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Abstract—Segmentation of the Left Ventricular Epicardium 

and Endocardium remains challenging and significant for 

valuable investigation of cardiac image classification. Previous 

research methods did not consider the flexibility of the heart 

area, so measurements needed to be more consistent and 

accurate. In addition, previous methods ignored the presence of 

affectability and additional parts, such as the lung organ inside 

the frame, during segmentation. Deep learning architectures, 

specifically convolutional neural networks, have become the 

primary choice for assessing cardiac medical images. In this 

context, a Convolutional Neural Network (CNN) can be an 

effective way to segment the left ventricular epicardium and 

endocardium as CNN can take data pictures, move enormity to 

various centers or objects in the image and have the choice to 

separate one from the other. This research proposes an efficient 

method for segmenting the left ventricular epicardium and 

endocardium using the InceptionV3 convolutional neural 

network. Rather than including fully connected layers on the 

head of the component maps, the proposed method considers the 

average of each element map, and the subsequent vector was 

taken care of legitimately into the SoftMax layer. Data 

augmentation technique was used to validate the proposed 

method on large number of dataset images. Besides, the proposed 

method was validated in publicly available MRI cardiac image 

datasets. Comprehensive experimental analysis was done by 

analyzing a large number of performance metrics, i.e., cosine 

similarity, log cos error, mean absolute error, mean absolute 

percentage error, mean squared error, mean squared logarithmic 

error, and root mean squared error. The proposed method 

depicted superior performance for localization of the left 

ventricular epicardium and endocardium in terms of all these 

performance metrics. In addition, the proposed method 

performed efficiently to get smooth curve for covering the region 

due to usage of interpolation technique to draw the curve, which 

made it smoother compared with previous research. 

Keywords—Convolutional neural network; segmentation; 

computer vision; deep learning 

I. INTRODUCTION 

Coronary artery disease (CAD) has the highest morbidity 
and mortality rates globally [1]. For this, localization of the 
left ventricular epicardium and endocardium using deep 
learning approach can be automated to provide a robust tool 
for imaging the structure of the human heart. Generally, LV 

segmentation methods are formed based on area and time, 
where the area locates the heart within the midpoint to the 
indicated frame [2]. Previous research methods did not 
consider the flexibility of the heart area, so measurements 
needed to be more consistent and accurate. Time-based 
strategies acknowledge the heart to be the central working fact 
within the frame [3]. These methods endured the absence of 
affectability and additional parts, such as the lung, which is an 
active organ inside the frame in expansion for movement 
production [2]. More estimation has been put forward to 
handle this issue for LV segmentation in MRI [4] [5]. Besides, 
due to excellent efficacy or cost ratio in evaluating left 
ventricular function, gated myocardial perfusion SPECT 
(MPS) is widely investigated for non-destructive diagnosis of 
CAD [6]. Endocardium and epicardium must be accurately 
delineated on perfusion images for quantitative analysis of the 
left ventricle (LV) in MPS followed by measurement of LV 
functional parameters. In this context, manual segmentation is 
time-consuming and needs more reproducibility [6]. 
Therefore, to improve the accuracy of quantitative analysis, it 
is necessary to develop a precise, reproducible, and fully 
automated localization method. 

At present, industrial software extracts the left ventricular 
epicardium and endocardium surface features by estimating 
the maximum myocardial counts. Then, Gaussian fit is 
implicated with empirical standard deviation or threshold 
method to evaluate the details. However, this method needs to 
be investigated again in assessing myocardial functions. In 
particular, left ventricular ejection fraction (LVEF) is often 
overestimated in patients with tiny hearts, and the error is 
more pronounced in females than males [7]. 

Traditional computer vision-based image processing 
methods have demonstrated significant improvement in 
cardiac image segmentation, such as atlas and model based 
methods [8, 9]. In recent years, deep learning models, which 
automatically learn high-level features of the potential 
distribution of data, outperformed traditional images 
segmentation methods in accuracy and time efficiency [10]. In 
this context, multi-class three-dimensional (3D) V-Net was 
proposed to automatically segment the endocardium and 
epicardium in gated MPS, which exhibits improved 
performance [11]. The average Dice similarity coefficient 
(DSC) values of the model in the endocardium and epicardium 
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of regular patients were 0.907 and 0.965, respectively. 
However, previous deep learning methods still need to be 
improved for accurate LV segmentation in MPS towards 
localization. The object shapes extracted from previous image 
segmentation methods for localization have shown great 
success as prior knowledge in refining the deep learning 
models for medical image classification [12,13]. In this 
context, combination of prior knowledge reduces the potential 
output space of model partitioning and speeds up the 
convergence during the model training. However, prior 
knowledge is generally used as the input which was hard to 
extract. 

