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Abstract—Extreme learning machines (ELM) have recently
attracted considerable attention because of its fast learning rate,
simple model structure, and good generalization ability. However,
classical ELM with least squares loss function is prone to
overfitting and lack robustness in dealing with datasets containing
noise and outliers in the real world. In this paper, inspired by
the maximum correntropy criterion, an exponential squared loss
function is introduced, which is nonconvex and insensitive to
noise and outliers. A robust ELM with exponential squared loss
(RESELM) is presented to overcome the overfitting problem.
The proposed model with nonconvexity is difficult to be directly
optimized. Considering the superior performance of difference
of convex functions (DC) programming in solving nonconvex
problems, this paper optimizes the model by expressing the
objective function as a DC function and employing DC algorithm
(DCA). To examine the effectiveness of the proposed algorithm
in noisy environment, different levels of outliers are added to
the training samples in the experiments. Experimental results
on benchmark data sets with different outliers levels illustrate
that the proposed RESELM achieves significant advantages in
generalization performance and robustness, especially in higher
outliers levels.

Keywords—Extreme learning machine; exponential squared
loss; DC programming; DCA; robust regression

I. INTRODUCTION

To improve the slow learning rate of single hidden layer
feedforward neural networks (SLFNs), Huang and his team
proposed extreme learning machine (ELM) in 2004 [1], [2],
[3]. Traditional algorithms for feedforward neural networks
require iterative adjustment of all parameters in the whole
network. However, the experiments in [4], [5] illustrate that
input weights and hidden layer bias of SLFNs may not need
to be adjusted. The hidden layer input weights and biases of
ELM are determined by random generation, which reduces the
number of parameters to be solved in the network by a large
part. ELM can be regarded as a simple linear system with
only the output weights to be solved. ELM is widely used in
various real-world problems relying on its fast learning rate,
simple model structure, and good generalization ability [6],
[7], [8].

However, samples in real-world problems are different
from the clean and uncontaminated samples used in the
laboratory, which is potentially polluted in the process of both
generation and acquisition [9]. Training ELM with samples
containing outliers can exacerbate the discrepancy between the
true and predicted values, leading to longer learning time and
poorer model prediction accuracy [10], [11]. The loss function

plays a crucial role in ELM training. Classical ELM employs
the least squares loss function, which is easy to be solved
and can improve the learning rate of the model. However, its
squared effect leads to more sensitivity to outliers. When the
outliers are larger, the empirical risk of the model becomes
higher, which eventually affects the accuracy of the model [12].

In order to minimize the disturbance of outliers, researchers
have turned to finding alternative loss functions to obtain a
more robust algorithm [13], [14]. Deng et al. proposed an
improved ELM based on a weighted 2-norm loss function
(WELM) [15], which assigned weights to the samples de-
pending on the residuals, improved the model’s generalization.
Zhang et al. developed outlier robust ELM (ORELM) by
applying the 1-norm loss function to ELM [16]. The 1-norm
loss function grows slower than the 2-norm loss function as
the residuals increase, thus obtaining a better accuracy than
ELM. Chen et al. constructed a robust ELM that can use
four loss functions (1-norm, Huber, Bisquare, Welsch) [17].
The experiment’s optimal accuracy was obtained by the model
that used Bisquare or Welsch loss functions, both of which
are nonconvex loss functions. The 1-norm and Huber loss
functions are both convex loss functions and has a linear
relationship with residuals, which is still not robust. When the
residuals are enormous, the penalty imposed on the sample by
the convex loss function can also be very large. Models usually
treat outliers as normal values to reduce the large value’s loss
caused by outliers in empirical risk at the cost of sacrificing
the model’s generalization, and nonconvex loss functions can
compensate for this deficiency [18].

