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Abstract—Relation extraction is a fundamental task in natural
language processing, which involves extracting structured infor-
mation from textual data. Despite the success of joint methods
in recent years, most of them still have the propagation of
cascade errors. Specifically, the error in former step will be
accumulated into the final combined triples. Meanwhile, these
methods also encounter another challenges related to insufficient
interaction between subtasks. To alleviate these issues, this paper
proposes a novel joint relation extraction model that integrates a
contrastive learning approach and a filter-attention mechanism.
The proposed model incorporates a potential relation decoder
that utilizes contrastive learning to reduce error propagation
and enhance the accuracy of relation classification, particularly
in scenarios involving multiple relationships. It also includes a
relation-specific sequence tagging decoder that employs a filter-
attention mechanism to highlight more informative features,
alongside an auxiliary matrix that amalgamates information
related to entity pairs. Extensive experiments are conducted
on two public datasets and the results demonstrate that this
approach outperforms other models with the same structure
in recall and F1. Moreover, experiments show that both the
contrastive learning strategy and the proposed filter-attention
mechanism work well.
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I. INTRODUCTION

Relation extraction intend to extract pairs of entity and cor-
relative relations in the form of < subject, relation, object >
from the given unstructured texts. The extracted information
provides a supplement to many natural language process-
ing(NLP) tasks, such as text summarization [1] knowledge
graph construction [2] and question answering [3].

Conventionally, existing methods mainly include pipeline
methods and joint methods. Pipeline works [4], [5], [6], [7]
traditionally treat the task as two independent subtasks: named
entity recognition (NER) and relation extraction (RE). While
these approaches are straightforward and adaptable, they over-
look the inherent connection between NER and RE, making
them prone to error propagation due to the conventional order
of subtasks. For this reason, most recent studies focus on joint
methods [8], [9], [10]. Current joint models, as evidenced
by the work of Cabot et al. in REBEL [11] and Zheng et
al. in PRGC [12], have demonstrated remarkable efficiency
while achieving outstanding performance. However, most of
them first identify entities then find corresponding relationships
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from all predefined relationships, which faces the problem of
relational redundancy and cause unnecessary calculations. Fig.
1 shows the difference between entity first and relation first
methods. The entity first method always recognizes possible
entity pairs and then matches them against all predefined
relationships, which causes redundancy in relationships and
introduces unnecessary computation into the model. In con-
trast, the relation first approach avoids this problem well
by first recognizing the relations present in the sentence.
Another problem is that some methods only perform simple
interactive behaviors between sequence and potential relation
representations like concatenating. The operation could carry
information unrelated to the task and cannot fully utilize useful
mutual information. In addition to this, most of the models
suffer from General issue of error propagation. The error in
former step will be accumulated in the final triplets.

To alleviate error propagation issue and enhance the in-
teraction between two subtasks, this work makes use of a
contrastive learning strategy and proposes a filter-attention
mechanism for RE and relation-specific NER(CLFM), respec-
tively. Specifically, the contrastive learning employ the R-
drop [13] idea, which has been used in supervised image
classification for computer vision tasks. The contrastive learn-
ing strategy brings a new constraint to the part of potential
relation classification rather than just relying on cross-entropy
loss. This can lead to more accurate classification results,
especially in scenarios with multiple relationships. The po-
tential relation classification module employs the R-drop idea,
which has been used in supervised image classification for
computer vision tasks. This strategy brings a new constraint
to the part of potential relation classification rather than just
relying on cross-entropy loss. This can lead to more accurate
classification results, especially in scenarios with multiple
relationships, thus the problem of error propagation can be
mitigated. For the relation-specific NER task, a novel filter-
attention mechanism based on the attention mechanism [14] is
proposed. Unlike prior works that simply concatenate or add
sentence and relation representations, task interaction in this
method is achieved in two ways: Initially, attention scores are
computed for sentence and relation representations to signify
the token relevance concerning the current relation. Next, low
scores indicating weak correlations within the score matrix are
removed, followed by the concatenation of particular represen-
tations to form the input for the relation-specific Named Entity
Recognition (NER) task. Regarding NER, it is perceived as
a conventional sequence tagging task for acquiring potential
entity pairs. This process strengthens the interaction between
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the two subtasks and eliminates inconsequential information
across distinct relationships. While executing the relation
classification task, simultaneous computation of the auxiliary
matrix occurs, which is subsequently utilized to determine the
final triplets.

