL), two branches 
of AI, have brought in a new era for the practice of 
neurosurgery. These cutting-edge methods include data 
preparation, feature extraction, selection, reduction, and 
classification as their final steps. Recent research [6] reveals 
that AI permits neurosurgeons to perform surgeries with 
unsurpassed confidence, enabling more precise brain tumor 
diagnosis. 

Deep learning (DL) is an advanced version of machine 
learning that dives into data using multi-layered 
representations. By establishing a feature hierarchy, DL 
ensures fundamental features aid in developing advanced ones. 
This technique strengthens classic neural networks by 
incorporating several hidden layers between input and output, 
allowing them to capture complicated, non-linear relationships. 
Because of its excellent performance in recent years, DL has 
become the frontrunner in many medical image analysis 
difficulties, including tasks like image denoising, 
segmentation, authentication, and classification. 
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Brain tumors, due to their various appearances and sporadic 
frequency, have long been a main topic of worry in the medical 
community. Though useful, traditional diagnostic approaches 
often depend on human mistakes, particularly given the 
delicate nuances of MRI imaging. Recognizing these problems, 
we designed BrainTumorNet. Designed to overcome current 
diagnostic inadequacies, BrainTumorNet employs the ability of 
deep learning to negotiate the difficulties of MRI-based tumor 
identification. Our objectives for BrainTumorNet are not 
simply confined to enhanced diagnostic capabilities; we also 
emphasize a smooth, transparent, and most crucially, a secure 
data flow. This is where the integration of blockchain 
technology plays a key role, bringing in an approach where 
data integrity and trustworthiness become the standard rather 
than the exception. As our study develops a comprehensive 
strategy, blending cutting-edge AI with the resilience of 
blockchain, we intend to redefine the standards in brain tumor 
detection. The key findings of this research are: 

 BrainTumorNet, a novel proposed model, demonstrated 
significant proficiency in identifying brain tumors using 
multiple MRI datasets.  

 The addition of the CLAHE preprocessing approach 
significantly improved the image quality, leading to 
better model performance. 

 Utilized a rigorous data augmentation method to 
increase the dataset's size and prevent the model from 
overfitting and improve its generalizability across 
various MRI images. 

 We implemented a blockchain-based system for MRI 
data retrieval in recognition of the essential requirement 
for data security and traceability in medical diagnostics. 
This integration promises a clear, dependable, and 
immutable data handling procedure. 

 Using six thorough performance indicators on three 
different datasets, we systematically evaluated 
BrainTumorNet's effectiveness. This comprehensive 
assessment confirmed the model's consistently good 
performance, proving its durability and dependability. 

II. LITERATURE REVIEW 

CNN has been extensively employed to address various 
issues, but its performance in health-related image processing 
applications is outstanding. Several techniques have been 
developed based on DL to identify brain tumors on MRI 
images in recent years.  Most of them focused on binary 
segmentation to identify brain tumors. 

Zhao et al. [7] developed an inventive method for brain 
tumor segmentation by integrating a complete Convolutional 
Neural Network (CNN) with Conditional Random Fields 
(CRFs). This unified framework assured visual excellence and 
spatial coherence in the segmentation outcomes. They 
employed three segmentation models trained on 2D image 
segments and slices from axial, coronal, and sagittal views. 
These models were combined using a voting-based fusion 
approach for precise tumor segmentation. On the other hand, 
Mohsen et al. [8] utilized a Deep Neural Network (DNN) 
classifier to differentiate an MRI dataset into four categories: 

normal tissue, glioblastoma, sarcoma, and metastatic 
bronchogenic carcinoma tumors. They incorporated Principal 
Component Analysis (PCA), an effective feature extraction 
technique, with the discrete wavelet transform (DWT) before 
classification. The ensuing evaluations showcased remarkable 
performance across all metrics. 

Paul et al. [9] focused on 989 axial images, intending to 
simplify the neural network procedure by omitting the 
incorporation of three distinct axes with redundant diagnostic 
information. Both fully connected networks and CNNs were 
utilized for classification. When trained with axial data, the 
neural network achieved an impressive accuracy of 91.43% 
employing five-fold cross-validation, indicating its 
classification precision. On the other hand, Ari et al. [10] 
presented a three-step method. The initial phase contained 
preprocessing, where nonlocal means and local smoothing 
techniques decreased noise. In the subsequent step, the extreme 
learning machine with local receptive fields (ELM-LRF) was 
employed to classify cranial MR images as benign or 
malignant. Finally, image processing techniques segmented 
tumor areas in the third phase. 