This research uses Inception-v3 CNN architecture for 
segmenting the left epicardium and endocardium. The 
innovations and our contributions are listed as follows: 

1) This research proposes an efficient method for 

segmenting the left ventricular epicardium and endocardium 

using Inception-v3 CNN architecture where the average of 

each element map and the subsequent vector were taken care 

of legitimately into the SoftMax layer rather than including 

fully connected layers on the head of the component maps. 

2) Data augmentation technique was used to overcome the 

shortage of dataset images by the proposed method, which 

allows the proposed method to be validated robustly. 

3) The proposed method was validated by analyzing a 

large number of performance metrics, i.e., cosine similarity, 

log cosh error, mean absolute error, mean absolute percentage 

error, mean squared error, mean squared logarithmic error, 

and root mean squared error, where proposed method depicted 

superior performance. 

The remainder of this paper is organized as follows: 
Section I gives the introduction. Critical previous research is 
illustrated Section II, comprehensive details of the proposed 
methodology are elaborated in Section III, details of 
experimental results with analysis for validation are presented 
in Section IV, and finally, Section V concludes the paper. 

II. PREVIOUS RESEARCH METHODS 

Manual left ventricular epicardium and endocardium 
segmentation are crucial for risk stratification, diagnosis, and 
treatment evaluation. However, manual segmentation has been 
suffering from various issues, i.e., time-consuming, tedious, 
and lack of generalization, which can impact the 
reproducibility of the results [14]. Automatic segmentation for 
segmentation can overcome some of these limitations [15], 
where deep learning methods are under investigation to 
develop accurate, robust, and fast computer vision techniques. 
As the clinical application of MRI is rapidly growing, robust 
computer vision techniques are required, which will not need 
any supervision for acceptable accuracy. This research 
developed and implemented a robust method for segmenting 
the Left Ventricular (LV) Epicardium and Endocardium using 
efficient deep learning method. 

Previous Research reported the application of Deep 
Learning (DL) to segment the left ventricular epicardium and 
endocardium. Research in [16] evaluated multiple DL 

methods for left ventricular endocardium segmentation and 
found the superiority of encoder–decoder-based architectures 
over non deep learning methods. Research in [17] implicated 
U-Net to segment the left ventricle by changing UNet 
architecture in MFP-U-Net. Their proposed CNN added 
additional convolution layers for producing fixed size feature 
maps and efficient left ventricular segmentation performance. 
Research in [18] combined a modified U-Net architecture with 
an FCN encoder to influence feature extraction and allow the 
system to learn from execution. Research in [19] implemented 
bilateral segmentation network to extract deep features and a 
pyramid local attention algorithm to extract significant 
features within compact and sparse neighboring contexts. 
Research in [20] used multiple parallel pipelines for ES and 
ED frame segmentation using DeepResU-Net. Distinct from 
the other Research, Research in [22] used self-supervised 
algorithms [21] to separate the left ventricle to reduce the 
issue for the lack of labeled data. Research in [23] addressed 
object detection method and YOLOv3 algorithm, to detect 
three points of the ventricular chamber and segment the 
ventricles. Despite these method‟s innovativeness and high 
performance, previous methods focused on segmenting the 
ventricle for segmentation but not all its anatomical structures. 

Convolutional Neural Network (CNN) is a deep learning 
strategy that can extract data features, move enormity to 
various centers or objects in the image, and have the choice to 
separate one from the other. While in harsh strategies for 
CNN, channels are hand-worked with enough preparation, 
ConvNets can get capacity with these channels. Most LV 
limitation techniques are primarily founded on spot-based, 
time-based, and shape-based speculations, which refer to the 
areas of strategies except the heart in the picture [24]. A 
combination of the dynamic figure model and dynamic 
appearance models were used to confine the left and right 
ventricles of customary and Tetralogy of Fallot (TOF) hearts 
on 4-D (3-D+time) MR pictures [25] [26]. For each ventricle, 
a 4-D model was first used to accomplish incredible essential 
confinement on all heart stages, and a 3-D model was applied 
to each stage to increase the exactness while keeping up the 
complete heartiness of the 4-D division [27]. Another 
procedure was introduced in Deep CNN to restrict the Left 
Ventricular in cardiovascular MRI. A six-layered 
Convolutional Neural Network with different part estimations 
was used to separate highlights trailed by SoftMax, a 
connected layer for portrayal. 