CLFM is mainly composed of three parts: All possible
relations in the input sentence are identified in the first part;
The second part is the identification of all possible head entities
and tail entities under the specific relationships that have been
extracted earlier; Finally, the model uses an auxiliary matrix
called subject-object alignment step to help select the final
triplets from extracted entity pairs and relationships. Since the
order of the subtasks, the proposed end-to-end method can also
solve the problem of redundant relationships.

The approach has been tested on two widely-used public
datasets, namely, NYT [15] and WebNLG [16]. Experimental
results indicate the model’s performance is on par with state-
of-the-art methods on these benchmark datasets. In summary,
the paper’s key contributions are as follows:

1. A relation first end-to-end framework is introduced by
this work, along with the design of three components pertain-
ing to the subtasks. These components effectively tackle issues
related to redundant relations and enhance the interaction
between subtasks.

2. This work incorporates a contrastive learning strategy
into relation classification to introduce a new constraint that
enhances classification accuracy and mitigates error propaga-
tion.

3. An innovative filter-attention mechanism is presented in
this work, with the objective of fostering deeper interaction
between the two subtasks by proficiently filtering out irrele-
vant task-specific information. Extensive experimentation on
various public benchmarks demonstrates results that exhibit
performance comparable to the baseline, especially in scenar-
ios involving multiple relationships.

This paper is structured as follows: Section II is related
work of recent years in relation extraction; Section III are
detailed description of the each model part; Section IV are
experimental results compared to other baseline methods and
ablation experiments; Section V are conclusion and future
work.

II. RELATED WORK

The traditional incipient relational triplet extraction meth-
ods, such as those proposed by Zelenko et al. [4] and Chan
et al. [5], adopted a pipeline framework that divided the
entire task into two separate subtasks: entity identification and
relation classification. However, these approaches were prone
to error propagation problems and ignored the fact that these
subtasks are interactive. Therefore, later works began to extract
entities and relations jointly using a single model, such as
feature-based models [17], [18], [19]. These models rely on
various external NLP tools and complicated manual operations,
making them heavily dependent on the accuracy of these
external tools. Although these models are very representative,
they have limitations in terms of scalability and efficiency. In
the past few years, joint methods based on neural networks
have become a major research focus. This section is presented

Fig. 1. The difference between entity first and relation first approaches.

in three subsections: entity first methods, relation first methods
and other methods.

A. Entity First

Zheng et al. [20] first proposed a novel joint model based
on a tagging scheme, which transformed the relation extraction
task into a sequence labeling task and applied Long Short-Term
Memory network to learn long-term dependencies. However,
the model has no ability to extract overlapping triplets. To
address the overlapping issue, Yu et al. [21] proposed a method
that extracts head entities in the first step, followed by all
correlative tail entities and relations using decoding strategies.
In addition, A unified joint extraction annotation framework
was designed by Wei et al. [22], capable of achieving single-
stage joint extraction while addressing exposure bias and the
intricate issue of overlapping. In the work by Wang et al. [23],
a one-stage approach was presented to simultaneously extract
entities and overlapping relations. This approach effectively
narrows the discrepancy between training and inference stages.
Specifically, they formulated joint extraction as a token pair
linking problem and introduced a novel handshaking tagging
scheme that aligns the boundary tokens of entity pairs under
each relation type. Shang et al. [24] first generated candidate
entities by enumerating sequences of tokens in a sentence,
and they converted the extraction task into a linking problem
on a head-to-tail bipartite graph that could directly extract all
triplets in a single step. Nayak et al. [25] proposed a pointer
network-based decoding approach where an entire tuple is
generated at every time step and achieved significantly higher
F1 scores