The nonconvex loss function has a strong learning ca-
pability in terms of both generalization and robustness. The
capped type of nonconvex loss functions can directly limit
the maximum penalty value caused by noise and outliers
and explicitly suppress the negative impact of such samples
on the decision hyperplane to build models with excellent
robustness [18], [19]. Different capped 2-norm loss functions
are constructed in [20] and [21], respectively, which have
shown stronger robustness and generalization. In recent years,
with the development of information theory, Liu et al. proposed
correntropy in 2007 [22], which is a measure of similarity
of two sets of random variables and widely used in robust
learning. Xing et al. proposed a robust ELM model based on
the regularized correntropy criterion [23], which showed that
the proposed model has better robustness and can effectively
handle scenes with outlier interference.

This paper proposes a nonconvex exponential squared loss
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function inspired by the above literature and the maximum
correntropy criterion. This loss function is applied to ELM,
which leads to a new robust ELM. RESELM can sufficiently
suppress the negative impact of outliers on the robustness of
the model and effectively improve the model’s generalization.
However, nonconvexity makes the model difficult to optimize.
Considering the advantages of DCA [24] in solving nonconvex
problems, this paper converts the objective function into DC
programming [25] and then uses DCA to obtain the optimal
output nodes.

The main contributions of this paper can be summarized
as follows:

(1) A new loss function is constructed based on the
maximum correntropy criterion, called the exponential squared
loss function, which is nonconvex and can deal with training
samples with noise and outliers.

(2) Robust ELM with the exponential squared loss function
(RESELM) is developed. The nonconvexity of the proposed
model makes it difficult to optimize directly by classical
convex optimization algorithms. Therefore, it is transformed
into a DC programming, and solved by DCA.

(3) The RESELM is tested in the case with 0%-20%
lower outliers levels and with 25%-40% higher outliers levels,
respectively. The experimental results show that RESELM im-
proves the robustness and has excellent generalization ability,
especially in the case of higher outliers levels.

The remainder of the paper is organized as follows. Section
II briefly reviews the ELM. In Section III, the proposed model
of this paper and the process of optimization by adopting
DC programming are elaborated in detail. In Section IV, the
experimental results of RESELM with different outliers levels
are shown and analyzed. In the fifth part, the work of this
paper is summarized.

II. RELATED WORKS

For N arbitrary samples {(xi, yi)}Ni=1, where xi ∈ Rd is
the input variable and yi ∈ R is the corresponding target in
regression estimation, the output of ELM with L hidden nodes
can be described as follows:

f(x) =

L∑
j=1

hj(x)βj = h(x)β (1)

where β = [β1, β2, ..., βL]
T is the output weights vector that

connects the hidden layer to the output node, and h(x) =
[h1(x), h2(x), ..., hL(x)] is the output of the hidden layer and
hj(x) is the activation function. The formulation of regularized
ELM [26] can be expressed as the following optimization:

min
β

1

2
∥β∥2 + C

2

N∑
i=1

e2i (2)

s.t. h(xi)β = yi − ei, i = 1, ..., N, (3)

where ei denotes the error of training sample xi, and C is the
regularization parameter. The optimal solution β of (2)-(3) is

given by [26]

β =


(HT H +

I
C
)−1HT y, N ≥ L,

HT (HHT +
I
C
)−1y, N < L.

(4)

where y = [y1, y2, ..., yN ]T and

H =


h(x1)
h(x2)

.

.

.
h(xN )

 =


h1(x1) h2(x1) ... hL(x1)
h1(x2) h2(x2) ... hL(x2)

. . . .

. . . .

. . . .
h1(xN ) h2(xN ) ... hL(xN )

 (5)

is the output matrix of the hidden layer.
In Regularized ELM (2)-(3), the least squares loss function

may result in poor performance of ELM in dealing with the
training samples containing noise and outliers. The reason for
this is that least squares loss function assumes that the training
samples obey a normal error distribution [12]. However, it can
not guaranteed in the real world, which mistakenly considers
the role of outliers with large residuals. This paper will focus
on suppressing the effect of outliers by introducing a new
exponential squared loss function for the ELM.

