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Abstract—Inscriptions play an important role in preserving
historical information. As such, conservation of these inscriptions
provides valuable insights into the history and cultural heritage
of the region. Musnad inscriptions are considered one of the
earliest forms of writing from the Arabian Peninsula, preceding
the modern Arabic font; however, most Musnad inscriptions
remain unread and untranslated, signifying a substantial loss
of historical information. In response, this paper represents a
significant contribution to the field by proposing a successful
approach to interpreting Musnad inscriptions. To do so, a dataset
was prepared from the Saudi Arabian Ministry of Culture
and subjected to preprocessing for optimal recognition, a step
that entailed several experiments to enhance image quality and
preparedness for recognition. The dataset was then trained
and tested with 29 classes using three different convolutional
neural network (CNN) architectures: Visual Geometry Group 16
(VGG16), Residual Network 50 (ResNet50) and MobileNetV2.
Thereafter, the performance of each architecture was evaluated
based on its accuracy in recognising Musnad inscriptions. The
results demonstrate that VGG16 achieved the highest accuracy
of 93.81%, followed by ResNet50 at 89.39% and MobileNetV2 at
80.02%.
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I. INTRODUCTION

The ancient writings and inscriptions found in the Arabian
Peninsula hold great significance in the modern era, as they
serve as a source for historians and researchers studying
ancient history and civilisations. Within the Kingdom of
Saudi Arabia, numerous archaeological sites are covered with
inscriptions and ancient texts written in the form of Musnad
inscriptions, which represent a rich cultural heritage and hold
great historical value.

The Musnad inscriptions, originating in the southern region
of the Arabian Peninsula, predates the current Arabic font, with
Musnad inscriptions discovered on diverse surfaces, from forts
and mountainsides to smaller stone fragments and statue bases
[1]. These inscriptions provide invaluable insights into the lives
of the individuals who created them, including their lifestyle,
beliefs, political climate and relationships with neighbouring
nations. In addition, Musnad inscriptions were utilised in daily
interactions, further highlighting their importance [2] [3].

The Musnad inscriptions is comprised of 29 characters,
and the writing direction is right to left. Unlike Arabic font,
the characters in Musnad are separate and unconnected in a
word. This means the shape of each character remains the
same, regardless of its position in the word. As well, words
are separated by a vertical line (|). Furthermore, Musnad does
not include any punctuation or diacritical marks [2].

In Fig. 1, an example of a Musnad inscription from
Al-Faw village is depicted. To translate these inscriptions,
each Musnad character is converted into its corresponding
counterpart in Standard Arabic, as shown in Fig. 2, where the
translation considers the vertical line that separates each word.
It is important to note that the translated words belong to an
old Arabic dialect, but they are all Arabic [4].

Fig. 1. One of the musnad inscriptions in the village of Al-Faw.

Motivated by the limitations of existing translation
methods, such as the time-consuming nature of manual
techniques and the dependence on expert availability, this
research presents the first attempt to automate the recognition
and translation of Musnad inscriptions into Arabic using
image processing and deep learning. Consequently, it seeks
to enhance the experience of reading Musnad inscriptions,
making them more accessible and effortless to understand.
Thus, the contributions of this work can be summarised as
follows:

• Creation of a dataset for the Musnad inscriptions.

• Application of an optimal image processing technique
to improve recognition accuracy.

• Comparison of the performances of three deep
learning models (ResNet50, MobileNetv2 and
VGG16) to determine which has the highest accuracy.

The remainder of the paper is structured as follows: Section
II presents a literature review, Section III provides a detailed
description of the Musnad inscription dataset, Section IV
outlines the proposed methodology, Section V presents the
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Fig. 2. Musnad alphabet.

results and discussions and Section VI concludes the paper
and suggests future directions for research.

II. LITERATURE REVIEW

Scientific research has adopted different approaches to
implementing detection and recognition, depending on the
inscriptions, ancient characters and language itself. This
section will thus provide an overview of related works in our
field.

According to previous research, you only look once
(YOLO) object detection methods are used in [5], [6], which
implements the CNN architecture. YOLOv3-tiny was able to
recognise the Kawi character on copper inscriptions due to
its high detection accuracy (average of 97.93% in [5] and
high detection speed. Meanwhile, the Oracle Bone inscriptions
(OBIs) were recognised using two deep learning models in
[6]: first, YOLOv3-tiny was used to detect and recognise
OBIs, and second, MobileNet was used to detect undetected
OBIs, as YOLOv3-tiny’s limitations prevent all OBIs from
being correctly recognised. Thus, MobileNet had the best
performance in training accuracy and validation accuracy
(99.30% and 98.89%, respectively).