B. Relation First

All of the approaches mentioned, regardless of being
single-stage or not, suffer from relational redundancy issue
[20], [22], [23]. As a result, a new model structure for
extracting sequences has emerged. These methods typically
involve performing relation classification first, which only
preserves related relations and not all redundant relations in
the input sentence. However, Yuan et al. [8] proposed a gating
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mechanism to obtain relation-specific sentence representation,
which can be used for sequence tagging tasks and can provide
a fine-grained representation. Nevertheless, this mechanism is
unable to address the problem of subject-object overlapping.
To address this issue, Ma et al. [26] proposed a cascade
dual-decoder approach to extract overlapping relational triples.
This approach utilizes relevant information of relations and
subjects as auxiliary information for subjects and objects
recognition, respectively. However, the approach still has poor
generalization due to insufficient interaction and a span-based
extraction strategy. Zheng et al. [12] decomposed the entire
task into three subtasks: relation judgement, entity extraction,
and subject-object alignment. They designed a low complexity
global correspondence matrix to align the subject and object.
Despite achieving success, this approach lacks deep interaction
between relation classification and entity recognition.

C. Other Method

Shang et al. [27] proposed a one-step and one-module
model that consists of a scoring-based classifier and a relation-
specific horns tagging strategy. Zhao et al. [28] tackled the
task of relation extraction using heterogeneous graph neural
networks. Their approach involves modeling relations and
words as nodes on a graph and iteratively fusing the two
types of semantic nodes using a message passing mechanism to
obtain node representation. This approach leverages the graph
structure and takes into account the contextual information
of both relations and words. Ning et al. [29] considered the
extraction task based on the table-filling method as a target
detection task and proposed a single-stage target detection
framework, which combined with the auxiliary global rela-
tional triplets region detection to ensure the region information
can be fully utilized. Ye et al. [30] employed the different
strategies for NER and RE by using solid and levitated markers
of neighboring spans inside the same sample.

III. PROPOSED METHOD

A. Problem Formulation

Given the input sentence S = {x1, x2, . . . , xn} with n
tokens, the task goal is to extract all possible relational triplets
such as {T = (s, r, o) | s, o ∈ E, r ∈ R}, where E and R are
entity and relation sets respectively, a triplet T represents a pair
of entity and a relation between them contained in sentence S.

As shown in Fig. 2, given an input sentence S, the encoder
starts modeling its text semantics. The potential relation de-
coder, with a contrastive learning strategy, detects all possible
relations r ∈ R based on the text semantics. For each detected
relation r, the filter-attention mechanism computes and filters
the low weights of each input token to get relation-specific
sentence representation as the input of NER. The relation-
specific entity decoder extracts the corresponding head and tail
entities by using a sequence tagging scheme. Finally, the model
obtains the final triplets T with the aid of an auxiliary matrix
M which were generated at the same stage as the potential
relation prediction.

B. Model Encoder

This approach employs a pre-trained language model called
BERT [31] for a fair comparison, which is widely used to en-
code sentences and capture the semantics of text. The output of

the model encoder is Henc =
{
h1, h2, . . . , hn | hi ∈ Rd×1

}
,

where n is the number of tokens, and d is the dimension of the
embedding. It can also use other pre-trained language models,
such as RoBERTa [32] and so on.

C. Relation Classification

The relation classification component is illustrated in Fig.
2. It is important to note that not all sentences contain all
predefined relations. Therefore, CLFM starts by identifying
potential relations, which helps to reduce redundant relation-
ships in the current text. To complete the operation, average
pooling and a fully connected layer are employed. Given the
embedding h ∈ Rn×d of the input sentence, where n is the
number of tokens, each element of the relation classification
component is obtained as follows:

hpool = φ(h) ∈ Rd×1

P pot = σ(Wrh
pool + br) (1)

Where φ denotes the average pooling operation [33] and σ
is the sigmoid activation function, Wr ∈ Rd×1 is a trainable
weight and br is a parameter.

