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Abstract—The Mekong Delta (MD) has suffered significant
losses in land resources, economic damage, and human and
property casualties due to recent landslides. An early warning
system for landslides is a valuable tool for identifying the effec-
tiveness and timely detection of changes in the soil to promptly
determine solutions and minimize damage caused by landslides
in an area. In this study, we apply a machine learning approach
based on the Long Short-Term Memory (LSTM) algorithm to
experiment with early warning of landslide events on soft soil in
the MD. Horizontal pressure, the change in inclination angles of
the sensor pile due to the soil mass sliding in both the x and y
directions, and the warning levels are determined based on the
deformation and displacement of the soil along the riverbank,
considered candidate factors for inputs in the model. Data from
the established sensor system is used to train the model, creating
a training and testing dataset of 374,415 samples. The accuracy of
the detection and classification threshold of the system is proposed
to be measured using the average F1 score derived from precision
and recall values. The optimal prediction results are gleaned from
an observational window of 4 minutes and 30 seconds to project
roughly 2 hours into the future. The validation process resulted in
recall, precision, and F1-score stands at 0.8232 with a remarkably
low standard deviation of about 1%. The successful application
of this research can help identify abnormal events leading to
riverbank landslides due to loading, thereby creating conditions
for developing a reliable information system to provide managers
with the ability to suggest timely solutions to protect the lives,
property of residents and infrastructures.

Keywords—Landslide early warning; soft soil; Mekong Delta;
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I. INTRODUCTION

Landslides represent a formidable global challenge, exert-
ing a profound toll on economies, depleting natural resources,
and tragically affecting human lives [1], [2]. Despite their
localized occurrence, the ramifications of landslides extend
far beyond their immediate vicinity, resulting in significant
devastation to vital infrastructure elements such as roads,
bridges, and power lines. This, in turn, leads to the distressing
loss of land, homes, and, most tragically, human lives [3].
Vietnam in Southeast Asia bears witness to a history marked
by a succession of natural disasters, including but not limited
to floods, the encroaching threat of rising sea levels, shifts in
climate patterns, coastal erosion, and the peril of landslides.
Among the vulnerable regions, the Mekong Delta stands
out, situated in the southern expanse of the country, densely
populated yet perilously exposed to the caprices of nature.

*Corresponding authors.

Its topographical identity is characterized by extensive low-
lying stretches, intricately interlaced with an intricate network
of rivers, canals, and verdant wetland areas, rendering it
particularly susceptible to the forces of erosion and inundation.

The Mekong Delta region experiences a notable uptick in
landslide occurrences, a trend that tends to peak during the
rainy months. This phenomenon is intricately linked to the
seasonal patterns of precipitation and the unique geological
characteristics of the area. As moisture-laden rains saturate
the soil and increase the weight and pressure on slopes, the
propensity for landslides escalates. This heightened vulnerabil-
ity underscores the need for vigilant monitoring and proactive
mitigation measures to safeguard the natural landscape and its
communities. According to the statistical data provided by the
National Steering Committee for National Disaster Prevention
and Control - Vietnam [4], until September 2023, there have
been 558 locations of riverbank landslide within the area,
resulting in a total affected and lost land length of over 740
km. Among these are 81 hazardous landslide sites and 137
high-risk landslide sites, causing damage to over 200 houses,
residents’ properties, and infrastructure worth thousands of
billions of Vietnamese dong (VND).

Throughout the initial nine months of 2023, Can Tho
City, situated among the thirteen provinces in the Mekong
Delta region, bore the brunt of an alarming surge in land-
slides. This period witnessed an unsettling total of over 30
landslide incidents. These events led to injuries sustained by
two individuals, the complete submersion of eight houses into
the river, partial collapses, and grave impacts on 19 other
residences. The cumulative length of the riverbank affected
by these events totaled 1976 meters. Furthermore, the region
has grappled with an escalating frequency of landslides in
recent years, a trend partly attributed to the transformative
impact of human activities and urban development encroaching
upon riverine areas, thereby altering the natural landscape
[5]. This surge in landslide occurrences has had far-reaching
consequences, significantly and adversely affecting the lives
of local residents and impeding the region’s broader socio-
economic development.

A preliminary assessment by domestic experts on the
causes of erosion and instability of riverbanks and coastlines
in the Mekong Delta region indicates that erosion at the base
of the slope, saturated slopes after prolonged heavy rains or
floods, and variations in groundwater levels are the primary
factors contributing to slope instability along the riverbank
[6], [7]. In addition to these long-term causes, the load of
the structure, particularly the dynamic load induced by traffic,
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can act as triggering factors for landslides [8], [9]. The com-
plex relationships between landslide disasters and the factors
that trigger them remain unclear. This complexity makes it
challenging to analyze these mechanisms of landslides using
simple algebraic equations [10]. Hence, predicting the ground’s
stress behavior and the soil mass’s displacement along the
riverbank becomes crucial and challenging.