The pyramids of scales assessment were familiar with the 
record of the different dimensions of the heart [28]. A range-
based device was produced to draw closer to experiencing the 
ill effects of affectability [29]. Automatic-Image-Driven 
technique's suppositions depend on the heart, roughly in the 
middle of the genuine picture. In this context, the LV blood 
pool is more roundabout than the Right Ventricular blood 
pool, which has an upper sign force [30]. Artificial 
Intelligence (AI), Computer Vision (CV), and Image 
Processing (IP) calculations have been likewise introduced to 
handle the segmentation of issues by isolating the frontal 
regional object from the foundation. While hardly any specific 
methods have been proposed to deal with the issue of LV 
restriction in X-beam, a couple of computer vision and image 
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processing methods have been familiar with limited 
unmistakable body parts in modalities, i.e., Ultrasound and 
Computed Tomography (CT). Kellman assessed and limited 
the LV posture using probabilistic boosting trees and minimal 
space learning [31]. Research in [32] utilized nonlinear 
planning through relapse to limit in echodiogramic dataset. 
Modified LV (Left Ventricle) limitation in cardiovascular 
MRI pictures is a significant development for programmed 
division and practical perception. In this context, a 
comparative investigation should be combined into the severe 
degree of chance for backslide to improve the restriction task 
[33]. Recently, substantial convolutional systems have 
accomplished magnificent execution in many pictorial 
division assignments [34] and are excitedly applied in the field 
of clinical picture appraisal [35]. For instance, research in [36] 
suggested a 3D essentially oversaw system for the robotized 
division of the liver and the entire heart, which needs further 
investigation due to a lack of datasets. Different study 
attempts were made to approach the problem of segmentation 
of left ventricular epicardium and endocardium activity. This 
research proposes an efficient method for segmenting the left 
ventricular epicardium and endocardium using the 
InceptionV3 CNN model. The proposed method considers the 
average of each element map, and the subsequent vector was 
taken care of legitimately into the SoftMax layer. The 
proposed method depicted superior performance for 
segmentation of left ventricular epicardium and endocardium. 

III. PROPOSED RESEARCH METHODOLOGY 

This research used InceptionV3 as the CNN architecture. 
The overall proposed methodology is shown in Fig. 1. 

Top layer with a custom network is trained rather than 
including fully connected layers on the head of the component 
maps. The average of each element map was used, and the 
subsequent vector was taken care of legitimately into the 
SoftMax layer. Global average pooling was aggregated with 
spatial data for spatial solid interpretations of the features. The 
input layer was normalized by adjusting and scaling the 
activations. To build the solidness of the network, batch 
normalization normalized the yield of a previous actuation 
layer by removing the batch mean and separating it by batch 
standard deviation. 

 
Fig. 1. Proposed methodology. 

A. Input Images 

Cardiac MR Image sequences with short-axis were used 
from 33 subjects for 7980 2D images. All the subjects were 
under the age of 18 where each patient‟s image sequence 
consisted of exactly 20 frames, and the number of slices 
collected along the long axis of the subjects ranges between 8 
and 15. Spacing between slices ranged between 6 and 13 mm. 
Each image slice consisted of 256 * 256 pixels with a pixel 
spacing of 0.93–1.64 mm. 

B. Preprocessing 

Each subject's arrangement was comprised of 20 frames 
and 8 to 15 slices along the long axis for an aggregate of 7980 
pictures. However, images were raw and unprocessed, kept as 
16-bit DICOM images. So, this research converted 16-bit 
DICOM input images into 256*256*3 by reshaping them, as 
shown in Fig. 2. 

 
Fig. 2. Conversion of 16-bit DICOM input images into 256*256*3. 