Unlike previous works [21], [26], [12], which treat rela-
tion classification as a simple binary classification task, this
approach incorporates a contrastive learning strategy to add
a new constraint to the result of the relation classification
task. Inspired by [13], CLFM employs the idea of R-drop to
impose a new constraint on the result of the potential relation
classification task. Specifically, it computes the Kullback-
Leibler divergence of the classification results as a part of the
relational loss by running the sentence embedding h through
the sentence classifier twice. Since the classifier contains a
dropout operation, two results for the same input may be
different, which can increase the robustness of the classifier by
continuous training. For classification results, if the probability
exceeds a threshold λ1, model allocates the corresponding
relation a tag of 1; otherwise, model assigns a tag of 0. The
detailed contrastive learning component and potential relation
loss are as follows:

Lcl =
1

2
(DKL(P

pot
1 ∥ P pot

2 ) +DKL(P
pot
2 ∥ P pot

1 )) (2)

Lrc = −
1

nr

nr∑
i=1

(yi logP
pot + (1− yi) log

(
1− P pot

)
) (3)

Lrel = αLrc + βLcl (4)

Where P pot
1 and P pot

2 are transformed into a predefined
relational representation by P pot, DKL(∥) denotes Kullback-
Leibler divergence and nr is the size of predefined relation
set. α and β are weights of each sub-loss. Performance might
be better by carefully tuning the weight of each sub-loss. The
reason why this work takes the average of the two calculations
as the result is that Kullback-Leibler divergence is asymmetric.
After adding the new constraint, CLFM can better handle of
datasets with more relationships.
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Fig. 2. The overall structure of CLFM. It combines three parts: potential relation classification, sequence labeling and auxiliary matrix.

Fig. 3. The process of filter-attention.

D. Filter-attention Mechanism

After obtaining all potential relationships in the current
sentence, previous works typically concatenate sentence and
relation embeddings or design complex gating mechanism.
However, concatenation can lead to the introduction of useless
information. Compared to than gating mechanism, attention
mechanism is more intuitive and easier to understand and
the elements are more closely related. Therefore, this paper
designs an attention mechanism with a filtering function based
on attention mechanism [14] to retain useful mutual informa-
tion. Fig. 3 shows the details of filter-attention mechanism.
Before starting relation-specific NER, sentence embedding and
relation embedding are fed into filter-attention. It utilizes ad-
ditive attention to capture diverse semantic information across
various relationships, as it aligns better with the encoder-
decoder structure. After computing attention scores, filter mod-
ule selects higher scores for retention to obtain a more accurate

representation of the input containing information about the
current relationship. The filter-attention mechanism component
is as follows:

S(h, hr) = Wvθ(Wqh+Wkhr)

Sfilter(h, hr) = F (Softmax(S(h, hr)))

µ = Sfilter(h, hr) · hr (5)

Where Wq , Wk ∈ Rd×d and Wv ∈ Rd×1 are trainable
weights, hr is transformed into a predefined relation repre-
sentation by P pot. θ(·) is tanh activation function and F (·)
is the filter operation. A threshold λatt is established for the
filter mechanism. When scores exceed λatt, the scores in the
original matrix are retained; otherwise, they are discarded.
After conducting thorough experiments, λatt is assigned a
value of 5e-3. The ultimate representation that undergoes the
filter-attention mechanism is denoted as u ∈ Rd×1.
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E. Relation-specific NER

As shown in Fig.2, the model starts the relation-specific
entity recognition task after completing the filter-attention
operation. CLFM model it as a sequence tagging task be-
cause the generalization of span-based extraction methods is
poor. To solve common overlapping triplet issues, it perform
separate sequence tagging for head entity and tail entity.
This strategy can handle issues including EntityPairOverlap
(EPO) and SingleEntityOverlap (SEO). The sequence tag set
for the head entity is {B-H, I-H,O}, and the sequence tag
set for the tail entity is {B-T, I-T,O}. CLFM employ the
traditional LSTM-CRF[10] network for sequence tagging, and
the detailed formula descriptions are as follows:

oi,j =
[−−−−→
LSTM(hi;µj) ;

←−−−−
LSTM(hi;µj)

]
Phead
i,j = CRF (oi,j) (6)

Where (; ) denotes concatenating operation, hi is i-th
token representation of sentence S and µj is j-th relation
representation after going through filter-attention component.
CRF (·) is Conditional Random Field approach. The head
entity formula is only given, tail entity formula is the same
as Eq. (6). The loss of whole entity recognition is Eq. (7):

Lseq = − 1

2× n× npot
r

∑
t∈{head,tail}

npot
r∑

j=1

n∑
i=1

yti,j logP
t
i,j (7)

Where npot
r is the size of potential relation set of sentence S.