The exploration of landslide risk assessment commenced
in the 1970s [11]. Since then, propelled by advancements in
modern statistical science and the advent of machine learning
techniques, deep learning has become a vital tool in land-
slide research, particularly for landslide detection [12], [13],
[14], [15]. While conventional approaches often treat land-
slide displacement prediction as a static regression problem,
it is imperative to acknowledge that landslides are dynamic
systems. The influencing factors and displacement conditions
at one moment profoundly influence the subsequent moment.
Thus, an effective landslide displacement prediction model
should integrate susceptibility modeling, which considers the
accumulation of variables over time.

The primary objective of this research is to present a pre-
dictive model for landslides utilizing advanced deep learning.
The approach is rooted in the integration of input data, which
encompasses variables such as soil pressure, incline in the x
and y directions, alongside temporal factors. By harnessing
machine learning algorithms, the primary aim of this work is to
unravel the intricate interplay between these input parameters
and their consequential impact on riverbank landslides. In the
context of this study, a specialized form of recurrent neural
network known as LSTM neural network was utilized to
predict the progression of landslide events, extracting profound
insights from time series data. This architectural framework
excels in capturing complex patterns and temporal relation-
ships in sequential data, providing favorable conditions for the
development of a robust reduction framework. To facilitate the
landslide prediction experiments, this study deployed a data
collection system based on sensors. Through training on the
gathered dataset, the model has demonstrated effective pre-
dicting capabilities for early warning of landslide phenomenon
through training on the gathered dataset.

The underlying objective of the research is to study the
performance of deep learning neural networks like LSTM
to devise an early warning landslide system. The model is
evaluated in term of accuracy on the dataset collected from the
various experiments along the riverbank. In Section II we have
discussed the related work. Section III explains the sources
of collected dataset, the adopted methodology, the evaluation
method and discusses the results in the study. Section IV is
the conclusion of study.

II. RELATED WORKS

Recent machine learning and neural network breakthroughs
have prompted extensive research, with CNNs being favored
for their effectiveness in diverse applications. By utilizing
neural networks, many researchers have developed landslide
susceptibility maps and spatial modeling of landslides in highly
prone mountainous areas using artificial neural networks [12],
[16], [17], [18], [19], [20], [21]. Applying machine learning
techniques along with GIS information [15], nonlinear spatial

models have been created [22]. Neural Networks [23], [24],
[25], [26], Boosted Regression Trees [27], [28], the Wavelet
Transform model [29], [30] and Random Forest [31], [32], [33]
are among the AI algorithms applied to tackle the intricate
problems of landslide assessment. The Random Subspace
Space Fuzzy Rule-based Classifier (RSSCE) is utilized to
predict landslide occurrences based on the analysis of rainfall
data triggered by heavy rainfalls in hilly areas [34], [35].

Research on landslide displacement prediction has indi-
cated that utilizing deep learning on time series data, specif-
ically the Long Short-Term Memory (LSTM) model, offers
accurate forecasts [36]. LSTM’s ability to capture historical
information reduces the complexity of triggering factors, mak-
ing it suitable for predicting landslide trends. Its performance
in identifying these factors based on spatiotemporal sensor data
demonstrates its superiority over other algorithms [37]. By ex-
tracting precise correlations between temporal and spatial data,
LSTM has captured intricate time-dependent dependencies,
outperforming traditional mechanical models [38]. The study
in the Three Gorges Reservoir area, based on experimental
mode decomposition and LSTM, has demonstrated superior
accuracy compared to other static models in landslide dis-
placement prediction [39]. Besides, [40] also proposes a novel
coupled method using LSTM neural networks and support
vector regression (SVR) algorithm, focusing on decomposing
cumulative displacement into trend and periodic terms. The au-
thor introduces ensemble models based on SVR to optimize the
combination of LSTM and SVR results, aiming for better accu-
racy in landslide predictions. The research on the mechanisms
of damage and long short-term memory model for landslide
prediction aims to address surface degradation phenomena,
focusing on short-term impacts. The study emphasizes the
effectiveness of LSTM in predicting landslide behavior and
assessing damage based on joint distribution characteristics in
building disaster prediction models [41]. These studies have
applied the LSTM model based on various data such as rainfall,
reservoir level, change in reservoir level, humidity, elevation,
and displacement. The prediction results have observed that
the prediction performance of the LSTM model is suitable
and superior to static models like SVR, BP, SVM, ARMA,
and even the dynamic Elman model.