III. RESEARCH METHODOLOGY

A. Exponential Squared Loss Function

In information theory, the maximum correntropy criterion
[22] is used to deal with the analysis of signals affected by
various noises, which can effectively improve the robustness
of signal analysis, and it is defined as follows:

Vσ(A,B) = E[kσ(A−B)], (6)

where kσ(·) is a kernel function and E[·] is the mathematic ex-
pectation. In general, the joint probability distribution between
variables A and B is unknown, so the average value is used
to estimate the mathematical expectation. Then the maximum
correntropy criterion is expressed as

Vσ(A,B) =
1

m

m∑
i=1

kσ(Ai, Bi), (7)

where kσ(Ai, Bi) = exp
(
−∥Ai−Bi∥2

σ2

)
is Gaussian kernel

function.

In order to overcome the drawback of the least squares
loss function, this paper constructs the exponential squared
loss function based on the correntropy,

ℓσ(z) = σ2

[
1− exp

(
− z2

σ2

)]
, (8)

where σ2 is the upper bound of the exponential squared
loss function. Fig. 1 demonstrates the different curves of
exponential squared loss with respect to the different of σ2.
As shown in Fig. 1, the proposed loss function is bounded.
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Fig. 1. Exponential squared loss function with different σ.

B. Robust ELM with Exponential Squared Loss Function

In this subsection, a robust ELM with exponential squared
loss function is developed to improve the robustness of ELM,
and the corresponding optimization problem can be obtained
as

min
β

1

2
∥β∥2 + C

2

N∑
i=1

ℓσ(zi) (9)

where training error zi = yi − h(xi)β and ℓσ(zi) is the
exponential squared loss function. The expression (8) can be
written in the following equivalent form.

ℓσ(z) = ℓ1(z)− ℓ2(z) (10)

where ℓ1(z) = z2, ℓ2(z) = z2 − σ2
[
1− exp

(
− z2

σ2

)]
.

Substituting ℓ1(z) and ℓ2(z) into the optimization problem (9)
can be derived as follows:

min
β

1

2
∥β∥2 + C

2

N∑
i=1

ℓ1(zi)−
C

2

N∑
i=1

ℓ2(zi) (11)

Mark L1(β) = 1
2∥β∥ + C

2

∑N
i=1 ℓ1(zi), L2(β) =

C
2

∑N
i=1 ℓ2(zi). According to the DCA, the optimal solution

of the optimization problem (11) is obtained by solving the
following iterations:

β(t+1) = argmin
β

{
L1(β)− L

′

2(β
(t)) · β

}
(12)

where L
′

2(β
(t)) represents the derivative of L2(β) at β(t). For

a certain β, the derivative expression is as follows:

L
′

2(β) =
C

2

N∑
i=1

∂ℓ2(zi)

∂zi
·∂zi
∂β

=
C

2

N∑
i=1

(
∂ℓ2(zi)

∂zi

)
·
(
−hT (xi)

)
(13)

Denote si =
C
2 · ∂ℓ2(zi)

∂zi
, and then define

si = Czi

[
1− exp

(
− z2i
σ2

)]
(14)

From (13) and (14),

−L
′

2

(
β(t)

)
· β =

N∑
i=1

s
(t)
i · h (xi)β

= sTHβ

(15)

where s = [s1, s2, ..., sN ]T , then (12) can be transformed into
solving the following optimization problem

β(t+1) = argmin

{
1

2
∥β∥2 + C

2
∥y − Hβ∥2 + sT Hβ

}
(16)

Following the line [26], the optimal solution of (12) in the
(t+1) iteration is obtained

β =


(

I
C

+ HT H
)−1

HT
(

y − s
C

)
N > L,

HT

(
I
C

+ HHT

)−1 (
y − s

C

)
N ≤ L.