F. Auxiliary Matrix and Training Strategy

After all the above operations, CLFM gets all possible
head and tail entities that correspond to specific relations.
However, if the model directly outputs the outcome, there
will be a high probability of obtaining inaccurate triplets. To
avoid this situation, following [12], the model computes an
auxiliary matrix M ∈ Rn×n for the given sentence S with n
tokens to denote whether a relationship exists between tokens.
This is similar to a pruning operation that increases the limits
and make the final triplets more accurate. The value of each
element in the matrix is computed as follows:

Pihead,jtail
= σ

(
Wg

[
hhead
i ;htail

j

]
+ bg

)
(8)

Where hhead
i , htail

j ∈ Rd×1 are the encoded representation
of the i-th token and j-th token in the input sentence forming
a potential pair of head and tail entities. Wg is a trainable
weight.

Matrix loss is as follows:

Lmatrix = − 1

n2

n∑
i=1

n∑
j=1

(yi,j logPihead,jtail

+ (1− yi,j) log (1− Pihead,jtail))

(9)

The total loss is the sum of these three parts:

Ltotalloss = γ1Lrel + γ2Lseq + γ3Lmatrix (10)

where γ1, γ2, γ3 are adjustable loss weights.

IV. EXPERIMENT

A. Datasets and Evaluation Metric

For fair and comprehensive comparison, this work follow
[22], [9], and [21] to evaluate CLFM on two widely used public
datasets: NYT and WebNLG. The NYT dataset is generated
by aligning the relations in Freebase with the New York Times
(NYT) corpus and is widely used for remotely supervised
relational extraction tasks. It contains 24 relation types. The
WebNLG dataset, originally employed for natural language
generation tasks, includes 246 relation types. It is worth noting
that both datasets have another version: NYT* and WebNLG*,
which annotate the last word of entities. Table I shows the
statistics for the above datasets.

Two evaluation metrics are employed for expensive experi-
mental studies: Partial Match for NYT* and WebNLG*, where
an extracted triple (s, r, o) is regarded as correct only if its
relation and the last word of the head entity name and the tail
entity name are correct; Exact Match for NYT and WebNLG,
where a predicted triple (s, r, o) is regarded as correct only if
its relation and the full names of its head and tail entities are
all correct.

TABLE I. THE STATISTICS OF DATASETS

Datasets Train Valid Test Relations

NYT 56196 5000 5000 24
WebNLG 5019 500 703 171
NYT* 56195 4999 5000 24
WebNLG* 5019 500 703 216

B. Implementation Details

As presented in Fig. 2, CLFM encoder employs the Py-
ToREh version of BERTbase (cased) English. To ensure eq-
uitable comparison, the input sentence length is standardized to
a fixed size of 100, and the Adam optimizer [34] is employed
with a batch size of 32/6 for the NYT/WebNLG datasets. The
learning rate for the BERT encoder is set to 5e-5, while the
decoder learning rate is set to 1e-3 to achieve fast convergence.
Moreover, the utilization of weight decay [35] at a rate of 0.01
is incorporated. The potential relation decoder threshold and
filter-attention threshold are set as 0.5 and 5e-3, respectively.

The experiments are conducted on a server equipped
with Intel(R) Xeon(R) Silver 4215 CPU @ 2.50GHz and an
NVIDIA Tesla V100 GPU.

C. Baseline Methods

A selection of nine baseline methods has been made
for the purpose of comparison. This assortment comprises
representative models as well as models featuring analogous
structures. CLFM is compared with the following strong
baseline models on the NYT and WebNLG datasets. The top
six models are representative methods, while the last three have
similar structures to CLFM: (1) CasRel[22] (2) TPLinker[23]
(3)WDec[25](4) CGT[36] (5) StereoRel[37] (6) RIFRE[28]
(7)PRGC[12] (8) RSAN[8] (9) Cascade dual-decoder[26].
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TABLE II. PERFORMANCE OF CLFM AND EIGHT COMPARED BASELINES ON NYT AND WEBNLG