Besides, combined models have been highly successful in
fields such as flooding [42], [43] and drought [44], which has
led researchers to explore ensemble modeling in landslide pre-
diction as well. Risk analysis and forecast of landslide hazards
using LSTM-RNN and DBA-LSTM models based on rainfall
changes and water level variations have shown high accuracy
[45], [46]. Researchers have used the original sequence of
landslide displacement as input for combined machine learning
models to predict the movement of landslides in steep slopes
[47], [48], [49], [50]. The prediction of landslide movement
in the major branches of the Three Gorges Dam area in China
is carried out through combined models such as LSTM-TAR
VMDstacked, LSTM-FC models, and LSTM models combined
with Weighted Moving Average (WMA) using rainfall and
reservoir water level data in each cycle with high accuracy
[50], [51]. A prediction model for slope displacement based on
the LSTM neural network and the Singular Spectrum Analysis
(SSA) algorithm, using survey and geotechnical monitoring
data, has significantly improved the model’s performance in the
dataset for predicting displacement within the next 24 hours

www.ijacsa.thesai.org 1040 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 12, 2023

[52]. Landslides are likely to occur more frequently, along
with climate change and the increasing surface loads caused
by human activities.

In general, the conducted studies have been carried out in
mountainous areas with a geological structure of loose rock.
The primary factors causing landslide movements are mainly
related to the permeability of the surface soil layer on the slope
due to rainfall. In contrast to the riverbank landslides in the
Mekong Delta, where the substrate is composed of alluvial
deposits, young deltaic sediment, and riverbank soil with a
predominantly geological structure of clayey soil, which is
soft and weak. Additionally, factors contributing to riverbank
landslides can arise from various causes: the inherently weak
and saturated soil substrate with poor load-bearing capacity,
subsurface erosion, changes in groundwater levels along the
riverbank resulting in seepage flow, and human activities (such
as construction and traffic), depicted in Fig. 2a. The studies on
data collection systems based on modern sensor technologies
or remote sensing techniques to generate databases for training
landslide prediction models are presented in Table I and Table
II. Thus, the need for early warning to assess the stability of
slopes is becoming imperative [53]. Despite the extensive use
of LSTM algorithms for landslide prediction in mountainous
terrains with rocky geological structures, they have not been
applied to predict riverbank landslides occurring in soft soil
formations.

In this study, a new method to predict riverbank landslides
using deep learning combined with data collected from sensors
was proposed. To facilitate this, an Internet of Things (IoTs)
- based sensor data collection and monitoring system have
been implemented at the experiment sites along the riverbank
within the Mekong Delta region. The collected data is used
for training the LSTM machine learning algorithm to predict
the possibility of riverbank slope instability for the purpose of
early warning of riverbank landslides.

III. METHODS

A. System Architecture for Predicting Landslides

Fig. 1. System architecture for predicting landslides.

The architecture of the landslide prediction system is
presented in Fig. 1. Our endeavor revolves around establish-
ing a cutting-edge data collection framework focused on a

diverse array of sensor devices. These instruments encompass
a range of measurements, from monitoring soil moisture and
inclination to gauging soil pressure. Central to this intricate
setup is the Master Unit, a pivotal component acting as the
central hub where these distinct sensors seamlessly converge
to facilitate the precise acquisition of data. The Master Unit is
a testament to seamless integration, meticulously designed to
aggregate data from various sources with exceptional precision
and efficiency.

In our commitment to ensure the accessibility and contin-
uous availability of this data, we have dedicated substantial
effort to engineer a robust data transmission mechanism.
This designed system leverages the high-speed capabilities of
3G and 4G connectivity, enabling the collected data to be
transferred from the Master Unit to our designated server. This
data transmission process is characterized by its exceptional
reliability and speed, forming an essential bridge that connects
the physical realm of sensor data with the digital domain and
ensures that this critical information is delivered promptly and
with utmost accuracy.

The collected dataset undergoes a data preprocessing phase.
This phase involves a blend of data cleansing, transformation,
and normalization, all working in concert to ensure the data’s
integrity and suitability for subsequent analysis. A grid search
method is employed on the training dataset to determine
the appropriate number of layers of the LSTM method. The
training dataset is split into two parts that comprise 80% and
20% of the dataset. The first part is used for training the
model, and the second part is used to test the model’s predictive
ability. The crux of our methodology resides in utilizing deep
learning architectures: LSTM. Our predictive framework relies
on this algorithm model, which is predictable in time series
within sequential data. The primary objective of this study is
to forecast the warning level and landslide probability at time
t, utilizing current time series data. This proactive approach
significantly enhances the effectiveness of relocation efforts
and minimizes potential damage in the aftermath of a landslide.