(17)

Next is the step to solve RESELM by DC algorithm

Algorithm 1 RESELM

Input: {(xi, yi)}Ni=1, set t=0 and choose an initial point s(0),
L, C, tmax and ε > 0 is a sufficient small number

Output: β
repeat

Compute s
(t)
i by (14) and s.

Calculate (17) to obtain β(t+1).
Let t=t+1.

until
∥∥∥β(t) − β(t+1)

∥∥∥ ≤ ε or t > tmax

IV. RESULTS AND DISCUSSION

To validate the efficacy of RESELM, it is compared with
four related methods, regularized ELM [26], weighted ELM
(WELM) [15], outlier robust ELM (ORELM) [16] and iter-
atively reweighted ELM (IRWELM) [27] on 18 benchmark
data sets. In the first part, to simulate the samples in real
world, different outliers levels are added to each of the 18
benchmark data sets, which can better reflect the robustness. of
each algorithm. In the second part, the effects of the number of
hidden nodes L and the parameter σ on the performance of the
algorithms are studied. The root mean squares error (RMSE)
[28] is used to measure the performance of the five regression
algorithms. In the experiments, three parameters should be
selected, L, C, σ. The maximum number of iteration tmax =
20, and the number of hidden nodes L=200. C is chosen from{
2−19, 2−18, 2−17, ..., 218, 219, 220

}
, and the width parameter

of exponential squared loss function in RESELM is chosen
from {0.05, 0.1, 0.15, 0.2, ..., 0.95, 1}.

A. Experimental Results on Benchmark Data Sets

This section shows the accuracy of the five algorithms on
the benchmark data sets with different outliers levels. Table 1
demonstrates the algorithms’ RMSE on 10 benchmark data sets
with different outliers levels (0%, 5%, ...,35%, 40%). Fig. 2
adopts a line chart to intuitively exhibit the accuracy variation
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TABLE I. EXPERIMENTAL RESULTS ON BENCHMARK DATA SETS WITH DIFFERENT OUTLIERS LEVELS

Data set
Outliers
levels

ELM
(RMSE ± Std)

WELM
(RMSE ± Std)

ORELM
(RMSE ± Std)

IRWELM
(RMSE ± Std)

RESELM
(RMSE ± Std)

Diabetes

0% 0.5832±0.0935 0.5818±0.0908 0.5946±0.1012 0.5818±0.0907 0.5819±0.0926
5% 0.6480±0.0995 0.5757±0.0944 0.5985±0.0726 0.5734± 0.0898 0.5740±0.0906
10% 0.6486±0.1028 0.5897±0.1036 0.6151±0.0709 0.5781±0.0982 0.5787±0.0828
15% 0.6658±0.1131 0.6091±0.1140 0.6342±0.1031 0.5853±0.0946 0.5745±0.0837
20% 0.6625±0.1232 0.6514±0.0934 0.6314±0.1057 0.5967±0.0925 0.5795±0.0953
25% 0.6978±0.1244 0.7372±0.1979 0.6346±0.1081 0.7666±0.1686 0.5801±0.0982
30% 0.6732±0.1243 0.7437±0.1923 0.6445±0.1097 0.7570±0.2105 0.5823±0.0941
35% 0.6641±0.1230 0.6641±0.1230 0.6638±0.1022 0.6641±0.1230 0.6036±0.0963
40% 0.6623±0.1184 0.6647±0.1192 0.6601±0.1051 0.6655±0.1196 0.6224±0.1120