In this research, Abiwinanda et al. [11] aimed to train a 
CNN model to identify the three most prevalent forms of brain 
malignancies: gliomas, meningiomas, and pituitary tumors. 
They developed the simplest conceivable CNN architecture, 
consisting of one layer each of convolution, max-pooling, and 
flattening, followed by a complete connection from a single 
hidden layer. Using the basic architecture and no previous 
region-based segmentation, the study attains a 
maximum validation accuracy of 84.19%. Afshar et al. [12] 
have recently included newly generated CapsNets to alleviate 
the problem with CNNs that fail to properly exploit spatial 
interactions. Since the relationship between the tumor and the 
neighboring tissue is a crucial sign of tumor kind.  Because of 
this, a specialized version of the CapsNet architecture for 
classifying brain tumors is proposed, including the tumor's 
coarse borders as additional inputs inside its pipeline to 
sharpen its attention. 

However, Khan et al. [13] proposed a method comprising 
three critical phases: preprocessing, brain tumor segmentation 
applying k-means clustering, and benign/malignant tumor 
identification via a fine-tuned VGG19 model. This method has 
been assessed employing the BraTS 2015 benchmark dataset. 
Furthermore, they proposed synthetic data augmentation to 
expand the training dataset size, which consequently enhanced 
the classification accuracy. Yahyaoui et al. [14] offer a new 
semantic approach by fusing 2D and 3D MRI data in this 
study. Preprocessing, categorization, and fusion are the three 
stages that make up the whole system. To classify 2D brain 
data, the DenseNet model is used, and the 3D-CNN model was 
created specifically for 3D brain scans. Authors relied on a 
domain-specific ontology to accomplish the fusion of the 
output classes. 

Furthermore, Murthy et al. [15] deployed the Optimized 
Convolutional Neural Network with Ensemble Classification 
(OCNN-EC) for tumor image classification. This deep learning 
approach encompasses an ensemble classifier containing a 
Deep Neural Network (DNN), an autoencoder, and a Support 
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Vector Machine (SVM). This ensemble replaces the 
completely connected layer once the ACV-DHOA has 
optimized the count of convolutional layers and hidden 
neurons. In this study, Latif et al. [16] argue that features from 
the MR images are extracted using a deep CNN network and 
then input into a support vector machine classifier. This 
research uses the BraTS dataset to categorize Gliomas into 
many classes. The suggested method attained a remarkable 
96.19% accuracy. 

Several recognized limitations in MRI-based brain tumor 
diagnosis were clear in light of available studies. Notably, 
many existing models struggle with accuracy problems, the 
difficulties of adding data to MRI datasets, and the complexity 
of managing various MRI data sources. We established 

BrainTumorNet to close these gaps and improve the diagnostic 
capability. The purpose of our proposed model is to achieve 
higher performance in the detection of brain tumors from MRI 
images. BrainTumorNet aims to establish a new standard in 
both accuracy and reliability in the field of brain tumor 
diagnosis, further enhanced by blockchain technology for 
secure and transparent data administration. 

III. METHODOLOGY 

This section highlights the main methods we employed 
during our research, including image preprocessing, deep 
feature extraction, blockchain integrity, and deep learning 
algorithms.  The process of tumor detection is presented in Fig. 
1. 

 

Fig. 1. The entire system of the proposed model BrainTumorNet. 

A. Data Collection: 

For the study, three publicly available datasets are used. 
The datasets are image datasets that contain MRI images of the 
brain. The detailed description of the employed dataset is stated 
below: 

1) Dataset 1 (DT1): Br35H: Brain Tumor Detection 2020 

[17] is the first dataset used in the study. It is an MRI image 

dataset. The dataset consists of 1500 images positive for brain 

tumors and 1500 images of normal brains. The normal and 

tumor class dataset samples are shown in Fig. 2(a). 

2) Dataset 2 (DT2): The BraTS 2019 [18] is the second 

dataset used in this study. The dataset contains 1500 MRI 

images of the brain with tumor and 1500 MRI images of the 

normal brain. The sample images of this dataset are presented 

in Fig. 2(b). 
 