C. Data Augmentation 

The paucity of data is another main problem in 
establishing deep learning models like CNN. Data 
augmentation is a helpful strategy in building a convolutional 
neural network that can expand the size of the training set 
without procuring new pictures. In this context, frames are 
copied with some variety. This research expanded the image 
to safeguard the highlights key to make predictions yet 
revamp the pixels enough that it includes some noise. In 
addition, this research rescaled images by dividing 255 with 
every pixel. In this context, insufficient data for model 
training was a typical scenario, whereas 5011 segmentation 
images were available. The data augmentation technique 
provided strong support with reduced loss in that context. 

D. CNN Architecture 

Each input image was passed through convolution layers 
with kernels, max pooling, and fully connected layers. 
SoftMax function was applied to segment objects with 
probabilistic values between 0 and 1. Convolution preserved 
the correlation between pixels by understanding features using 
squares of input data. Max pooling is considered the most 
significant element from the dense feature map. Fully 
connected layers are used where all the inputs from one layer 
are added to every activation unit of the next layer. In this 
context, the last few layers were fully connected layers, 
which compiled the data extracted by previous layers to form 
the final output. CNN architecture deployed by this research is 
shown in Fig. 3. 

E. Prediction 

The cardiac MRI dataset provides short-axis cardiac MR 
images and ground truth of their left ventricles endocardial 
and epicardial segmentations. Each image was manually 
segmented for a total of 7980 images where both the 
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endocardium and epicardium of the left ventricle were visible, 
for a total of 5011 segmented MR images and 10022 contours. 
Each contour was described by 32 points given in pixel 
coordinates. This research trained the proposed method based 
on these 32 points (target variable). After training the model, a 
prediction of 64 points (32 for epicardium and 32 for 
endocardium) was acquired. 

 
Fig. 3. CNN architecture used in the proposed research. 

F. Interpolation 

The proposed method used interpolation to draw the 
smooth curve. In this context, for each image, the epicardium 
and endocardium contour were depicted by 32 points in pixel 
coordinates (so, in total, 64 points). In this context, Pchip 
stands for Piecewise Cubic Hermite Interpolating polynomial 
used by the proposed method that interpolates data and 
specified derivatives at the interpolation points. As two points 
determine a linear function, two points and two given slopes 
determine a cubic. The data points are known as "knots." Y-
values remain at the knots, so to get a particular PCHIP, the 
proposed method specified the values of the derivative y at the 
knots. In addition, these two cubic polynomials were 

considered in x on the interval 1≤x≤2. These functions were 

formed by adding cubic terms that vanish at the endpoints to 
the linear interpolant. After getting the predicted values of 
epicardium and endocardium, those points were passed for 
interpolation. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Dataset 

Cardiac MRI datasets [30] were developed from 33 
subjects. This dataset contains 20 frames and 8-15 slices along 
the axis for individual subject sequences. Most slices in this 
dataset contain heart anomalies because of some heart 
diseases. So, this dataset consists of a total of 7980 images. In 
Cardiac MRI datasets, every patient contains 20 timeframes 
for 8-15 short-axis slices with matrix size 256x256, 6-13 mm 
slice thickness, and pixel resolution of 0.93-1.64mm [31]. The 

images were originally stored as 16-bit DICOM images. Form 
7980 images, there were 5011 segmented images with 10022 
contours. Each shape was pointed by 32 given in pixel 
coordinates. 

In Cardiac MRI datasets, 4008 images were used by this 
research for training purposes. This research used 501 images 
for validation, and for testing, this research used 502 images. 
Besides, “Adam” as an optimization algorithm was used by 
the proposed method [37][38]. The preliminary learning rate 
was 0.02, the learning rate decreased with factor = 0.4, and 
patience was three by monitoring the „validation loss.‟ Relu 
was used as an activation function and in the outcome layer, 
proposed used liner as an activation function. 

B. Hardware and Software Set Up 

For experimental purposes, a Windows platform was used 
with an 8th generation Intel Quad-Core i7-7300HQ processor 
(14MB Cache, 4.0GHz), 16GB DDR4 DRAM, and NVIDIA 
GeForce GTX 1050 with 16GB VRAM. This research used 
TensorFlow v2.13.0 and Keras 2.13.1 RC1 [39] [40]. This 
research also used some modules, i.e., Numpy, Matplotlib, Itk, 
Seaborn, Sklearn, and Scipy, for experimentation. The whole 
dataset was divided into two sections, i.e., one for training and 
the other for testing. The training section contains 80 % of the 
dataset images, and the remaining 20% was used for testing. 

