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Abstract—The emergence of many face forgery technologies
has led to the widespread of forgery faces on the Internet, causing
a series of serious social impacts, thus face forgery detection
technology has attracted increasing attention. While many face
forgery detection algorithms have demonstrated impressive per-
formance against known manipulation methods, their efficacy
tends to diminish severely when applied to unknown forgeries.
Previous research commonly viewed face forgery detection as a
binary classification problem, disregarding the crucial distinction
between real and forged faces, thereby limiting the generalizabil-
ity of detection algorithms. To overcome this issue, this paper
proposes a novel face forgery detection method that utilizes a
trainable metric to learn local similarity between local features
of facial images, achieving a more generalized detection result.
What’s more, it incorporate cross-level features to accurately
locate forgery regions. After conducting extensive experiments
on FaceForensics++, Celeb-DF-v2, and DFD, which demonstrate
that the effectiveness of the proposed method is comparable to
state-of-the-art detection algorithms.
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I. INTRODUCTION

With the advancements in computer vision and deep learn-
ing technology, face forgery technologies have become a
growing concern for society. These technologies have ma-
tured significantly in recent years, producing counterfeit faces
that are indistinguishable to the human eye [1], [2], [3],
[4]. Criminal misuse of these technologies can pose severe
societal consequences, including pornographic featuring public
figures, the spread of political misinformation, and fraudulence
that jeopardizes personal and property rights. In response to
this challenge, many researchers have developed studies on
face forgery detection approaches [5], [6], [7]. Though these
approaches perform well in specific scenarios, they are often
inadequate when it comes to detecting forgeries unseen in the
training data, known as the generalization problem.

Early research considered face forgery detection a binary
classification task, employing convolutional neural networks
(CNN) to distinguish real and forged faces. While such ap-
proaches have shown impressive performances in in-domain
settings where training data and testing data are forged by
the same algorithm, they cannot be easily applied to unknown
domains given that the unknown forgery algorithms have
different forgery features. Consequently, some face forgery
detection approaches have been proposed to mine generaliz-
able artifact traces [8], [9], [10]. These approaches rely on
identifying discrepancies in image features such as brightness,

color, and texture to distinguish forged faces. However, they
can be affected by the quality of the images and thus may
not be suitable for real-world scenarios. To address this issue,
emerging approaches centered around data augmentation are
being employed [11], [12]. By using various forgery algo-
rithms, these techniques aim to expand the training data, to
improve generalization capability. However, it’s worth noting
that training data depending on forgery detection approaches
may become ineffective in light of the continuous advance-
ments in forgery algorithms. On the other hand, some re-
searchers concentrate on the identification details of forged
faces, discover identity discrepancies to identify forged faces,
and have achieved remarkable success with face replacement
[13], [14]. Nevertheless, this type of method cannot detect face
images with unchanged identity information. As face forgery
algorithms continue to advance, the forgery traces have be-
come increasingly subtle and difficult to detect using previous
approaches. Thus, some researchers start paying attention to
identifying fine-grained local feature inconsistencies [15], [16],
[17].

In this paper, we focus on face forgery detection approach
that does not rely on data augmentation but extracts essential
features of real and forged faces. Our solution is based on
the observation that real faces typically exhibit evenly dis-
tributed features and local region similarities [15], whereas
forged faces usually exhibit local abnormalities resulting from
the blending between real and forged regions. Inspired by
this, we propose a novel generalized forgery face detection
approach. Our approach improves generalization by leveraging
auxiliary constraints between local features of real and forged
faces. Unlike existing methods that rely on metrics such
as cosine similarity [17], we utilize a learnable network to
measure the similarities between local features, which makes
the similarity measurement better suited to aligning features
extracted by CNN backbones. We also introduce a cross-level
forgery localization module that integrates various features
across different levels with a lightweight attention module.
Our approach enables accurate forgery localization and forged
face recognition with strong generalizability. In brief, our
contributions are summarized as follows:

• We propose to learn the dense fine-grained similarity
between real and forged local features, which greatly
improves the generalization of face forgery detection
approach.

• We propose a Y-shaped network that achieved accurate
face forgery detection and localization with the pro-
posed cross-level attentional feature fusion module.
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Fig. 1. The overall architecture of the proposed approach.

• Extensive experiments validate the superior detection
performance and impressive generalization ability of
our approach.