Fig. 2. Data sample of the three datasets (a) DT1 (b) DT2 (c) DT3. 
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3) Dataset 3 (DT3): The third dataset used in the study is 

available in the Kaggle data repository [19]. This is an 

unbalanced image dataset. It contains 170 MRI images of 

normal brain and 230 images of brain with tumor. The sample 

images of the normal and tumor class of DT3 are presented in 

Fig. 2(c). 

B. Data-preprocessing: 

1) Clache: Contrast limited adoptive histogram 

equalization (CLAHE) is used to enrich the image quality. 

CLAHE improves the contrast of the MRI image. Images are 

normalized using this technique, which also highlights finer 

information for Machine Learning (ML) classifiers to pick up 

on. By boosting contrast locally, the CLAHE method gets 

beyond the limitations of traditional, global approaches. 

Critical hyper-parameters for this technique are the tile size and 

clip limit. Multiple permutations of all these settings are 

examined before the ideal values of tileGridSize (8, 8), and the 

clip limit is settled on (3.7). Algorithm 1 displays the process 

of CLAHE. 

Algorithm 1: CLAHE Working Process 

Procedure CLAHE (Image  , ClipLimit c, GridSize g) 

           Convert   to grayscale 

                 Initialize CLAHE with c and g 

                Apply             on       

  Save            as ‘clahe_output.jpg’ 

  Return            

 End  

   

2) Data augmentation: The datasets, DT1 and DT2 are 

well balanced datasets. However, DT3 is a highly imbalanced 

dataset and consists of a small amount of data. Since ML 

models require a fairly large dataset to train and produce 

efficient performance result. To do this, we leverage the 

ImageDataGenerator class in the Keras library to generate 

high-quality images for the expansion of our training data. 

Table I has the image-making parameters. After augmentation, 

the final count of the DT3 is 500 images of normal brain and 

500 images of brain tumor. Algorithm 2 represents the 

procedure of augmentation. 

TABLE I.  ATTRIBUTES OF IMAGEDATAGENERATOR 

Attributes Values 

Shear_range 0.3 

Zoom_range 0.2 

Vertical flip True 

Horizontal flip True 

Rescale 1/255 
 

Algorithm 2: Augmentation for Balancing Image 

Procedure AugmentData 

 Define ImageDataGenerator attributes 

 Function LOAD_IMAGES (directory) 

  Return images from directory 

  End 

  NormalImages   LOAD_IMAGES 
(normal_dir) 

  TumorImages   LOAD_IMAGES (tumor_dir) 

   While count of normal_images ! 500 do 

    Augment ‘normal’ images 

   End 

   While count of tumor_images ! 500 do 

    Augment ‘tumor’ images 

   End 

  Return Count 

 End  

 

3) Resize image: For uniformity's sake, we resize every 

picture in the collection to 128×128 pixel, since the original 

dimensions of images in the three datasets (DT1, DT2, and 

DT3) vary substantially. 

4) Dataset splitting: The datasets are divided into training 

and validation subsets. The division is done at a ratio of 80:20, 

where 80% of each data belongs to the training set and the 

remaining 20% to the test set. Table II shows the data division 

of each set. 

TABLE II.  DATA DISTRIBUTION OF THE DATASETS 

Dataset Training set Test set Total 

DT1 2400 600 3000 

DT2 2400 600 3000 

DT3 800 200 1000 

C. Blockchain Framework for Secure Data Management in 

BrainNet 

Our proposed system incorporates blockchain architecture 
to ensure effective and secure data retrieval and sharing 
procedure designed for managing medical MRI data. Many 
institutions may cooperatively exchange and store MRI 
information to improve the BrainTumorNet model's detection 
abilities without compromising patient data integrity. Our work 
emphasizes the MRI data retrieval and sharing procedures 
inside our method, based upon the multi-organization 
blockchain designs mentioned by [20], [21]. 
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1) Blockchain-based MRI data retrieval process: In the 

framework of our study, every participating data 

source/hospital provides MRI data, storing it as a unique 

transaction inside the blockchain network. Before this data is 

placed into the blockchain, it undergoes a preprocessing stage. 

Initially, the MRI images are improved using the CLAHE 

approach, which increases the contrast and overall visibility of 

tumor locations in the images. Following this, Data 

Augmentation methods are applied to extend the dataset 

intentionally. This assures increased variety and assists in 

training the BrainTumorNet model more robustly. 