C. Performance Metrics 

To validate the performance of the proposed method, 
various performance metrics were used, i.e., cosine similarity, 
log cosh error, mean absolute error, mean absolute percentage 
error, mean squared error, mean squared logarithmic error, 
and root mean squared error for graphical representation. 
Details of these metrics are mentioned in subsequent sections. 

1) Cosine similarity: Estimating the comparability 

between at least two vectors is called cosine similarity [41]. 

The vectors are ordinarily nonzero and are inside an inward 

item space. In practice, cosine similarity is used to decide how 

comparable the documents are regardless of their size, which 

is a value equal to the division between the dot product of 

vectors and the product of the Euclidean norms or magnitude 

of each vector mentioned in Eq. (1). 

                
   

‖ ‖‖ ‖
 

∑     
 
   

√∑   
  

   √∑   
  

   

 (1) 

Here, A and B are two vectors. A.B is the dot product of 
those two vectors. 

2) Log cosh error: Log Cosh Error is used in a regression 

task, a logarithm of hyperbolic cosine of the prediction error. 

Log Cosh Error works like mean squared error, which is not 

firmly influenced by the occasional wildly incorrect 

prediction. Log Cost Error was estimated using Eq. (2). 

        ∑              
 
     

 
     (2) 

In this equation, L denotes Log Cosh Error, log () denotes 
logarithm function, cosh() denotes hyperbolic cosine function, 

   
 
    denotes difference between two points in y-axis. 
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3) Mean Absolute Error (MAE): Mean Absolute Error 

(MAE) is a widely recognized metric that quantifies precision 

for persistent factors [42]. MAE estimates the average 

magnitude of the errors in a set of predictions without thinking 

about their path. Besides, MAE is the difference between true 

or actual values and predicted values measured using Eq. (3). 

    
 

 
∑ |     ̂|

 
       (3) 

Here, MAE denotes Mean Absolute Error,      ̂ denotes 

difference between prediction and true value, n denotes total 
number of data points. 

4) Mean absolute percentage error: Mean Absolute 

Percentage Error (MAPE) is the mean or normal of the total 

rate errors of forecasts [43]. Error is characterized as the result 

of the observed value by subtracting the forecasted value. 

Percentage errors are added regardless of the sign to register 

MAPE. This measurement is straightforward because it gives 

the error as far as percentage. Likewise, absolute percentage 

errors are utilized, and the issue of positive and negative errors 

offsetting each other is dodged. Thus, MAPE has 

administrative allure and is regularly utilized in estimation. 

MAPE can be well defined by middling the Absolute 

Percentage Errors of forecasts. MAPE is estimated using Eq. 

(4). 

     {                                  }  (4) 

5) Mean Squared Error (MSE): The average of the 

squared error is called the Mean Squared Error (MSE) [44]. 

MSE reveals how close a regression line is to a set of points, 

which is done by taking the distances from the points to the 

regression line. The squaring is essential to eliminate any 

negative signs, which likewise gives more weight to bigger 

contrasts using Eq. (5). 
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           (5) 

Here, MSE denotes Mean squared error, n denotes number 
of data points,    denotes observed values and   ̃

 
denotes 

predicted values. 

6) Root Mean Squared Logarithmic Error (RMSLE): 

Root-mean-squared-logarithmic error (RMSLE) is a function 

mentioned in Eq. (6) used for finding the difference between 

predicted values and the actual values [45]. To comprehend 

the manipulation of RMSLE and corresponding disparities, it 

is imperative to calculate means squared Error (MSE) mean 

where MSE joins both fluctuation and inclination of the 

indicator. MSLE cares about the relative difference between 

predicted value and actual value. 

      {                                }  (6) 

7) Root Mean Squared Error (RMSE): Root Mean 

Squared Error (RMSE) is a recognized way to find the error of 

a regression model, which defines how close a fitted line is to 

data points [44]. RMSE was estimated using Eq. (7). 

     √
∑       ̂ 
 
   

 
    (7) 

Here, i denotes variable, N denotes number of non-missing 
data points, xi denotes actual observed values and   ̂

 
denotes 

estimated time series. 