II. RELATED WORK

A. Face Forgery Algorithms

Face forgery technology has advanced quickly in recent
years. It can be categorized into three categories: face swap,
face editing, and face generation, based on the forgery objects.
Early face swap algorithms are mostly accomplished using
graphics techniques [18], which are complex and challenging.
With the rapid development of deep learning, several novel
face swap algorithms have emerged, significantly reducing the
difficulty of face swapping [3], [4]. The advance of Generative
Adversarial Networks (GAN) has further improved the realism
of the forged faces [1], [2].

B. Face Forgery Detection Algorithms

Early face forgery algorithms were not very mature, re-
sulting in flawed faces with obvious artifacts. Therefore, early
detection algorithms depend mostly on CNN to catch these
probable artificial traces, such as color artifacts [8], blink rate
[19], head position [14], synthetic artifacts [9], and so on.
However, with the advance of face forgery algorithms, these
problems have largely been resolved, forcing researchers to
develop new detection methods capable of identifying generic
forgery clues.

On the one hand, the researchers discovered that forgery
faces have invariable forgery patterns in the frequency domain,
giving rise to frequency-aware forgery detection approaches.
Qian et al. [20] proposed a two-stream collaborative learning
framework that leverages frequency-aware image decomposi-
tion and local frequency statistics to extract forgery patterns.

Meanwhile, Chen et al. [21] tackled face forgery detection
through local relational learning, integrating RGB and fre-
quency information using an attention module to improve
generalization. On the other hand, temporal inconsistencies of
forged videos have become a significant clue for forgery de-
tection. Time-aware models that extract temporal features from
numerous single-frame inputs have been introduced to detect
the authenticity of face videos. Güera et al. [22] used Long
Short-Term Memory (LSTM) to extract temporal features from
numerous single-frame. Gu et al. [23] detected local dynamic
inconsistencies induced by tiny movements in forged videos. In
addition, approaches based on advanced semantic information
are proposed. Haliassos et al. [24] suggested detecting forgery
videos by analyzing differences in lip movements between
real and forgery videos, while Dong et al. [13] developed
an identity consistency transformer to safeguard celebrities
by detecting identity inconsistencies between inner and outer
faces. However, approaches based on common forgery clues
may not be suitable for real-world scenarios with unknown
forgery clues, and approaches based on temporal inconsistency
may be limited by video quality.

Due to the flaws in splicing, blending, and editing pro-
cedures present in the majority of available face forgery
algorithms, forged faces may contain features from multiple
sources, leading to local inconsistencies. Shang et al. [15]
proposed to capture pixel-level and region-level differences for
face forgery detection. Zhao et al. [16] proposed pairwise self-
consistency learning of local features, which achieved excel-
lent performance in generalization. Sun et al. [25] enhanced
the generalization by creating positive and negative sample
pairings and contrastively learning real and forged regions.
The studies mentioned above highlight the importance of local
inconsistency in improving the generalization of face forgery
detection. They mainly use fixed metric measures when calcu-
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Fig. 2. The proposed learnable local similarity module (LLSM).

lating consistency or similarity, which may result in feature
misalignment issues. For example, when using normalized
cosine similarity to measure the similarity of local features,
it directly transforms the feature onto a unit hypersphere.
However, the most generalizable features extracted from the
backbone network may not satisfy the similarity requirement
measured by the cosine similarity metric.

In this paper, we propose a plug-and-play learnable local
similarity module that densely imposes fine-grained similarity
constraints on the features extracted from the backbone net-
work. Unlike existing approaches, the similarities are not di-
rectly calculated but learned using ConvNets, and we turn the
optimization target into binary classification between features.

III. METHODOLOGY

A. Overview

The proposed approach is shown in Fig. 1. It is a Y-
shape network with an encoder, a decoder, and a classifier
head, where a learnable local similarity module works in
collaboration with the encoder, a cross-level attention feature
fusion model connects the encoder and decoder that performs
pixel-level forgery localization. The classifier head implements
image-level binary classification of authenticity (real/fake) for
the input faces.

B. Learnable Local Similarity Module

Deepfake faces contain subtle artifacts or feature conflicts
from several sources, this difference is frequently displayed at
the fine-grained feature level and is difficult to detect. There-
fore, we build a specific fine-grained local feature similarity
map to mine fine-grained feature inconsistencies by computing
its feature similarity with all locations based on local features.
We constructed a learnable local similarity module for the
augmented model to further enhance the model’s capacity for
generalization by mining fine-grained local differences.