Retrieving this data from the blockchain nodes hinges on 
two key parameters: the distance between the nodes     and 
the unique ID of the hospital     . Each hospital denoted as   , 
is assigned a unique ID, determined in part by its distance     

from another hospital   . This can be represented as, 

                                             (1) 

where,   is a function computing the ID based on the 
hospital’s attributes and its distance from other hospitals.  

The blockchain system maintains log tables that register 
these unique IDs, ensuring that data integrity is maintained at 
all times. When BrainTumorNet needs to access specific MRI 
datasets for its diagnostic tasks, it retrieves the relevant data 
from the corresponding hospitals using the retrieval function 
      . This function returns the data    if     exists in the log 
table, otherwise it returns to error. 

Moreover, the neighborhood distance between two sources, 
   and   , plays a critical role in efficient data access. The 

distance    , can be determined by, 

             (  )                          (2) 

where,   is the distance function and      represents the 
location of source  .  

This research effort aims to establish a new benchmark in 
secure, transparent, and collaborative medical diagnostics, 
laying the foundation for further advancements in this 
interdisciplinary field by combining the robustness of 
blockchain technology with the diagnostic prowess of 
BrainTumorNet and rigorous preprocessing steps. 

D. Deep Learning Models for Classification 

Our proposed model's major objective is to automatically 
identify people who have brain tumors while decreasing 
classification time and increasing accuracy. For the purpose of 
finding brain tumors utilizing multiples MRI datasets, we 
proposed a novel, reliable and robust CNN model 
BrainTumorNet. To establish the most effective transfer 
learning strategy for the classification assignment, six pre-
trained models including VGG16, ResNet50, AlexNet, 
MobileNetV2, InceptionV3, and DenseNet121 are tested. The 
significant characteristics and some essential properties of the 
selected deep CNN models are compiled in Table III The next 
section includes an entire discussion of the model utilized in 
this study. 

1) AlexNet: This model is consisting of five convolution 

layers and three fully linked layers. certain number of 

convolution layers are succeeded by the max-pooling layer (1, 

2, and 5 layers). The ReLU  nonlinearity is applied to the 

output of every fully connected and convolutional layer. Each 

of the connected layers has 4096 neurons [22]. During training, 

neurons are "turned off" with a predefined probability to 

prevent data over-adjustment using a regularization technique 

known as dropout [23]. 

TABLE III.  PROPERTIES OF THE DEEP LEARNING MODELS EMPLOYED IN 

THIS RESEARCH 

Model 
Input  

Shape 

Custom 

Input Shape 
Parameters 

Size 

(MB) 

VGG16 224×224 224×224 138 × 106 552 

ResNet50 224×224 224×224 25.6 × 106 102 

AlexNet 227×227 224×224 60 × 106 240 

MobileNetV2 224×224 224×224 3.5 × 106 14 

InceptionV3 229×229 224×224 23.8 × 106 95 

DenseNet121 224×224 224×224 8 × 106 32 

BrainTumorNet 222×222 - 2.16 × 106 10 

2) ResNet50: ResNet50 [24] is a 50-layer Convolutional 

Neural Network (CNN) composed of 48 fully connected layers, 

one max pooling layer, and one average pooling layer. It's 

capable of performing up to 3.8×10
9
 floating-point 

computations. To resolve the vanishing gradient issue 

prevalent in traditional CNNs and expedite the training 

process, ResNet50 employs a spectrum of convolutional filters 

of varying sizes [25]. With fewer filters, ResNet’s operates 

more promptly. This architecture is trained using 

approximately 23 million parameters. The network is designed 

to receive images where the height, breadth, and channel 

dimensions are multiples of 32. 

3) VGG16: The Visual Geometric Group is referred to as 

VGG [26]. Simonay and Zimmerman [27] created the VGG 

model. VGG employs 3×3 convolutional layers that are layered 

on top of one another and become deeper over time. Max 

pooling layer is responsible for reducing the volume size. 

Afterwards, a softmax classifier is followed by two completely 

connected layers with a total of 4096 nodes each [27]. 