Model NYT WebNLG NYT* WebNLG*

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

CasRel - - - - - - 84.2 83.0 83.6 86.9 80.6 83.7
TPLinker 91.4 92.6 92.0 88.9 84.5 86.7 91.3 92.5 91.9 91.8 92.0 91.9

WDec 88.1 76.1 81.7 88.6 51.3 65.0 94.5 76.2 84.4 - - -
CGT - - - - - - 94.7 84.2 89.1 92.9 75.6 83.4

StereoRel 92.0 92.3 92.2 - - - 92.0 92.3 92.2 91.6 92.6 92.1
RIFRE - - - - - - 93.6 90.5 92.0 93.3 92.0 92.6
PRGC 93.5 91.9 92.7 89.9 87.2 88.5 93.3 91.9 92.6 94.0 92.1 93.0
RSAN 85.7 83.6 84.6 80.5 83.8 82.1 - - - - - -

Cascade dual-decoder 89.9 91.4 90.6 88.0 88.9 88.4 90.2 90.9 90.5 90.3 91.5 90.9

CLFM 93.3 92.4 92.8 90.3 87.9 89.1 93.0 92.3 92.7 93.9 92.6 93.3

D. Experimental Results

This section presents experimental results and compares
them with other baseline models. It also conduct an in-
depth analysis of the results to gain a better understanding
of the performance of CLFM in relation to the other methods.
Through a comprehensive analysis of the outcomes, valuable
insights into the workings of CLFM can be acquired.

1) Overall Results: Table II presents an overall comparison
of CLFM with other baselines. CLFM outperforms all of the
baselines in terms of F1 scores, and for most cases, precision
and recall are also superior. Notably, CLFM exhibits better
robustness and generalization on the WebNlG dataset, where
a wide range of relations are involved. This success can be
attributed to the incorporation of the introduced contrastive
learning strategy, which significantly enhances the accuracy
of the relation classification decoder. Although RSAN[8] also
employs attention calculations through a gate mechanism,
CLFM achieves superior performance (with at least an 8%
improvement over RSAN) due to its simplicity and common-
ality. Additionally, the model achieve a 0.6% improvement
on the WebNLG dataset compared to PRGC. Regarding the
NYT dataset, although CLFM achieves similar performance
as PRGC, it is believe that the limited number of relations
in the dataset and the already high-quality results may have
contributed to the lack of significant improvement.

2) Result Analysis on Different Sentence Types : Following
previous works [26], we conduct extensive experiments to
verify that our method makes effective in the scenario of
overlapping triples on NYT and WebNLG datasets. Table III
shows the detailed results on the three overlapping patterns,
where Normal is the easiest pattern while EPO and SEO are
more difficult to be handled. The experimental findings reveal a
consistent and superior performance exhibited by our proposed
model across all three overlapping patterns. Noteworthy is
the model’s exceptional efficacy in handling intricate patterns
such as EPO and SEO, where it consistently outperforms
the established baseline, PRGC. This substantiates the robust
capabilities of our model in effectively addressing the intricate
challenges posed by overlapping triplets.

Furthermore, an extensive examination was conducted to
extract triples from sentences featuring varying numbers of

triplets. The sentences were categorized into five subclasses,
each encompassing texts with 1, 2, 3, 4, or ≥ 5 triples.
The comparative results of the five methods across the dif-
ferent triple categories are depicted in Fig. 4. The figure
illustrates that our model consistently achieves the highest
F1 scores across most cases in the two datasets, exhibit-
ing remarkable stability as the number of triples increases.
Particularly noteworthy is the superior performance of our
model in comparison to the leading baseline, PRGC, in the
most challenging class (≥ 5) on NYT and WebNLG. This
suggests that our model demonstrates enhanced resilience in
handling intricate scenarios involving a substantial number of
triples.Moreover, our model outperforms others in nearly every
subset, irrespective of the number of triples. In summary, these
additional experiments substantiate the advantageous features
of our model, particularly in complex scenarios, highlighting
its robustness and superior performance over existing methods.