D. Experimental Results 

The proposed method received the best cosine similarity of 
0.9977 for the Cardiac MRI dataset after 76 epochs, as shown 
in Fig. 4. For each of the performance metrics, the graphical 
representation is shown in Fig. 4 to 9, where the orange line 
was used for training, and the blue line was used for 
validation. This research considered epoch along with the x-
axis and cosine similarity along with the y-axis. Estimation of 
cosine similarity turned into an essential factor for 
understanding likenesses between objects and provided the 
strong assumption between the train set and validation set‟s 
similarity. In addition, loss differences can be calculated from 
this estimation, which helped to ensure that the proposed 
method never faces an overfitting problem. 

Cosine similarity calculates the comparability between two 
vectors of an inner product space. The output produces a value 
ranging from -1 to 1, indicating similarity where -1 is non-
similar, 0 is orthogonal (perpendicular), and 1 represents total 
similarity. From Fig. 4, it can be observed that in 76 epochs, 
the value of cosine similarity was 0.9977, and then the model 
stopped learning. If the model continued learning, the 
proposed method would face the overfitting problem. 

 
Fig. 4. Cosine similarity of cardiac MRI dataset. 

This research received Log Cosh Error of 1.4585. Log 
Cosh Error was strongly affected by the occasional wide 
incorrection prediction and thus considered an improved 
version of MSE. Log Cosh Error is preferable to use when 
dataset contains significant errors due to more sensitivity to 
errors than the MSE. For this reason, this research used Log 
cos error for validating the proposed method. From Fig. 5, in 
76 epochs, the model stopped learning. From 1 to 20 epoch, it 
had a large loss difference between train and validation data. 
But after the 20th epoch, loss difference was less. 
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Fig. 5. Log cosh error of cardiac MRI dataset. 

This research received Mean Absolute Error (MAE) of 
2.0178. In many regression scenarios, Mean Absolute Error is 
preferable when the average error becomes very large, which 
is the main reason to use MAE in this research for validating 
the proposed method. In Fig. 6, in 76 epochs, MAE was 
2.0178, then the model stopped learning. From 1 to 25 epochs, 
a significant loss difference was observed between train and 
validation data. However, after the 25th epoch, the loss 
difference was less. 

 
Fig. 6. Mean absolute error of cardiac MRI dataset. 

This research received Mean-Squared-Logarithmic Error 
(MSLE) of 4.1755e-04. Usage of MSLE during regression 
prevented significant errors from being significantly more 
penalized than small ones. For cases where the target value 
range was large, this was the main reason to use MSLE for 
validating the proposed method. In Fig. 7, in 76

th
 epochs 

learning was stopped where from 1 to 20
th

 epoch, the proposed 
method had a significant loss difference between train and 
validation data. However, after 20 epochs, the loss difference 
was less. 

 
Fig. 7. Mean absolute percentage error on cardiac MRI dataset. 

This research received Mean Squared Error (MSE) of 
7.0577. MSE is preferable to use when the average error is 
very small. One minor difference with MAE was that the 
result is squared, which introduced benefits during 
optimization, which was the main reason for this research to 
use MSE for validation. In Fig. 8, in 76 epochs, the result of 
the Mean Squared Error was 7.0577, then the model stopped 
learning. From 1 to 25 epochs, it had a significant loss 
difference between train and validation data. However, after 
25 epochs, the loss difference was less. 

 

Fig. 8. Mean squared error of cardiac MRI dataset. 

The proposed method received Root Mean Squared Error 
(RMSE) of 2.6561. RMSE was mostly applicable when 
significant errors were undesirable, which is the main reason 
for using RMSE in this research for validation. In Fig. 9, in 76 
epochs, the Root Mean Squared Error result was 2.6561, then 
the model stopped learning. From 1 to 20 epochs, it had a 
significant loss difference between train and validation data. 
However, after 20 epochs, the loss difference was less. Overall 
experimental results for the proposed method are in Table I. 
Sample resultant outputs as image our show in Fig. 10. 
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Fig. 9. Root mean square error of cardiac MRI dataset. 