4) InceptionV3: At the ImageNet Recognition Challenge, 

Google introduced Inception version 3 [28]. The Auxillary 

Classifiers contain a label smoothing classifier, a factorized 

7×7 convolution classifier, a batch norm classifier, an 

RMSProp optimizer, and a downscaling classifier for 

extracting and augmenting data from label sequences. The 

InceptionV3 model's training time is shortened by substituting 

bigger convolutions for smaller ones. Several optimization 

methods may be used to remove constraints and make an 

InceptionV3 model more flexible. The model is designed 

employing max pooling, convolutions, concatenations, 

dropouts, and fully-connected layers. 

5) MobileNetV2: MobileNetV2 [38] is built upon an 

inverted residual structure, with residual connections 
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interconnecting its bottleneck layers. The intermediate 

expansion layer utilizes lightweight depth-wise convolutions to 

provide non-linear feature filtering. Following the initial 

convolutional layer with 32 filters, MobileNetV2 incorporates 

19 residual bottleneck layers, resulting in a total of 53 layers 

for the network. The model has been pre-trained using over a 

million images from the ImageNet database, classified into 100 

distinct categories. As a result, the network has gathered an 

enormous number of features from a diverse multitude of 

images. 

6) DenseNet121: The Dense Convolution Network is a 

deep learning model that employs feedforward to link each 

layer to all subsequent layers [29]. DenseNet has (L(L+1))/2 

direct lines compared to L connections for conventional L-

layer CNNs. A feature map may be found in every layer of the 

model. Each layer's feature map serves as the following layer's 

input. It allows for the most information to be sent throughout 

the network by linking all levels directly to one another. 

DenseNet's primary benefits are a large reduction in parameter 

count, prevention of gradient runaway, improvement of feature 

diffusion, and encouragement of feature reuse. DenseNet needs 

fewer parameters than conventional CNN since the feature map 

is not repeatedly trained. Additionally, DenseNet uses 

regularization to lessen the possibility of overfitting. Each of 

the four dense blocks in DenseNet121 has six, twelve, twenty-

four, and sixteen convolution blocks. 

7) BrainTumorNet (Proposed Model): BrainTumorNet 

model is both small in size and computationally effective, 

improving performance across various datasets. This model is 

precisely designed for CNN that processes grayscale images 

with dimensions of 222×222×1 to identify brain tumors from 

MRI scans. The network is designed with four distinct blocks 

that have been optimized for feature extraction. Each of these 

blocks begins with a Conv2D layer, which is statistically stated 

by, 

        ∑ ∑                  
 
    

 
           (3) 

where,        is the input feature map at position       for 

the k
th
 channel.        represents the kernel or filter at position 

      for the k
th
 channel and          is the output of feature map 

after convolution at position       for the k
th
 channel. 

Following the convolutional transformation, there is a 
MaxPooling layer, which is presented as, 

             
          

                             (4) 

Here,        is the pooled output at position       for the k
th
 

channel, and   denotes the pooling window size. 

Each block ends with a batch normalization layer, 
stabilizing the activations and ensuring the features remain 
standardized. As the depth of the network increases, the spatial 
dimensions are progressively reduced, encapsulating more 
complex and sensitive patterns essential to tumor identification. 
Once the entire spatial panorama has been thoroughly 
evaluated, the extracted features are flattened into a 1D tensor, 
covering a size of 10816. This tensor then runs across two 
dense layers, described by, 

                                           (5) 

Here,   is the output of the dense layer,   symbolizes the 
weight matrix,   represents the input to the dense layer, and   
is the bias term. 

The end of BrainTumorNet's activities is encapsulated in its 
last output layer, which is equipped with a sigmoid activation 
function. This design option provides binary classification 
capabilities, properly denoting whether the input MRI shows 
the existence or absence of a tumor. Table IV demonstrates the 
architecture of the proposed model BrainTumorNet. Fig. 3 
illustrates a visual output of the proposed model. 

This proposed model for detecting brain tumors using MRI 
images surpasses prior approaches through feature extraction 
and processing efficiency improvements. Increasing filters on 
convolutional layers are utilized to identify detailed features, 
which are essential for identifying brain tumor characteristics. 
Convolutional layers employ a balanced layout of 1×1 stride 
and 3×3 kernel size to optimize image processing, followed by 
max pooling. This arrangement minimizes the loss of 
information while preserving computational efficiency. 
Integrating BatchNormalization enhances learning stability, 
facilitating fast and consistent training. The model reaches the 
highest point with a binary classification output layer that is 
designed to ensure precise tumor detection. This architectural 
design signifies an important improvement in the accurate 
detection of brain tumors by addressing the distinct difficulties 
associated with MRI image analysis. 