TABLE III. F1-SCORE OF SENTENCES WITH DIFFERENT OVERLAPPING
TRIPLETS ON NYT AND WEBNLG

Model NYT WebNLG

Normal SEO EPO Normal SEO EPO

WDec 80.3 81.4 86.7 75.5 63.3 67.0
CasRel 84.2 83.0 83.6 86.9 80.6 83.7
PRGC 88.6 93.6 94.1 86.8 89.0 89.8

Cascade dual-decoder 88.2 92.8 92.9 86.2 88.9 88.5

CLFM 90.9 94.4 94.7 87.6 89.6 94.1

3) Explore for Filter Threads: The performance of the
filter-attention mechanism is highly influenced by the threshold
λatt. To study the impact of threshold changes and find the
appropriate value, A series of experiments are carried out. Ta-
ble IV shows the results of these experiments. Variations were
introduced to the threshold within a predefined range, revealing
that further enhancements in the experimental outcomes could
be achieved by implementing additional threshold adjustments.
Based on the current results, A threshold value of 5e-3 was
chosen for the filter-attention mechanism. Nevertheless, it
is important to highlight that the optimal threshold might
exhibit variability contingent on the specific dataset or task.
As a consequence, undertaking additional experiments and
meticulous refinement of the threshold could be imperative
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Fig. 4. Results of different sentence types on NYT and WebNLG.

Fig. 5. The results of different combination approaches.

for attaining superior results.

TABLE IV. THE EXPERIMENTAL RESULTS OF DIFFERENT THREADS ON
WEBNLG*

Thread F1(WebNLG*)

1e-3 92.8
3e-3 92.4
4e-3 92.0
5e-3 93.3
7e-3 92.0

4) Ways of Filter-attention: Furthermore, diverse method-
ologies for amalgamating the representations acquired via the
filter-attention mechanism with the sentence embeddings are
explored. To facilitate discourse, the nomenclature adopted
encompasses the relation embeddings procured via the filter-
attention mechanism, denoted as filter-relation, the sentence
embeddings acquired through the filter-attention mechanism,
termed as filter-sequence, and the sentence embeddings gener-
ated by the BERT encoder, identified as sentence-output. Con-
catenation function is represented by the (·, ·) notation. As il-
lustrated in Fig. 5, five distinct strategies for amalgamating the
embeddings are subjected to experimentation on the WebNLG*
dataset, namely, (a) sequence-output, filter-relation, (b) filter-

sequence, (c) sequence-output, filter-relation + filter-sequence,
(d) sequence-output, filter-sequence, (e) filter-sequence, filter-
relation. Precision, recall, and F1 score are used to evaluate
the performance of each approach. The experiment results
demonstrate that the first Combination method, (sequence-
output, filter-relation), outperforms the other four combinations
and is currently the best approach. Additionally, this validation
substantiates the rationale behind the inception of the filter-
attention mechanism.

5) Ablation Study: This section examines the contributions
of different modules components in CLFM, using the best
performing model on the WebNLG* dataset. Initially, the con-
trastive learning component is removed. Subsequently, an ex-
ploration is conducted into the influence of the filter-attention
mechanism. This entails retaining the attention mechanism
while discarding the filter function, as well as removing both
components. Table V shows the results. It can observe that
contrastive strategy and filter-attention mechanism can improve
the performance of the model. The results demonstrate that
contrastive learning can enhance the accuracy of the relation
decoder when dealing with multiple relations, while filter-
attention can improve the quality of the interactive represen-
tations between two subtasks.
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TABLE V. ABLATION STUDY RESULTS ON WEBNLG* TEST SET

Method Pre. Rec. F1

CLFM 93.9 92.6 93.3
-contrastive learning 93.5 92.3 92.9
-filter 93.4 92.2 92.8
-filter-attention 93.4 92.0 92.7

V. CONCLUSION

In this paper, a novel approach is presented for relational
triplet extraction, emphasizing a relation-first perspective. This
work incorporates a contrastive strategy and a filter-attention
mechanism to effectively address the challenges posed by
redundant relations and the accurate classification of relations
within a diverse range. The proposed model also enhances the
synergy between subtasks and effectively filters out extraneous
information during sequence tagging. Empirical evaluations
conducted on publicly available datasets showcase the re-
markable performance of CLFM. In the subsequent research
endeavors, the exploration of more intricate filter-attention
mechanism is on the horizon to elevate the overall quality of
representations.
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