Further, [7] analysed and identified four different
algorithms for adapting the OCR process to recognise Tamil
scripts, and support vector machines (SVM) was identified
as the best option. Meanwhile [8] a method called advanced
maximally stable extremal regions (AMSER) to improve the
accuracy of identifying Tamil characters in images by detecting
the extremal region and characteristic function, the accuracy of
recognition of which was 95.59%. This method was introduced

because of the low accuracy of inscriptions images using
OCR. In addition, [9] suggested a k number of clusters (k-
means clustering) for an ancient Kannada text using scale-
invariant Fourier transform (SIFT) and speeded up robust
features (SURF). Moreover, in [10], OCR was used to identify
ancient Tamil inscriptions on stone using a feature extracted
with the SIFT algorithm.

According to [11], who employed the Siamese network in
few-shot learning (FSL),the local feature extraction of Chinese
characters performs better using the VGG16 network as the
backbone feature extraction network, achieving a recognition
accuracy of 82.67%. Meanwhile, [12] the efficient and accurate
scene text (EAST) detection model and the feature extractor
VGG16 to extract painting inscriptions by combining the
characteristics of Chinese paintings, achieving a high accuracy
of 89%. In addition, in [13], Sundanese writing inscribed on
palm leaves was recognised using a three-layer CNN with a
73% recognition accuracy. Next, in [14], was employed for
recognition, and Tesseract training was performed using a deep
neural network architect. Then, CNN long–short-term memory
(LSTM) networks were configured and trained for the language
model of the Tamizhi script, leading to an OCR accuracy of
91.21%. Furthermore, [15] used a CNN to extract and translate
information from each character into Modern Tamil, achieving
an accuracy of 94.6%.

CNNs are used as feature extractors, as well as classifiers,
for their ability to recognise 33 classes of basic characters
from Devanagari ancient manuscripts, as in [16], reaching
a recognition accuracy of 93.73%. Further, the historical
Kannada handwritten characters are recognised using the
line segmentation approach with LBP features in [17], and
the SVM classifier achieved a good performance, with an
accuracy of 96.4%. In [18], a CNN was used with dropout
to recognise Brahmi words, with a 92.47% accuracy. As well,
[19] designed and developed an automatic recognition tool
for variant characters to assess tablet inscriptions, leading to
an accuracy of the trained model ResNet50-18 of 90%. In
addition, [20] utilised CNN and MobileNet to detect Tamil-
Brahmi script, achieving an accuracy of 68.3%, but MobileNet
outperformed all other models employed. In [21], a CNN was
used to classify and recognise Brahmi characters, as well as
broken part of these characters, and VGG16 models provided
results with the best accuracy, at 93.33%.

Through this literature review, various approaches, such
as SIFT, ResNet18 and VGG16, for feature extraction and
classification techniques, including CNN, were explored. The
results reported in these papers vary depending on such
factors as the condition of the inscriptions and the techniques
employed. Despite an extensive review, it is noteworthy that
no research paper was identified that specifically addresses
the recognition and translation of inscriptions in the ancient
Southern Arabic Musnad font.

III. DATASET

A. Dataset Collection and Description

A request was made to the Ministry of Culture to provide
a collection of images for use as a dataset in this work, and
they did so with a collection of images from the Heritage
Commission of the Ministry of Culture. The dataset contained
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images of the Musnad inscriptions in Lahyani form. And
contained images of the Musnad from Qaryat al-Faw, Yemen
and Al-Ula, totalling 293 inscriptions, which were divided into
three categories: real, written and anointed, as shown in Fig. 3.

As the Musnad inscriptions span consecutive historical
stages, researchers divided them into three types: ones that take
on a geometric look, as in Fig. 4(b); ones that tend to bend, as
in Fig. 4(c); and ones that appear exaggerated in decoration, as
in Fig. 4(a) [2][22]. Further, the dataset comprises all feasible
images sourced from the Ministry of Culture, ensuring the
highest quality.

(a) Real (b) Written (c) Anointed

Fig. 3. The three categories of the dataset.

(a) Decorated (b) Geometric (c) Bend

Fig. 4. Three periods of the musnad inscriptions.

B. Image Preprocessing

The preprocessing experiments aimed to improve the
recognition efficiency and accuracy of the dataset [15]. Of
the several experiments conducted, only two produced good
results, one for natural scene images and one for anointed and
written images, as described below:

1) Preprocessing for natural scene images: In the first
experiment, four processes were carried out using natural scene
images. After first converting the input image from RGB to
grayscale, as shown in Fig. 5(a), the grayscale image was then
denoised using the cv2.fastNlMeansDenoising function, and
the result of the denoising is shown in Fig. 5(b). The denoised
grayscale image is then smoothed with the cv2.GaussianBlur
function, as shown in Fig. 5(c). Finally, the smoothed grayscale
image is then binarised using the cv2.threshold function with
a threshold of 130, as shown in Fig. 5(d).