The learnable local similarity module (LLSM) is a plug-
and-play module that takes as input the deep features extracted
by the backbone and calculates the similarity between local
features. Given a face image I , we first pass through the
encoder to obtain its middle layer feature F ∈ RH×W×C

where C, H , and W represent channel, length, and width
respectively. The middle layer feature F is then fed into
LLSM, which predicts a single-channel local similarity map.
As shown in Fig. 2, the 3-d tensor F is first unfold into a 2-d
matrix of shape R(H×W )×C , F(i,j) (0 ≤ i < H, 0 ≤ j < W )

Fig. 3. The proposed cross-level attentional feature fusion module
(CLAFFM).

denote the local feature, where i and j are the spatial index. A
shallow ConvNet with a single kernel of size 2×1×C, denoted
by f then perform convolution operation on each local feature
pairs. For ∀i,m ∈ [1, H],∀j, n ∈ [1,W ], to predict the local
similarity map, we use the following equation to calculate the
similarity of any local features on the feature F :

Mi∗H+j,m∗H+n = σ(f(F(i,j), F(m,n))), (1)

where M is the predicted 2-d map of size R(H×W )×(H×W ).
That means each local feature is compared with all local
features including itself by f , which outputs a binary prediction
on the similarity of arbitrary two local features. After all the
local features are calculated and arranged according to the
corresponding positions, we can obtain a feature inconsistency
map MF with the shape of (HW )× (HW ). On the optimiza-
tion strategy for the feature inconsistency map, we calculating
the ground truth local similarity map are as follows: First,
downsample the mask until its dimensions match those of the
middle layer feature map. Then expand the mask map into a
one-dimensional tensor m

′
, calculate the Cartesian product of

all positional features, and return the local similarity map of
(HW )× (HW )× 2 after adjusting the shape. After that, it is
divided into two identically sized feature maps m1,m2 based
on the third dimension, and the ultimate ground truth local
similarity map MGT is obtained by binarizing the two after
an absolute value difference. We adopt the following BCE loss
to supervise the training:

MF = LSC (F ) , (2)

m1,m2 = split
(
Cartesia prod

(
m

′
,m

′
))

, (3)

MGT = binary (|m1 −m2|) , (4)

LLS =
1

N

N∑
i=1

BCE
(
MF

i ,MGT
i

)
, (5)

where LSC stands for the method of predicting the lo-
cal similarity map, split means split features by dimen-
sion, Cartesia prod means Cartesian product operation, and
binary means binarization operation.

C. Forgery Localization Module with Multi-level Feature Fu-
sion

Previously, the forgery localization module usually had a
single structure or could not adequately integrate the feature
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Fig. 4. The detailed architecture of the proposed forgery localization module (FLM).

information of each level, resulting in unsatisfactory outcomes
in the forgery region localization task. Therefore, we propose
a forgery localization module based on multi-level feature
fusion, which made full use of the feature extractor and the
feature information of each level of the forgery locator itself,
resulting in improved forgery localization effect and detector
generality. As shown in Fig. 4, our forgery localization module
with multi-level feature fusion receives as input the feature
fi of various block layers of the encoder. Following the
up-sampling stage of the forgery locator, the features from
different layers of the encoder are coupled with the current
features via channels, and more convolution operations are
conducted on them to feed into the next up-sampling block.
We obtain the forgery localization mask Mprd ∈ R1×H×W for
the final output prediction after several layers of upsampling.

Skip connection is a commonly used feature fusion tech-
nique in neural networks which can aggregate different levels
of semantic information. In addition to combining semantic
features at various levels in the feature extractor, we ad-
ditionally introduce a novel attentional fusion module for
combining localization feature information at various levels
in the forged localization module. Specifically, our proposed
cross-level attentional feature fusion module does not only
aggregate features. It is able to obtain a set of adaptive
learning weights by adaptively learning the attention of low-
level semantic features on the channel. These weights are
subsequently utilized to highlight the channel attention of high-
level semantic features. This attention technique strengthens
the robust local similarity information learned by high-level
semantic features while still preserving the local similarity
details that low-level semantic features value. Its structure
is shown in Fig. 3. For feature A, get previous feature B,
first adopt adaptive pooling processing, then perform 4 × 4
convolution operation and activate it. After that, perform a 1×1
convolution, Sigmoid activate to obtain the attention weight
of the same number of channels as the current feature A and
output a new feature after multiplying with the feature A. With
a very tiny amount of calculation, this module may bring the
previous feature’s attention information to the present feature
and increase the positioning accuracy of the fusion feature
based on the channel attention level. The forgery localization

TABLE I. CROSS-DATASET EVALUATIONS ON CELEB-DF AND DFD.