B. Experimental Setup for Data Collection System

In this work, to ensure consistency with the geological real-
ity of the study, we excavated a channel (measuring 25m×3m,
with a slope ratio of H = 0.5, V = 2 on the banks of the Cai
Sau channel in Can Tho city and tested the proposed system
(Fig. 3). The geology at the research location is determined to
be soft soil with the following physico-mechanical parameters:
soil cohesion C = 8.1kPa, internal friction angle ϕ = 316′,
bulk weight w = 1.571g/cm3, void ratio e = 1.808 and its
initial water contents was 67%. The sensor pile is fixed at a
distance of 0.1m from the channel bank edge (Fig. 4). The
sensor node is composed of one Master unit and a Sensor
unit. The soil pressure transducer is fixed on the sensor pile
and inserted at a depth of 0.2 to 0.4 meters from the ground
surface. The inclination sensor is compact (5 to 8mm in width
and 10mm in length), installed in a waterproof plastic tube,
and fixed on the sensor pile. The inclination sensor and soil
pressure transducer are connected to the Sensor unit. The other
item to be measured is soil moisture using a soil moisture
sensor. This type of sensor is easy to use, plugged into the
soil at a depth of 0.2m to observe and maintain the moisture
of the canal bank slope in a saturated state throughout the
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TABLE I. MONITORING SYSTEMS PROVIDE EARLY WARNING OF LANDSLIDES

Landslide warning system System Input data
Topographic
characteristics of
the study area

In the world
One sensor node is the collection
of three types of sensors that are
displacement sensor, pore pressure
sensor and moisture sensor [54].

Landslide early warning system
(LEWS)

Rain-fall,
pore pressure,
moisture and
displacement

Mountainous
regions

The Infrastructure Node (IN),
the Subsurface Node (SN) and
the Low-Cost Chain Inclinometer
(LCI) [55].

LEWS based on IoTs technologies
such as micro-electro-mechanical
systems (MEMS) sensors and
the LoRa (Long Range)
communication protocol.

Subsurface deformation and
ground seepage-water levels

Mountainous
regions

Tilt sensors and volumetric water
content sensors [56]. LEWS – MEMS The tilting angles and

moisture content
Mountainous
regions

The on- site monitoring and
collection nodes are composed of
one STM32L071RBT6
microprocessor and one STM32
microprocessor processes the sensor
data acquired [57].

Real-Time Monitoring
System of Landslide - LoRa.

Rainfall,
displacement,
tilt and
acceleration

Mountainous
regions

Pressure sensors and strain gauges
measure water pressure and soil
displacement respectively [58].

Landslide Early Warning Wireless
Sensor Networks
(LEWS - WSNs)
Ultra-wideband (UWB)

Soil moisture,
water level,
soil inclination and
temperature

Mountainous
regions

Volumetric water content (VWC)
and pore water pressure (PWP) [59].

Local landslide early warning
system (Lo-LEWS)

The calculated safety
factor (FS), the temperature,
the precipitation, the VWC
and PWP monitored were
used as input dataset for a
supervised machine
learning algorithm

Mountainous
regions

In Viet Nam

The proposed system consists of
six sensor nodes and one rainfall
station [60].

Rainfall-induced landslide early
warning (EWMRIL) - ZigBee

Soil moisture,
PWP,
movement status,
and rainfall.

Mountainous
regions

testing process. Then, the Sensor unit and Soil moisture sensor
are connected to the Master unit. Measurement data will be
transmitted to the Cloud server via 3G/4G mobile networks
by the Master unit every 60 seconds. Solar power is used to
provide energy for the sensor node.

The applied load is in the form of a strip load, simulating
the load of the structure along the riverbank. The pressure
exerted on the canal bank is created by sandbags placed on a
steel plate with an area of 0.6m x 1.4m, arranged around the
sensor pile with a distance of 0.2m as shown in Fig. 3. The
canal bank in the experimental area was saturated with artificial
continuous rainfall of 15mm/h. After filling the canal with
water, the canal’s water level was changed in combination with
waves generated (by wave generators) to create a scour hole at
the base of the slope as in Fig. 2. The strip load was gradually
increased until the landslide occurred. Each load level was 3.5
kPa. Data on soil pressure, pile tilt angle, and soil moisture
were recorded during the experiment.