 
Fig. 3. The architecture of the proposed model BrainTumorNet. 
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TABLE IV.  DESCRIPTION OF BRAINTUMORNET ARCHITECTURE LAYERS USED FOR BRAIN TUMOR DETECTION 

Operation Layer Name No. of Filters 
Stride 

Size 
Kernel Size Padding Size 

No. of 

Channels 
Input Shape Output Shape 

Input Image Input Layer - - - - 3 222 × 222 × 1 - 

Convolution Convolution 2D 32 1×1 3×3 Same 32 222 × 222 × 1 222 × 222 × 32 

Pooling Maxpooling - 2×2 2×2 Valid 32 222 × 222 × 32 111 × 111 × 32 

Normalization BatchNormalization - - - - 32 111 × 111 × 32 111 × 111 × 32 

Convolution Convolution 2D 32 1×1 3×3 Same 32 111 × 111 × 32 111 × 111 × 32 

Pooling Maxpooling - 2×2 2×2 Valid 32 111 × 111 × 32 55 × 55 × 32 

Normalization BatchNormalization - - - - 32 55 × 55 × 32 55 × 55 × 32 

Convolution Convolution 2D 64 1×1 3×3 Same 64 55 × 55 × 32 55 × 55 × 64 

Pooling Maxpooling - 2×2 2×2 Valid 64 55 × 55 × 64 27 × 27 × 64 

Normalization BatchNormalization - - - - 64 27 × 27 × 64 27 × 27 × 64 

Convolution Convolution 2D 64 1×1 3×3 Same 64 27 × 27 × 64 27 × 27 × 64 

Pooling Maxpooling - 2×2 2×2 Valid 64 27 × 27 × 64 13 × 13 × 64 

Normalization BatchNormalization - - - - 64 13 × 13 × 64 13 × 13 × 64 

Flattening Flatten - - - - - 13 × 13 × 64 10816 

Fully Connected Dense 128 - - - - 10816 128 

Fully Connected Dense 64 - - - - 128 64 

Output Dense 2 - - - - 64 2 
 

E. Hyperparameters Tuning: 

The principal objective of this research is to develop the 
most efficient model BrainTumorNet for classifying brain MRI 
data. Hyperparameters are a group of factors that have the 
ability to impact the model's training process and provide the 
best outcomes [30-32]. These parameters include the volume of 
epochs, batch size, image size, optimizers, activation function, 
learning rate, decay rate, dropout rate and regularizer. During 
the experiment, we conducted several trials before settling on 
batch size, learning rate, regularization factor, etc. Different 
pre-trained models, including VGG16, ResNet50, AlexNet, 
MobileNetV2, InceptionV3, and DenseNet121, are used to 
execute the proposed brain tumor detection. Using a variety of 
optimizers, each model was assessed for 250 epochs. Each 
model is first tuned using Keras-tune to obtain the appropriate 
hyperparameter ranges. We employ the widely utilized grid 
search strategy for parameter tuning. Table V displays the 
parameters after tuning used during model training. 

F. Evaluation Matrix 

Accuracy, Specificity, Recall, Precision, and F1-score are 
some of the performance metrics calculated to assess the 
models' efficacy.  Accuracy measures the rate of a model 
produce accurate predictions. The relevant predictions of 
positive classes are determined by calculating precision. 

Efficiency in predicting the negative class from the whole set 
of classes is measured by specificity. Contrarily, recall is the 
proportion of true positive classes that were anticipated. The 
F1-score measures how well specificity and recall are 
combined. Eq. (6) through Eq. (10) below express the 
parameters. 

         
     

           
  

          
  

     
  

       
  

     
   

           
  

     
  

           
                

                
 

Here, True Positive (TP) is the proportion of 
positive predictions that turned out to be accurate. True 
Negative (TN) is the accurately anticipated negative images. 
False Negative (FN) represents the count of positive photos 
that were incorrectly labeled as negative. Similarly, False 
Positive (FP) represents the count of negative data that were 
incorrectly labeled as positive. 