Methods FF++(C23) Celeb-DF DFD
AUC AUC AUC

Xception [26] 99.09 65.27 87.86
TI2Net [27] 99.95 68.22 72.03
FRLM [28] 99.50 70.58 68.17
F3Net [20] 98.10 71.21 86.10

DMGTN [29] 99.80 72.30 —
Face-X-ray [30] 87.40 74.20 85.60

MLDG [31] 98.99 74.56 88.14
GFF [32] 98.36 75.31 85.51

SFDG [33] 99.53 75.83 88.00
SOLA [34] 99.25 76.02 —

MultiAtt [35] 99.27 76.65 87.58
BiG-Arts [36] 99.39 77.04 89.92

LTW [37] 99.17 77.14 88.56
FAAFF [38] 99.27 77.59 —

Local-Relation [17] 99.46 78.26 89.24
DCL [25] 99.30 82.30 91.66

Ours 98.54 80.56 96.01

loss is defined as follows:

LLOC =
1

N

N∑
i=1

BCE
(
Mprd

i ,Mi

)
, (6)

where Mprd is the prediction mask output by the multi-level
forgery localization module, and M is the ground-truth mask.

D. Classifier

In addition to the modules mentioned above, we must
additionally include a classifier to receive feature input and
verify the image’s authenticity. Specifically, the features that
the decoder outputs are average pooled and input to a fully
connected network classifier for classification. For classifier
predictions, we use BCE loss for supervised training:

LCLS =
1

N

N∑
i=1

BCE
(
y

′

i, yi

)
, (7)

where y
′ ∈ [0, 1] denotes the label of the input image, y ∈

{0, 1} denotes the prediction of the classifier. The overall loss
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TABLE II. RESULTS OF IN-DATASET EVALUATIONS ON FF++ C23 AND C40

Methods FF++(C23) FF++(C40) Avg
Acc AUC Acc AUC Acc AUC

Face-X-ray [30] — 87.40 — 61.60 — 74.5
MesoNet [5] 83.10 84.30 70.47 72.62 76.79 78.46
Multi-task[6] 85.65 85.43 81.30 75.59 83.48 80.51

Xception-ELA [39] 93.86 94.80 79.63 82.90 86.75 88.85
SPSL [40] 91.50 95.32 81.57 82.82 86.54 89.07
CFFs [11] — 97.21 — 86.56 — 91.89
M2TR [41] 91.86 96.75 83.89 87.15 87.88 91.95

Xception [26] 95.73 96.30 86.86 89.30 91.30 92.80
Two-branch [42] 96.43 98.70 86.34 86.59 91.39 92.65

HFI-Net [43] 91.87 97.07 58.69 88.40 88.78 92.74
RFM [44] 95.69 98.79 87.06 89.83 91.38 94.31

FST-Matching [45] 94.05 98.27 87.38 90.44 90.72 94.36
Ours 92.84 98.54 81.13 91.93 86.99 95.24

TABLE III. RESULTS OF CROSS-DATESET EVALUATIONS ON FF++ (AUC)

Methods Train DF F2F FS NT Avg
FDFL [21]

DF

98.91 58.90 66.87 63.61 72.07
MultiAtt [35] 99.92 75.23 40.61 71.08 71.71

GFF [32] 99.87 76.89 47.21 72.88 74.21
Ours 99.99 73.06 51.86 76.09 75.25

FDFL [21]

F2F

67.55 93.06 55.35 66.66 70.66
MultiAtt [35] 86.15 99.13 60.14 64.59 77.50

GFF [32] 89.23 99.10 61.30 64.77 78.60
Ours 77.70 99.24 60.13 71.52 77.15

FDFL [21]

FS

75.90 54.64 98.37 49.72 69.66
MultiAtt [35] 64.13 66.39 99.67 50.10 70.07

GFF [32] 70.21 68.72 99.85 49.91 72.17
Ours 70.24 70.67 99.65 54.82 73.85

FDFL [21]

NT

79.09 74.21 53.99 88.54 73.96
MultiAtt [35] 87.23 48.22 75.33 98.66 77.36

GFF [32] 88.49 49.81 74.31 98.77 77.85
Ours 83.91 79.37 56.64 97.27 79.30

function is as follows:

L = LCLS + αLLS + βLLOC , (8)

where α and β are loss weights and range between [0, 1].