Measurement data of inclination angle and soil pressure
during the destructive deformation of the ground at the pile
position are shown in Fig. 5, respectively. It can be observed

that the landslide occurs in a relatively short time, only a few
minutes since the mechanism of landslide is sudden deforma-
tion. Values of the inclination angle in the two directions, x
y, differ in magnitude and time because the sensor pile moves
along with the sliding ground mass.

C. Dataset

We performed testing at 45 sites. Each experiment lasted
approximately seven days. The loading and data recording
started 24 hours after embedding the sensor piles into the
riverbank soil mass, with the load level increasing from 3.0
kPa to 4.5 kPa at each level. Each loading level was applied
for continuous 11-hour intervals. An illustrative example of
a measured data set is the horizontal soil pressure recorded
during the second loading phase, which was 1.16 kPa. The X
and Y tilt angles showed minor variations in the first 3 hours
due to soil structure consolidating pressure, increasing soil
compactness at the measurement site. Loading gradually in-
creased at specified intervals until signs of soil failure became
apparent. Such data recorded at 12:35:58 on December 19,
2022, as shown in Fig. 5, indicated a horizontal soil pressure of
1.9 kPa under an applied total load of 13.5 kPa. At 22:13:28 on
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TABLE II. RESEARCH ON LANDSLIDES IN THE MEKONG DELTA

Research Method Results

Initial assessment on
the causes of riverbank
instability in Chau Thanh district,
Hau Giang province [6].

Google Earth remote
sensing images from 2006 to 2019
were used to assess the current status
of riverside construction and erosion.

The Analytic Hierarchy Process (AHP)
was used to determine the impact levels
of factors that cause riverbank instability.

Using the AHP method and field survey
can be extended to other areas in the
Mekong Delta to analyze riverbank stability.

The survey and analysis results
show that geology is the most
affecting factor among the factors,
and in combination with the encroaching
construction of riversides to protection
buffer areas, it creates the surcharge
load reducing the stability coefficient
of the riverbank. Besides, the curvature
and flow velocity are also the causes of
riverbed erosion and deformation,
leading to an increase in the stiff slope
which affects riverbank stability.

Analysis of factors
affecting riverbank stability:
case study at Cha Va river section,
Vinh Long province [61].

Satellite images were loaded from
Google Earth to analyze the current erosion
of the river banks and the urbanization
process along the river banks.

The integrated effects of soft soil,
water level fluctuation, wave load,
and surcharge loads is found to be
the cause of instability of the
Chavas river bank.

Assessment of the situation of
landslides and sedimentation
in the coastal area
of Ca Mau and Bac Lieu province
from 1995-2010 using remote
sensing and GIS technology [62].

Research using remote
sensing images Landsat

Assess shoreline changes
erosion or deposition processes

Monitoring developments
in Cu Lao Dung’s
coastline using remote sensing
image analysis technology [63].

Multispectral Landsat images
were utilizad for the analysis

Analyze erosion and deposition
locations with specific values

Monitoring erosion and
accretion situation
in the coastal zone
at Kien Giang province [64].

The study applied
Normalized Difference Water Index (MNWI)
method and water level extraction using
LANDSAT imagery from 1975 to 2015
for highlight the shoreline.

Analysis was identified erosion
and accretion areas based on
shoreline changes and land use
influenced by landslides and deposition

the same day, the horizontal soil pressure measured was 2.11
kPa and showed a decreasing trend. Subsequently, continuous
changes in soil pressure and sensor pile tilt were observed,
accompanied by the appearance of cracks on the canal bank,
as shown in Fig. 4 (small cracks visible). This indicated that
the soil had reached its ultimate limit state. By 23:34:58 on
December 19, 2022, when the horizontal soil pressure reached
2.13 kPa, an additional loading level was applied, raising the
total load to 18 kPa. The horizontal soil pressure and tilt angle
remained relatively stable for about 1 hour and 30 minutes,
while monitoring revealed the gradual expansion of cracks.
Simultaneously, the soil pressure data showed a rapid decrease,
and the tilt angle of the sensor pile experienced a sudden
significant change. Finally, the canal bank slope completely
slid after the horizontal soil pressure reached its peak value
of 2.5 kPa. Data measured from sensors will be saved as data
files on the memory card. Then, the Master device will scan
the memory card and transmit the data files to the Cloud server.
Users can download the measured data for analysis and real-
time observation through the Web server. First, the dataset
“landslide monitoring.csv” was downloaded. The monitoring
dataset includes date and time, soil pressure, soil moisture, and
inclination angles due to soil movement and landslides. Data
was collected at one-second intervals throughout the loading
experiment until the landslide occurred. We can use this data
to address the prediction issue for the next two hours based