(a) Grayscaled (b) Denoised (c) Blured

(d) Binarized

Fig. 5. Preprocessing for natural scene images.

2) Preprocessing for anointed and written images: In the
second experiment, five processes were carried out using the
anointed and written images, starting by converting the input
image from RGB to grayscale, as shown in Fig. 6(a).

Then, the cv2.medianBlur function was used to remove
noise from the grayscale image, as shown in Fig. 6(b),
after which the median filter result was smoothed using the
cv2.GaussianBlur function with a kernel size of 5, as shown
in Fig. 6(c). Thereafter, the Gaussian blur result was further
denoised using the cv2.fastNlMeansDenoising function, as
shown in Fig. 6(d). Finally, the denoised result was binarised
using the cv2.adaptiveThreshold function with a Gaussian
method and the inverse binary thresholding method with a
threshold value of 255, as shown in Fig. 6(e).

(a) Grayscaled (b) Enhanced (c) Blured

(d) Denoised (e) Binarized

Fig. 6. Preprocessing for anointed and written images.

C. Segmentation and Augmentation

Roboflow Datasets is a comprehensive computer vision
tool that offers a range of functionalities, including dataset
upload, organization, collaboration, labeling, augmentation,
and processing [23]. The selection of the Roboflow Datasets
tool is based on its notable ease of use, particularly in scenarios
where characters appear too close to each other or when
certain images exhibit characters that have been damaged.
In Fig. 7, the labeling process is illustrated, followed by the
implementation of a data augmentation technique involving a
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rotation of 10 degrees in both clockwise and counterclockwise
directions. This technique was chosen for its recognized
capacity to diversify the dataset, introducing variations in
orientation that enhance recognition accuracy.

Subsequently, the dataset was divided into two sections,
with 80% allocated for training and 20% for testing. The
training set consisted of 11,103 images, while the test set
comprised 2,763 images. Fig. 8 illustrates the distribution of
the dataset across 29 classes. To ensure consistency, all images
in the dataset were standardized to a size of 224 x 224 pixels.

Fig. 7. Segmentation result.

Fig. 8. Musnad characters classes.

D. Challenges and Limitations

Recognising the Musnad font involves challenges for
several reasons. First, the segmentation process requires
manual intervention, as it becomes difficult due to complex
structures, as several images contain illustrations, as shown in
Fig. 9(a). Further, some characters were too close to each other,
some were not on the same line and some were cut off due
to broken backgrounds, as shown in Fig. 9(b). Furthermore,
Fig. 10(b) displays the results of preprocessing, where certain
characters lack clarity due to varied surface conditions, as
depicted in Fig. 10(a).

IV. METHODOLOGY

Here, the key steps and techniques implemented in the
work to accomplish the desired outcomes. First, an image

(a) Inscription containing illustrations (b) Inscription with a broken
background

Fig. 9. Dataset sample.

(a) Before preprocessing

(b) After preprocessing

Fig. 10. Surface condition: before and after preprocessing.

is captured and uploaded, after which the system implements
image preprocessing. Third, the system detects and recognises
the correct Musnad characters, and finally, the Musnad
characters are translated into Arabic characters. For reference,
Fig. 11 shows the proposed workflow of the system. In
subsequent sections, each of these processes will be discussed
in detail, providing a comprehensive understanding of the
methodology employed.

A. Image Preprocessing

The process for preprocessing natural scene images
mentioned in III-B1 will be applied to the input image, with the
addition of a new dilation process by utilising the cv2.dilated
function.

B. Text Detection and Recognition

1) Contour Detection: Contour detection is a method often
used in computer vision and image processing to detect and
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Fig. 11. Workflow of the system.

find the outlines of objects in an image [24]. Unfortunately, the
project’s pretrained recognition models were only capable of
correctly identifying one character, as they treated the image
as containing only one character, presneting an obstacle in the
recognition process. This project used a method for dealing
with this problem by utilising the OpenCV function, which
provides two functions: findContours and drawContours. The
contouring process utilised herein is findContours, which
detects the contours of the inscription to recognise all the
characters of the Musnad inscriptions [25].

The findContours function requires three
arguments: IMAGE, RETR_EXTERNAL and
CHAIN_APPROX_SIMPLE, all of which were carefully
chosen to optimise the contour detection process. By applying
this method, the Musnad inscriptions in the image were
successfully outlined, as demonstrated in Fig. 12.