IV. EXPERIMENTS

A. Experimental Settings

1) Datasets: We conduct experiments on several face
forery datasets FaceForensics++ (FF++), Celeb-DF-V2, and
Deepfake Detection Dataset (DFD) [46]. FF++ is a large-scale
public face forgery dataset that contains 1,000 real videos
and 4,000 forged videos created using 4 forgery algorithms,
including Deepfakes (DF), Face2Face (F2F), FaceSwap (FS),
and NeuralTextures (NT). Additionally, FF++ has three com-
pression levels: original version (Raw), high-quality (C23), and
low-quality (C40). CelebDF-V2 is a more challenging dataset
consists of 569 original videos and 5,639 forged videos. DFD
is a large dataset containing 363 real videos and 3,068 forged
videos in various scenarios.

2) Implementation details: All faces are detected, cropped,
normalized and resized to 224×224 pixels. We use pre-
trained Xception as the backbone. All experiments use Adam
optimizer with the learning rate set to 1e-4. The batch size
is 32, and each epoch has 200 iterations. For the metrics, we
utilize binary classification accuracy (Acc.) and area under the
curve (AUC.) as the metrics to evaluate model performances.

B. Evaluations

1) In-dataset evaluations: We first evaluate the in-dataset
effectiveness of our approach on the FF++, where the network
is trained and tested on the same dataset. We only use C23
and C40 versions of FF++ since detecting compressed forged
faces is more challenging. We also compare with some state-
of-the-art (SOTA) approaches. The results are presented in
Table II. We can observe that the proposed approach has
promising performances compared to the SOTA approaches
when faced with highly compressed forgery faces. The AUC
on C23 is close to SOTA [44], while the AUC on C40 exceeds
SOTA [45] by 1.49%. This result indicates our method has
excellent detection potential. Our proposed method is distinct
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Fig. 5. Visualization of our approach on the FF++. From top to bottom are the original faces, ground-truth of pixel-level mask (Mask GT), predictions of face
forgery localization (Mask Pred), ground-truth of local similarity map (LSM GT), and predictions of local similarity map (LSM pred).

Fig. 6. Visualization of the heatmaps extracted by grad CAM.

from the prior deep learning detection method since it focuses
on the fine-grained inconsistency that is shared by various
forgery faces rather than just learning the distribution of real
and forgery faces, which can effectively improve detection
accuracy.

Although we do not achieve the best performance in
each setting, we have a clear advantage in high compression
scenario (C40) measured by AUC. Moreover, we achieve the
best averaged AUC when facing both levels of compression.

2) Cross-dataset evaluations: As we all know, there are
countless face manipulation techniques in real scenes, but the
face manipulation techniques contained in the samples for
training detection models are limited. Therefore, the gener-
alization of detection models based on different manipulation
methods is of great practical significance. Cross-dataset evalu-
ations directly reflect the generalization of detectors. Table III
presents the cross-dataset evaluation results on FF++(C23). We
use only one subset of FF++ for training while the remaining 3
subsets for testing. Our approach achieves the highest average
AUC across the three training scenarios. We further evaluate
the generalizability of our approach on other datasets. As
shown in Table I, we train the model on FF++ (C23) and test it

TABLE IV. ABALATION STUDIES ON LLSM AND FLM. THE MODEL IS
TRAINED ON FF++(C23) AND EVALUATED ON CELEB-DF (AUC)

Baseline LLSM FLM Celeb-DF
! 72.15
! ! 75.11
! ! 76.67
! ! ! 80.56

on Celeb-DF and DFD. We can observe that our approach can
outperform most recent SOTAs by 2% to 10.00% in terms of
AUC while maintaining a promising in-dataset performance,
with a gap of less than 1.00% on FF++(C23) compared
with SOTAs. On DFD, our approach achieves 96.01% AUC
which is 4.35% higher than [25] and nearly 10% better than
other approaches on average. The results demonstrate that the
proposed learnable local similarity can significantly improve
generalization capabilities across different forgeries.