TABLE V.  THE FINAL HYPERPARAMETERS USED TO TRAIN THE MODELS 

Model 
No. of 

Epochs 
Batch Size Image Size Optimizers 

Activation 

Function 

Learning 

Rate 
Decay Rate 

Dropout 

Rate 
Regularizer 

VGG16 250 64 224×224 Adam Softmax 0.000001 1e-3 0.2 1e-4 

ResNet50 250 64 224×224 SGD ReLU 0.0001 1e-4 0.2 1e-4 

AlexNet 250 64 224×224 Adagrad ReLU 0.00001 1e-2 0.2 1e-4 

MobileNetV2 250 64 224×224 SGD Softmax 0.1 1e-4 0.2 1e-4 

InceptionV3 250 64 224×224 Adam Sigmoid 0.001 1e-3 0.2 1e-4 

DenseNet121 250 64 224×224 Adam ReLU 0.0000001 1e-2 0.2 1e-4 

BrainTumorNet 250 128 222×222 RMSProp Sigmoid 0.01 1e-5 0.2 1e-4 
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IV. EXPERIMENTAL RESULTS 

A. Experimental Setup 

We utilized the Keras 2.10.0, TensorFlow 2.0, and Python 
3.7 programming languages to execute the proposed models 
and produce results. Visualization was done using the Seaborn 
and Matplotlib packages. System specifications include AMD 
Ryzen 7 running at 3.90 GHz, 32 GB of RAM, a MD Radeon 
RX 580 series GPU, and a Windows 10 setup. 

B. Result Analysis 

Six different transfer learning models and novel 
BrainTumorNet model were employed in the study to detect 
brain tumor from MRI data. Furthermore, the seven models are 
employed on the three datasets containing MRI images of the 
brain. The purpose of the study is to identify a robust model 
that can classify MRI data to diagnose brain tumor. The models 
were run for 250 epoch and the outcome of each epoch are 
recorded for all three datasets. Using Eq. (6) through Eq. (10), 
we can calculate the performance parameters of each model 
and so assess how well each model performs. 

In Fig. 4 we can see the results of the performance 
indicators for DT1. Among the transfer learning models, it is 
seen, the model CNN consistently displays high performance, 
with an accuracy of 95.34%. A precision of 96.14% was 
attained, along with 95.78% recall, 96.32% specificity, and 
95.95% f1-score. It is followed by InceptionV3 with specificity 
of 92.55%, similarly the model falls well short of perfection in 
accuracy (93.5%), precision (92.17%), recall (95.78%) and f1-
score (93.13%). Likewise, the other models, including VGG16, 
AlexNet, MobileNetV2, and ResNet50, all have subpar 
accuracy (90.47%, 93.75%, 91.24% and 89.02%, respectively). 
Contrary to the transfer learning models, the proposed model 
performs with exceptionally high measures. The accuracy of 
the proposed model BrainTumorNet is 98.66%. Similarly, the 
specificity is 98.59% and the f1-score is 97.69%. 

Fig. 5 displays the outcomes of DT2's key performance 
metrics. The CNN model shows the highest classification 
efficiency among the transfer learning models with an accuracy 
of 94.76% and an f1-score of 94.98%. The accuracy score of 
VGG16, ResNet50, AlexNet, MobileNetV2 and InceptionV3 
are 85.78%, 91.45%, 92.01%, 89.71% and 90.83% 
respectively. Performance-wise, the proposed BrainTumorNet 
model is much superior to transfer learning methods with an 
accuracy of 97.17%. 

The results of DT3 are recorded and presented in Fig. 6. 
Similar to the other datasets, the CNN model has the best 
classification efficiency among the transfer learning models in 
DT3 with an accuracy of 92.5% and an f1-score of 92.79%. 
Similar to the previous datasets, in DT3, the BrainTumorNet 
shows the highest efficiency. The classification accuracy of the 
model is 94.24%. The precision, recall, specificity, and 
f1scores are 96.34%, 95.06%, 94.59%, and 95.69%, 
respectively. 

The performance matrix shows that the proposed fine-tuned 
model performs consistently with the highest accuracy over the 

three datasets. However, the classification accuracy of the three 
datasets varies. The datasets DT1 and DT2 achieve accuracy of 
98.66% and 97.17%, respectively. These accuracies are quite 
similar to the accuracy achieved from DT3, which is 94.24%. 

The datasets DT1 and DT2 have higher counts of data 
compared to DT3. When employed on DT3, the models have 
less data to train on, so their performance suffers. On the 
contrary, when the BrainTumorNet model is trained and 
validated on DT1, it achieves the highest performance 
efficiency. 