on changes in ground pressure and soil displacement in the
preceding hours. Next, the data was labeled and categorized
according to warning levels. Then, the data was transformed
into a supervised learning problem. We normalized the data for
model training using a 30-second sliding window approach.
After reprocessing, we obtained 374,415 samples, split into a
training set comprising 70% (262,090 samples) and a test set
comprising 30% (112,325 samples). The soil moisture content
in the experimental conditions was always saturated; thus, this
value was not included in the input dataset. There were three
input variables: ground pressure (p), X-axis inclination angle
(x angle), Y-axis inclination angle (y angle), warning level, and
warning label arranged in 5 columns in the input data table.

D. Warning Thresholds

The calculated ultimate bearing capacity of the soil foun-
dation using the finite element method based on geological
parameters at the experimental site was determined to be 20.61
kPa. The analysis results of the finite element model under
external loading show: (1) when the soil stress is below 40
percent of the ultimate bearing capacity, the soil remains in
a safe state; (2) when the soil stress reaches a ratio below
70 percent of the ultimate bearing capacity, the soil starts
deforming and consolidating; (3) similarly, when the ratio
increases to 80 percent, the soil shows significant deformation
and displacement; (4) finally, when this ratio exceeds 80

www.ijacsa.thesai.org 1043 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 12, 2023

Fig. 2. Riverbank landslide: (a) Diagram of the main factors contributing to
slope deformation; (b) Landslide submerges a section of national highway

91 into the hau river in an Giang province, Vietnam [65].

Fig. 3. Dimensions of the experimental canal.

percent, the analysis results indicate complete deformation and
destruction of the soil. The analysis results using the numerical
method extracted from Plaxis software are presented in Fig. 6,
7, 8, 9 with the surveyed load levels of 30%, 63%, 82.5%
and 99.5% of the ultimate bearing capacity, respectively. Fig.
9 clearly shows the sliding curve of the riverbank soil mass
(highlighted in orange) and the failure strain area (highlighted
in red). The results of soil pressure values in the horizontal
direction and displacement obtained from the measurement
system showed similarities in pressure ratios with the model
analysis results. Therefore, we have proposed pressure ratio
values to determine the warning thresholds as shown in Table
III below, where qult is the ultimate bearing capacity of the
ground.

Fig. 4. Photo taken at the experimental site.

TABLE III. PRESSURE RATIO VALUES TO DETERMINE THE WARNING
THRESHOLDS

Soil pressure factor Displacement Level of warning
k ≤ 40%.qult - Safety
40%.qult <k ≤ 70%.qult Narrow oscillation angle Warning level 1

70%.qult <k ≤ 80%.qult The oscillation angle
gradually widens Warning level 2

k >80%.qult Sudden fluctuation
in the oscillation angle Landslide

E. Long Short-Term Memory

The architecture of an LSTM neural network is explicitly
designed to handle sequential data, making it a powerful
tool for tasks like time series prediction, natural language
processing, and more. At its core, an LSTM network com-
prises individual LSTM cells that work together in a chain-
like structure (see Fig. 11). Each LSTM cell (see Fig. 10)
contains three main gates: the Forget Gate, the Input Gate,
and the Output Gate, along with a Candidate Gate. These
gates, implemented using a combination of activation functions
and weights, control the flow of information through the cell.
The Forget Gate determines what information to discard from
the previous cell state. The Input Gate decides what new
information to store in the cell state, and the Output Gate
regulates what information to expose to the output. This ar-
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Fig. 5. A specific illustration of warning thresholds based on soil pressure
and inclination displacement data of sensor piles.

Fig. 6. The total displacement result at the load level q=6kPa.

Fig. 7. The total displacement result at the load level q=13kPa.

Fig. 8. The total displacement result at the load level q=17kPa.

Fig. 9. The total displacement result at the load level q=20.5kPa.

chitectural design enables LSTMs to effectively capture long-
term dependencies in sequential data, addressing the issue of
vanishing or exploding gradients often encountered in standard
RNNs.