C. Ablation Study

To demonstrate the effectiveness of each module of our
approach, we conduct the following ablation studies: 1) Base-
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line (Xception) without any of the proposed modules; 2)
Baseline with the proposed learnable local similarity module;
3) Baseline for the proposed forgery localization module
with multi-level feature fusion; 4) The complete network. We
present the cross-dataset results trained on FF++ (C23) in
Table IV. We can observe that the utilization of LLSM leads
to a 2.96% improvement in the performance on Celeb-DF,
which confirms the effectiveness of local similarity learning
in enhancing generalization. The proposed framework, when
incorporated with FLM, demonstrated a 4.52% improvement
in performance, affirming its superiority. It is noteworthy that
the combined use of FLM and LLSM results in a remarkable
performance improvement.

D. Visualization

To provide further evidence of our approach’s effectiveness,
we evaluate the visualization results using the FF++. As shown
in Fig. 5, we compare the forgery localization results and
pixel level ground-truth of four different forgery types. The
results demonstrate that our approach is capable of performing
high-precision forgery localization. Additionally, we present
the predictions of LLSM and the corresponding ground-truth
similarity map. For real faces, given that the local features
share the same source, the similarity maps do not exhibit any
abnormal patterns. However, the similarity map of the forged
face reveals clear abnormal patterns, which differ depending
on the forged region. The LLSM can also achieve accurate
predictions on the local similarity patterns. This provides
further evidence of the effectiveness of our proposed approach.

We also visualize the heatmaps extracted using Grad CAM
[47] to demonstrate the effectiveness of the proposed approach.
In these attention maps, the warmer color indicates the areas
more significant for predictions or localization. As shown in
Fig. 6, we observe that the baseline model is not accurate
in identifying the manipulated region, whereas our approach
successfully directs the network’s attention to the forged facial
region.

V. CONCLUSION

In this paper, we propose a dual-task approach that achieves
generalized face forgery detection and accurate forgery local-
ization. Our approach takes advantage of the feature similarity
between the internal parts of the forged image. The learnable
local similarity module successfully enhances the difference
traces between real and forged features and improves the
generalization of the model. Furthermore, from a multi-tasking
learning view, we present a forgery localization module with
cross-level attentional feature fusion strategy, which improves
the detection capability even further. We conduct extensive
experiments, and the results fully demonstrate the effective-
ness of our approach. However, our suggested learnable local
similarity module relies on fine-grained local feature calcu-
lation, which requires more computational overhead and has
feature size restrictions. Moreover, our approach has limited
robustness for very low-quality faces. In further studies, we
will consider calculating local Inconsistencies for a few local
features instead of the entire feature to reduce computational
overhead. Additionally, we will design novel image enhance-
ment algorithms to improve the robustness of the detection
model.

In the future, exploring the connections between local
inconsistencies, identity inconsistencies, and inter-frame incon-
sistencies may further improve forged face detection perfor-
mance.
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[22] D. Güera and E. J. Delp, “Deepfake video detection using recurrent
neural networks,” in 2018 15th IEEE international conference on
advanced video and signal based surveillance (AVSS). IEEE, 2018,
pp. 1–6.

[23] Z. Gu, Y. Chen, T. Yao, S. Ding, J. Li, and L. Ma, “Delving into the
local: Dynamic inconsistency learning for deepfake video detection,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
2022, pp. 744–752.

[24] A. Haliassos, K. Vougioukas, S. Petridis, and M. Pantic, “Lips don’t
lie: A generalisable and robust approach to face forgery detection,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 5039–5049.

[25] K. Sun, T. Yao, S. Chen, S. Ding, J. Li, and R. Ji, “Dual contrastive
learning for general face forgery detection,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, 2022, pp. 2316–2324.

[26] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and
M. Nießner, “Faceforensics++: Learning to detect manipulated facial
images,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2019, pp. 1–11.

[27] B. Liu, B. Liu, M. Ding, T. Zhu, and X. Yu, “Ti2net: Temporal identity
inconsistency network for deepfake detection,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision,
2023, pp. 4691–4700.