 
Fig. 4. Perfromance of the models for DT1. 

 
Fig. 5. Performance of the models for DT2. 

 
Fig. 6. Perfromance of the models for DT3. 
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Fig. 7. Confusion Matrix of DT1 for the employed models. 

In Fig. 7, we present the confusion matrix created by the 
seven models on the dataset DT1. In the confusion matrix, T 
refers to data with brain tumors, and N refers to data from 
normal brains. The confusion matrix was built from the 
validation set of DT1 consisting of 600 data. It can be observed 
from the confusion matrix that the proposed model 
BrainTumorNet correctly predicts the most data and has the 
lowest incorrect predictions. 

In Fig. 8(a), the progress of the performance accuracy of 
the proposed model (BrainTumorNet) on DT1 is illustrated. 
The performance of the model on 250 epochs is presented 
during both training and validation of the model. It can be 
observed that in the 1

st
 epoch, the model starts with a very low 

training accuracy of 42% and validation accuracy of 54%. 
However, with each progressing epoch, the model's accuracy 
increases rapidly. On the final epoch, the model provides the 
highest training accuracy of 97.83% and validation accuracy of 
98.66%. 

Likewise, in Fig. 8(b), the progress of the loss of the 
proposed model (BrainTumorNet) over 250 epochs is 
presented. On the 1

st
 epoch, the model demonstrates a high 

training loss of 4.75% and a validation loss of 4.33%. Over the 
increased epoch, the loss rate gradually decreases with 
consistency. On the final epoch, the model achieves the lowest 
training loss of 0.207% and validation loss of 0.135%. 

 

 

Fig. 8. (a) Accuracy and (b) Loss of proposed model on DT1 per epoch. 

V. STATE-OF-THE-ART COMPARISON 

This paper introduces BrainTumorNet, a complex 
convolutional neural network (CNN) specifically designed for 
classifying images of brain tumors, to address the crucial 
difficulty of reliably identifying brain tumors using Magnetic 
Resonance Imaging (MRI). Advanced preparation techniques 
were used to ensure the highest level of data quality, including 
CLAHE for image improvement, data augmentation for 
assuring dataset variety, and blockchain integration for secure 
and traceable data administration. By recording accuracy 
scores of 98.66%, 97.17%, and 94.24% across three datasets 
during testing, BrainTumorNet demonstrated its outstanding 
abilities and established a new standard when compared to 
other pre-trained models. This study raises the standard for 
MRI-based brain tumor identification and gives professionals a 
crucial diagnostic tool. Table VI thoroughly evaluates 
BrainTumorNet's performance in relation to other existing 
models. 
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TABLE VI.  STATE-OF-THE-ART COMPARISON OF PROPOSED MODEL 

Authors Data Type Methods Accuracy 

Khan et al. [13] MRI Fine-tune VGG19 90.03% 

Yahyaoui et al. [14] MRI DenseNet 92.06% 

Febrianto et al. [33] MRI CNN 93% 

Afshar et al. [34] MRI CapsNet 90.89 

Anaraki et al. [35] MRI Shallow CNN 94.20 

Rehman et al. [36] MRI 3D CNN 92.67% 

Sajjad et al. [37] MRI VGG19 90.67% 

Banik et al. MRI BrainTumorNet 

98.66% 

97.17% 

94.24%. 
 

VI. CONCLUSION 

BrainTumorNet, a CNN model developed to detect brain 
tumors from MRI images, was demonstrated in this research 
article. Its performance was improved through a rigorous data 
preparation process that included CLAHE and data 
augmentation. Brain TumorNet’s unique incorporation of 
blockchain technology assures MRI data management that is 
highly secure and identifiable, thereby developing confidence 
and facilitating collaborations focused on data integrity. 
Assessed through the utilization of a wide variety of metrics 
such as accuracy, specificity, recall, precision, f1-score, and 
confusion matrix, BrainTumorNet demonstrated its ability to 
perform by attaining accuracy rates of 98.66%, 97.17%, and 
94.24% on three separate datasets. Furthermore, it 
outperformed six pre-trained deep learning models. Despite 
infrequent misclassifications, its overall efficacy represents a 
significant development in the field of medical imaging. It is 
believed that integrating deep learning with blockchain will 
bring about an important change in perspective in healthcare 
management and brain tumor detection in the future. 
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