Fig. 12. Contour detection example.

2) Deep Learning Models: CNN is a highly efficient
technique for image classification, and it is widely used
in many recognition problems. CNN can perform both
feature extraction and classification [26]. However, deep
learning algorithms typically require more time and data than
conventional machine learning systems offer to achieve an
optimal performance [27]. As such, transfer learning is a
technique that leverages a model pretrained on a specific
dataset and that adjusts its parameters to suit new datasets.
This approach is more efficient than creating a new CNN
model from scratch [27], but one challenge that can arise is
overfitting. In this case, the model becomes too specialised
and cannot be adapted to new data [27]. To overcome this
issue in this paper, early stopping and dropout techniques have
been employed. Thus, this section presents how to employ
the concept of transfer learning using feature extraction with
VGG16, ResNet-50 and MoileNetV2, which were chosen due
to their proven effectiveness in identifying ancient inscriptions
[21], [6], [19].

VGG16: VGG16 is a CNN model for image
classification developed by the Visual Geometry Group (VGG),
comprising 16 layers in total, including 13 convolutional layers
and three fully connected layers, using only 3×3 convolutional
layers stacked atop each other [28]. The VGG16 model in this
project is composed of two parts: a pretrained VGG16 model
and additional custom layers added atop the pretrained model.
Further, the VGG16 model is loaded as a pretrained model
with the input shape set to (224,224,3), the top layer set to
‘false’ and the weights set to ‘none’. By setting the top layer
to false, the VGG16 model’s fully connected layers are not
included, allowing the model to be used as a feature extractor.
After loading the pretrained model, a new sequential model is
created, and the pretrained model is added as the first layer.
The output of the pretrained VGG16 model is flattened using a
flattened layer, after which the model has two fully connected
Dense layers with 256 and 512 neurons, respectively. Batch
normalisation is then applied after each Dense layer, followed
by the rectified linear unit (ReLU) activation function. Dropout
with a rate of 0.25 was applied after each activation function,
producing an output Dense layer with 29 classes and a softmax
activation function.

ResNet50: ResNet50: ResNet-50 is a CNN model with
50 convolutional layers that contain residual blocks, as well as
approximately 25.6 million parameters [29]. Both the ResNet-
50 and VGG16 models underwent the same modification to
their fully connected layer (FCL) architecture, utilising the
same parameter values.

MobileNetv2: MobileNetV2 is a CNN model designed
to be fast and efficient to reduce the large network size
and to minimise the cost of network computing [30].
The MobileNetV2 has undergone the same modifications
as the VGG16 and Resnet-50 models, but they resulted in
an underwhelming performance. Therefore, to improve the
results, we altered the FCL modifications to differ from those
applied to the VGG16 and ResNet-50 models to enhance its
effectiveness.

The MobileNetV2 model is comprised of two parts: a
pre-trained MobileNetV2 model and additional custom layers
added atop the pre-trained model. In addition, the pre-trained
MobileNetV2 model is loaded with ImageNet weights, and
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the input shape is set to (224,224,3) with the top layer set to
‘false’. A new sequential model is created, with the pretrained
MobileNetV2 model being added as the first layer. Then, the
output from the MobileNetV2 model is processed through a
GlobalAveragePooling2D layer, after which it is flattened using
a Flatten layer. It is then fed into three Dense FCLs with
256 neurons and a ReLU activation function, followed by a
Dropout layer with a rate of 0.25. Finally, the output layer is a
Dense layer with 29 classes and a softmax activation function.

Experimental Setup and Conditions: The experiments
were performed on a computer system equipped with the
Windows 11 Pro operating system, an Intel Core i5 11400
central processing unit (CPU) and an Intel(R) UHD Graphics
processing unit (GPU). In addition, the machine learning
framework used was Keras 2.11.0, which was run using Python
3.9.12 in Spyder Anaconda.

C. Evaluation Metrics

Evaluation metrics are used to measure the performance
of a classifier with a dataset, providing a way of measuring
the model’s performance in making correct predictions. The
confusion matrix provides information about a predictive
model’s performance, and various metrics can be derived
therefrom to gain deeper insights. These metrics include
accuracy, precision, recall, F1 score and the confusion matrix
itself [31]. Below are the evaluation metrics used to evaluate
the models herein:

Confusion matrix: Compares predictions made by the
trained classifier to the true labels in the test set. Correctly
detected results are shown in diagonal cells, while incorrect
predictions are shown in the remaining cells [32].