[28] C. Miao, Q. Chu, W. Li, S. Li, Z. Tan, W. Zhuang, and N. Yu, “Learning
forgery region-aware and id-independent features for face manipulation
detection,” IEEE Transactions on Biometrics, Behavior, and Identity
Science, vol. 4, no. 1, pp. 71–84, 2021.

[29] B. Liang, Z. Wang, B. Huang, Q. Zou, Q. Wang, and J. Liang,
“Depth map guided triplet network for deepfake face detection,” Neural
Networks, vol. 159, pp. 34–42, 2023.

[30] L. Li, J. Bao, T. Zhang, H. Yang, D. Chen, F. Wen, and B. Guo,
“Face x-ray for more general face forgery detection,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 5001–5010.

[31] D. Li, Y. Yang, Y.-Z. Song, and T. Hospedales, “Learning to generalize:
Meta-learning for domain generalization,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 32, 2018.

[32] Y. Luo, Y. Zhang, J. Yan, and W. Liu, “Generalizing face forgery de-
tection with high-frequency features,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2021, pp.
16 317–16 326.

[33] Y. Wang, K. Yu, C. Chen, X. Hu, and S. Peng, “Dynamic graph learning
with content-guided spatial-frequency relation reasoning for deepfake

detection,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 7278–7287.

[34] J. Fei, Y. Dai, P. Yu, T. Shen, Z. Xia, and J. Weng, “Learning
second order local anomaly for general face forgery detection,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 20 270–20 280.

[35] H. Zhao, W. Zhou, D. Chen, T. Wei, W. Zhang, and N. Yu, “Multi-
attentional deepfake detection,” in Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, 2021, pp. 2185–
2194.

[36] H. Chen, Y. Li, D. Lin, B. Li, and J. Wu, “Watching the big artifacts:
Exposing deepfake videos via bi-granularity artifacts,” Pattern Recog-
nition, vol. 135, p. 109179, 2023.

[37] K. Sun, H. Liu, Q. Ye, Y. Gao, J. Liu, L. Shao, and R. Ji, “Domain
general face forgery detection by learning to weight,” in Proceedings
of the AAAI conference on artificial intelligence, vol. 35, 2021, pp.
2638–2646.

[38] C. Tian, Z. Luo, G. Shi, and S. Li, “Frequency-aware attentional
feature fusion for deepfake detection,” in ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2023, pp. 1–5.

[39] T. S. Gunawan, S. A. M. Hanafiah, M. Kartiwi, N. Ismail, N. F. Za’bah,
and A. N. Nordin, “Development of photo forensics algorithm by de-
tecting photoshop manipulation using error level analysis,” Indonesian
Journal of Electrical Engineering and Computer Science, vol. 7, no. 1,
pp. 131–137, 2017.

[40] H. Liu, X. Li, W. Zhou, Y. Chen, Y. He, H. Xue, W. Zhang, and N. Yu,
“Spatial-phase shallow learning: rethinking face forgery detection in
frequency domain,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2021, pp. 772–781.

[41] J. Wang, Z. Wu, W. Ouyang, X. Han, J. Chen, Y.-G. Jiang, and S.-N. Li,
“M2tr: Multi-modal multi-scale transformers for deepfake detection,”
in Proceedings of the 2022 International Conference on Multimedia
Retrieval, 2022, pp. 615–623.

[42] I. Masi, A. Killekar, R. M. Mascarenhas, S. P. Gurudatt, and W. Ab-
dAlmageed, “Two-branch recurrent network for isolating deepfakes in
videos,” in Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16. Springer,
2020, pp. 667–684.

[43] C. Miao, Z. Tan, Q. Chu, N. Yu, and G. Guo, “Hierarchical frequency-
assisted interactive networks for face manipulation detection,” IEEE
Transactions on Information Forensics and Security, vol. 17, pp. 3008–
3021, 2022.

[44] C. Wang and W. Deng, “Representative forgery mining for fake face
detection,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2021, pp. 14 923–14 932.

[45] S. Dong, J. Wang, J. Liang, H. Fan, and R. Ji, “Explaining deepfake
detection by analysing image matching,” in Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XIV. Springer, 2022, pp. 18–35.

[46] N. Dufour and A. Gully, “Contributing data to deepfake detection
research,” Google AI Blog, vol. 1, no. 3, 2019.

[47] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

www.ijacsa.thesai.org 1003 | P a g e