TABLE I. OVERALL EXPERIMENTAL RESULTS BASED ON CARDIAC MRI 
DATASET 

Performance Metrics Result 

Cosine similarity 0.9977 

Log Cosh Error 1.4585 

Mean Absolute Error 2.0178 

Mean Squared Logarithmic Error 4.1755e-04 

Mean Squared Error 7.0577 

Root Mean Squared Error 2.6561 

Training Processing Time in Seconds 2500 s 

  

  
Fig. 10. Same output from Cardiac MRI datset. 

The proposed method was compared with existing 
research based on several metrics, i.e., Mean Absolute Error 
(MAE), Mean Absolute Percentage Error and Root Mean 
Squared Error (RMSE). Mean Absolute Error (MAE) was 
used for summarizing and measuring the quality of a deep 
learning model. The proposed method received MAE 2.0178, 
shown in Table II, after the compilation of training. 
Previously, research in [46] estimated the mean absolute error 
of 2.34 using a lightweight left ventricle localizer approach. 
The performance difference between the research in [46] and 
the proposed method by this research is that the number of 
data presented in the dataset used by research in [46] was 
significantly low to train the model perfectly. This research 
overcame the obstacle by using data augmentation approach to 
balance the sample data. Data augmentation is a significant 
strategy in building a convolutional neural network that can 
expand the size of the training set without procuring new 
frames. The proposed method rescaled the image by dividing 
255 with every pixel. The proposed research could feed a 
decent amount of data through the network through this 
approach. 

TABLE II. COMPARISON BASED ON MEAN ABSOLUTE ERROR 

Method Mean Absolute Error 

Proposed Inception-V3 Convolutional Neural 
Network 

2.0178 

LVLNET and Fully Convolutional Neural 

Network [46] 
2.34 

The proposed method received Mean Absolute Percentage 
Error value of 1.5661, shown in Table III. Research in [47] 
received Mean Absolute Percentage Error of 1.43 using 3D 
active appearance models (AAM) [47]. Compared with the 
proposed method by this research with the 3D active 
appearance models on short axis cardiac, the proposed method 
provided better performance in terms of Mean Absolute 
Percentage Error. Research in [47] used the Gauss-Newton 
optimization technique. In contrast, this research did not use 
the Gauss-Newton optimization technique because even 
though Gauss-Newton optimization is accurate and reliable, 
the Gauss-Newton optimization technique is slow. 

TABLE III. COMPARISON BASED ON MEAN ABSOLUTE PERCENTAGE 

ERROR 

 
Mean Absolute 

Percentage Error 

Inception-V3 Convolutional Neural Network 1.5661 

3D Active Appearance Model (AAM) and 2D + 
time active shape model (ASM) [47] 

1.43 

Root Mean Squared Error (RMSE) is primarily useful 
when significant errors are particularly undesirable. For 
RMSE, the lower value is better. In the proposed method, this 
research received RMSE of 2.6561. By using the multiple 
linear regression (MLR) model, research in [48] received an 
RMSE of 6.24. Using the random-forest regression (RFR) 
model, research in [46] received RMSE of 5.72. So, in both 
cases, this research's proposed method received better results 
compared with research in [46] and [48]. 
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V. CONCLUSION 

This research proposed an efficient method to segment left 
ventricular epicardium and endocardium using convolutional 
neural network. Data augmentation technique implicated by 
the proposed method expanded the size of the training set 
without procuring new images thus assisted to validate the 
proposed methos on large number of dataset images. This 
research used Cardiac MRI dataset to validate the proposed 
methodology and estimated various performance metrics to 
justify the effectiveness robustly. After reshaping and 
rescaling the datasets images, proposed method used Inception 
V3 without top layer. Pchip interpolation technique was 
applied to smoothen the curve in the output images. This 
research observed the loss 2.011 because of the paucity of data 
which indicates effective localization of epicardium and 
endocardium with less error. Besides, due to usage of data 
augmentation, proposed research was able to feed a decent 
amount of data through network comparing with existing 
research. In addition, in comparison with other research, for 
3D active appearance models on short axis cardiac, the 
proposed method provided better performance. In future, this 
research aims to improve CNN framework using various 
recent deep learning architecture such as Faster R-CNN and 
YOLOv7 for vast varieties of dataset images using data 
augmentation technique. Proposed method is expected to 
contribute significantly for more precise discovery and 
treatment of cardiovascular disease. 
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