The approach with LSTM models for landslide predic-
tion represents a significant stride in harnessing advanced
technology for geohazard mitigation. LSTM, a specialized
form of recurrent neural network (RNN), excels in handling
sequential data, making it particularly well-suited for pre-
dicting time-dependent variables associated with landslides.
This is paramount in regions prone to geological instability,
where timely warnings are crucial for safeguarding lives and
infrastructure. One critical strength of LSTM models is their
ability to capture intricate temporal dependencies and patterns
within time series data. By incorporating memory cells that
can retain and update information over time, LSTMs excel
in modeling sequences characterized by long-term dependen-
cies. This dynamic memory retention mechanism empowers
the model to discern subtle shifts in environmental factors
leading to a potential landslide event. Consequently, LSTM-
based predictive models stand at the forefront of cutting-
edge geotechnical research, offering a promising avenue for
enhancing early warning systems and ultimately minimizing
the impact of landslides on vulnerable communities.

The equations for an LSTM cell are as follows. In these
equations, xt represents the input at time t, ht represents the
hidden state at time t, ct represents the cell state at time t,
and ft, it, gt, and ot represent the forget gate, input gate, cell
gate, and output gate respectively.

1) Forget Gate:

ft = σ(Wf · [ht−1, xt] + bf )
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2) Input Gate:

it = σ(Wi · [ht−1, xt] + bi)

3) Candidate Cell State:

gt = tanh(Wc · [ht−1, xt] + bc)

4) Update Cell State:

ct = ft · ct−1 + it · gt

5) Output Gate:

ot = σ(Wo · [ht−1, xt] + bo)

6) Hidden State:

ht = ot · tanh(ct)

Here,

• σ represents the sigmoid activation function.

• tanh represents the hyperbolic tangent activation func-
tion.

• Wf , Wi, Wc, and Wo are weight matrices specific to
the forget gate, input gate, cell gate, and output gate,
respectively.

• bf , bi, bc, and bo are bias vectors associated with the
respective gates.

Fig. 10. The LSTM cell operation.

Fig. 11. Structure of LSTM.

F. Landslide Prediction with LSTM

LSTM networks resolve the vanishing gradient issue that
hinders traditional RNN training by utilizing a memory cell
capable of retaining information over extended durations. This
quality makes them highly effective for modeling time series
sequences, a crucial aspect in predicting landslides due to their
complex temporal nature influenced by various factors.

The dataset gathered from 45 experimental points is vital
for implementing the LSTM algorithm in predicting landslide
warning levels. This extensive time series monitoring dataset
captures a multitude of critical attributes, including ground
pressure (p), the X-axis inclination angle (x angle), the Y-
axis inclination angle (y angle), and the respective warning
levels recorded at various experimental sites situated along the
banks of Rach Cai Deep River. It’s important to note that this
dataset was meticulously collected at 30-second intervals, a
frequency maintained throughout the loading test, persisting
until a landslide event occurred. To formulate the predictive
challenge effectively, we have stratified it into four levels:
safety, warning level 1, warning level 2, and landslide. The
very essence of this endeavor is rooted in the comprehensive
time series data collected in the context of six scenarios. The
particulars of these six distinct experimental scenarios are
elucidated in depth in the experimental results section.

Furthermore, our experiments extend beyond mere data
collection, encompassing the proactive prediction of landslide
levels. This predictive process spans specific time intervals,
specifically after 2 hours, 2.5 hours, 2.7 hours, 4.3 hours, 4.8
hours, and 5.5 hours post-initiation. This time horizon is of
particular significance, representing a window during which
strategic asset relocation can effectively mitigate the potential
loss of valuable assets and infrastructure. For training and
evaluating the LSTM model, the entire dataset is thoughtfully
partitioned into two subsets. A substantial 70% of the data
is designated for training, with the remaining 30% preserved
for testing and validation. This partitioning strategy ensures the
robustness and accuracy of the model’s performance, affirming
its capacity to effectively predict landslide warning levels
under diverse temporal and environmental conditions.

G. Evaluation Method

In multiclass classification, the performance of a classifi-
cation model is typically evaluated using various metrics to
assess its accuracy and effectiveness in classifying data into
multiple classes. The evaluation metrics used include accuracy,
precision, and recall [66]. The F1 score is the harmonic
mean of precision and recall, representing a balanced average
between accuracy and recall [19], [67]. It ranges between
1 and 0. The highest possible value of F1 is 1.0, and an
F1 score approaching 1 signifies perfect precision and recall,
indicating high confidence and reliability of the algorithm in
predicting landslide warning levels [68]. Detailing the indices
presented in the documents [69], [70]. Common evaluation
metrics include:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(1)

Precision =
True Positives

True Positives + False Positives
(2)

www.ijacsa.thesai.org 1046 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 12, 2023

Recall (Sensitivity) =
True Positives

True Positives + False Negatives
(3)

F1-Score =
2 · Precision · Recall
Precision + Recall

(4)