Accuracy: This metric establishes the model’s accuracy in
making predictions, as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision: Indicates the proportion of correctly positive
predictions of all positive predictions. This metric establishes
the reliability of the predictive model in making accurate
predictions, as follows:

Precision =
TP

TP + FP
(2)

Recall (also known as Sensitivity or True Positive Rate):
Applies the same principle as precision, but instead of focusing
on false positives, it focuses on false negatives.

Recall =
TP

TP + FN
(3)

F1-Score: This metric assesses the accuracy with which the
predictive model can predict positive values while accounting
for both FN and FP. It provides a balance between the two
measures by taking the harmonic mean of precision and recall
[31].

F =
2TP

2TP + FP + FN
(4)

V. RESULT AND DISCUSSION

We evaluated the performance of pretrained models,
namely VGG16, ResNet50 and MobileNetV2, in recognising
Musnad inscription characters. The VGG16 model underwent
training for 63 epochs with early stopping enabled, which
took approximately 12.42 hours to complete. Similarly, the
ResNet50 model was trained for 78 epochs, which required
approximately 8.08 hours of training time. Finally, the
MobileNetV2 model underwent training for 149 epochs, which
required approximately 5.38 hours to train. For all models, the
learning parameters remained consistent, including a learning
rate of 0.00001, 150 epochs with early stopping and a batch
size of 32.

The model evaluations were based on various metrics, as
mentioned in IV-C, and the results are summarised in Table I.
The VGG16 model demonstrated the best performance among
the tested models, achieving an average accuracy recognition
rate of 93.81% across 29 character classes. Both the ResNet50
and MobileNetV2 models also showed excellent accuracy
results, although they were slightly lesser compared to the
VGG16 model.

Fig. 13 demonstrates the convergence and effectiveness of
the VGG16 model by illustrating its loss and accuracy during
the training and testing phases, providing valuable insights into
the model’s performance. Likewise, Fig. 14 and Fig. 15 display
the loss and accuracy trends of the ResNet50 and MobileNetV2
models, respectively, highlighting their training progress and
overall performance and contributing a comprehensive view
of how these models perform over time. Moreover, Fig. 16
presents the confusion matrix for all three models, providing
an insightful visualisation of their classification performance.

These findings suggest VGG16 can effectively recognise
Musnad inscription characters with high accuracy. As such, the
results demonstrate the potential of this model in the field of
character recognition and provide valuable insights for further
improvements and applications.

TABLE I. TRANSFER LEARNING RESULTS

Precision Recall F1-score Accuracy

VGG16 93.00 91.00 91.00 93.81
ResNet50 90.00 83.00 85.00 89.39

MobileNetV2 73.00 77.00 74.00 80.02

(a) Training Loss vs Testing Loss (b) Training Accuracy vs Testing
Accuracy

Fig. 13. Loss and accuracy plot for VGG16.

www.ijacsa.thesai.org 993 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 12, 2023

(a) Confusion matrix for VGG16 model

(b) Confusion matrix for ResNet50 model

(c) Confusion matrix for MobileNetV2 models

Fig. 16. Confusion matrix for all three models.

(a) Training Loss vs Testing Loss (b) Training Accuracy vs Testing
Accuracy

Fig. 14. Loss and accuracy plot for ResNet50.

(a) Training Loss vs Testing Loss (b) Training Accuracy vs Testing
Accuracy

Fig. 15. Loss and accuracy plot for MobileNetV2.

VI. CONCLUSION

This paper automated the recognition and translation
of Musnad inscriptions, making a unique contribution to
ancient text recognition and translation by creating a
Musnad inscription dataset, developing a recognition and
translation system and comparing three CNN models (VGG16,
MobileNetv2 and ResNet-50). The paper’s findings indicate
that real-scene images of the language’s inscriptions can
form a useful dataset, that the optimal sequence of image
processing techniques to improve recognition accuracy and that
the VGG16 deep learning model provides the highest accuracy,
with a recognition rate of 93.81%. Further, ResNet-50 achieved
a recognition rate of 89.39% and MobileNetV2 a rate of
80.02%. In the future, the objective will be to enhance the
recognition method for practical use in real-world scenarios.
As such, the focus will eventually shift towards addressing
broken inscriptions and recognising old drawings, ensuring the
effectiveness of techniques in challenging scenarios and with
unseen or difficult-to-read inscriptions, including those with
varying levels of degradation, different lighting conditions or
unconventional surfaces. This enhancement will be achieved
by enlarging the datasets for model training, improving image
processing to generate a high-quality dataset and using NLP
to determine the Arabic meanings of the words in the Musnad
inscriptions.
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