H. Experimental Results for Predicting Landslide

The LSTM model under study boasts a tri-layered struc-
ture, with each layer densely populated by 512 neurons. De-
spite its apparent complexity, the architecture remains stream-
lined and efficient, designed expressly for seamless operation
on low-performance laptop hardware. The training of this
model employs the AdamW optimizer, set at a learning rate of
0.0001. To ensure robustness and repeatability in our results,
we conducted each experiment three times, then averaged
the F1-scores, noting their standard deviation. Although the
training was set for a potential maximum of 100 epochs,
early stopping was incorporated with a patience of 8 epochs.
Remarkably, most experiments converged to their optima
around the 50 epochs. The model uses the CrossEntropyLoss
function for optimization. Despite its depth and intricacy, the
model remains relatively lightweight with 5.3 million trainable
parameters, resulting in an estimated total model size of 21
MB. The forecast performance is depicted in Table IV.

TABLE IV. THE FORECAST PERFORMANCE OF OUR MODEL

Observed window Forecast at F1-score
30min 330min (∼5.5h) 0.8088 ± 0.0380
22min 292min (∼4.8h) 0.7688 ± 0.0136
22min 262min (∼4.3h) 0.7879 ± 0.0053
14min 30sec 164min 30sec (∼2.7h) 0.7927 ± 0.0319
04min 30sec 154min 30sec (∼2.5h) 0.7756 ± 0.0107
04min 30sec 124min 30sec (∼2h) 0.8232 ± 0.0122

In this research framework, the forecasting setup is de-
lineated: The ’observed window’ denotes the uninterrupted
period during which data is observed. Data acquisition in-
volved procuring three distinct time series, e.g., pressure, x-
angle, and y-angle, from sensors strategically positioned on the
experimental pole. The positioning strategy is squarely within
the ambit of multivariate time-series forecasting [71], [72]. The
forecasting objective seeks to predict events in the vicinity of
the pole for a specified future time point. For example, if it
monitors the three-time series for 4 minutes and 30 seconds,
the predictive model aims to forecast events at the 124-minute
and 30-second mark—roughly a 2-hour projection into the
future.

I. Remark and Discussion

Fig. 4 illustrates the appearance of cracks on the ground,
gradual soil mass horizontal displacement, and the tilted state
of the sensor pile. The canal bank is progressively damaged,
starting with the scour hole at the base of the slope. The canal
bank is saturated after the rains and the increasing applied load.
By monitoring the gradual expansion of cracks along the canal
banks and around the sensor pile, the measured soil pressure
data and observing the tilting behavior of the sensor pile before
the soil mass ultimately failure took place over more than 12

hours. This is also identified as shown in Fig. 5 from the time
the Level 1 warning signs appeared for the second time, then
progressed to Level 2 warning until the soil mass slid into the
canal, it took place from 21:00:00 on December 19, 2022, to
12:00:00 on December 20, 2022, equivalent to approximately
15 hours. Such behavior could be used as a signal for early
warning. It should be noted that the pressure values and the
behavior of tilting before failure vary case-by-case. Thus, the
criteria for issuing warnings should be carefully determined.

From a research standpoint, while the F1-score demon-
strates commendable performance at the 330-minute forecast
time point, it is imperative to note a relatively higher standard
deviation, approximately 3.8%. Our optimal prediction results
are gleaned from an observational window of 4 minutes and 30
seconds to project roughly 2 hours into the future. For instance,
the F1-score stands at 0.8232 with a notably low standard
deviation of about 1%. However, by conducting experiments
over various observational windows, we intend to establish a
reliable database to provide in-depth insights for managers to
implement appropriate solutions to protect the lives of residents
and infrastructure.

IV. CONCLUSION

In this work, we have presented the establishment of an
experimental model for monitoring the landslide of riverbank
soil in the Mekong Delta region. The data collected from the
experiment show good agreement with finite element method
calculations. We propose warning thresholds based on soil
pressure, deformation, and displacement data under saturated
soil conditions. The results of this study contribute to the
establishment of a system to predict the likelihood of extreme
events at a specific time in the future based on 374,415 samples
and three input parameters, including soil pressure, inclination
of the sensor pile in directions towards and along the riverbank,
warning level, and warning label, using the LSTM method. The
experiment with an observation window of 4 minutes and 30
seconds indicates that the optimal result for predicting warning
events is around 2 hours in the future. Through experimental
results, the LSTM model effectively predicts early warning
landslides for riverbanks with soft soil characteristics under
external loading. The findings of this research can be applied
in developing early warning systems for riverbank landslides
in the Mekong Delta region.
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