Pollution

0% 36.0203±6.6156 37.0793±4.1013 36.2977±5.6007 37.2221±4.0031 35.9914±6.4602
5% 56.7646±6.9775 37.7693±6.2724 37.6903±6.1268 37.2284±5.8706 36.1362±6.7496
10% 57.4947±7.8601 39.5232±6.5899 39.5366±6.3062 38.1760±5.7391 36.6225±5.9713
15% 59.5536±9.4949 43.3163±4.5347 43.0358±6.8460 38.3071±6.1082 36.9604±5.3304
20% 59.3307±7.8055 48.0174±11.8658 45.0034±7.3071 37.9233±6.2045 37.5655±5.9203
25% 64.6370±12.6879 58.7079±9.5638 49.6946±9.4306 65.1266±12.7976 38.6563±6.0681
30% 61.5882±11.2617 61.5882±11.2617 56.4876±13.6835 61.5882±11.2617 39.2598±5.7079
35% 58.8763±9.0385 58.8763±9.0385 57.8867±8.6369 58.8763±9.0385 39.7484±6.1533
40% 59.8161±8.7125 59.8161±8.7125 57.8640±7.6647 59.8161±8.7125 40.4083±5.1636

Pyrim

0% 0.1114±0.0204 0.1060±0.0297 0.1084±0.0256 0.1077±0.0291 0.1052±0.0318
5% 0.1305±0.0276 0.1083±0.0327 0.1098±0.0277 0.1078±0.0317 0.1049±0.0317
10% 0.1315±0.0248 0.1127±0.0346 0.1134±0.0293 0.1103±0.0335 0.1099±0.0352
15% 0.1402±0.0283 0.1199±0.0344 0.1182±0.0318 0.1092±0.0339 0.1091±0.0342
20% 0.1451±0.0208 0.1289±0.0264 0.1207±0.0320 0.1107±0.0351 0.1104±0.0339
25% 0.1469±0.0257 0.1405±0.0239 0.1284±0.0371 0.1190±0.0358 0.1135±0.0322
30% 0.1456±0.0199 0.1381±0.0315 0.1313±0.0400 0.1293±0.0369 0.1178±0.0325
35% 0.1549±0.0396 0.1556±0.0341 0.1389±0.0304 0.1559±0.0330 0.1199±0.0363
40% 0.1583±0.0217 0.1587±0.0429 0.1396±0.0199 0.1580±0.0427 0.1241±0.0356

Servo

0% 0.6177±0.1013 0.5547±0.1686 0.6007±0.1416 0.6151±0.1666 0.5881±0.2043
5% 0.8056±0.1097 0.7016±0.2281 0.6612±0.1732 0.7022±0.2212 0.6455±0.1954
10% 0.9855±0.1307 0.7931±0.2099 0.7144±0.1969 0.7172±0.1868 0.6827±0.1888
15% 1.0425±0.1378 0.8122±0.1500 0.7128±0.1816 0.6935±0.1978 0.6992±0.2195
20% 1.0965±0.1633 0.9197±0.1655 0.7981±0.1871 0.7821±0.2080 0.7521±0.1905
25% 1.3023±0.1662 0.9976±0.1218 0.7994±0.2028 0.7898±0.1995 0.7341±0.2163
30% 1.4394±0.1417 1.1480±0.1802 0.9342±0.1977 0.9709±0.1605 0.8323±0.2103
35% 1.4957±0.1387 1.4858±0.1487 1.1048±0.1575 1.4600±0.2192 0.8663±0.2129
40% 1.4938±0.1681 1.4999±0.1360 1.2504±0.1558 1.4996±0.1361 0.9211±0.1720

Triazines

0% 0.1478±0.0169 0.1494±0.0189 0.1508±0.0203 0.1509±0.0198 0.1471±0.0183
5% 0.1525±0.0180 0.1491±0.0197 0.1518±0.0200 0.1502±0.0196 0.1487±0.0191
10% 0.1593±0.0153 0.1502±0.0212 0.1533±0.0205 0.1502±0.0199 0.1496±0.0204
15% 0.1598±0.0170 0.1513±0.0192 0.1554±0.0206 0.1517±0.0200 0.1507±0.0197
20% 0.1612±0.0138 0.1588±0.0157 0.1578±0.0160 0.1546±0.0154 0.1527±0.0183
25% 0.1609±0.0140 0.1593±0.0165 0.1580±0.0164 0.1578±0.0200 0.1574±0.0215
30% 0.1622±0.0177 0.1602±0.0173 0.1596±0.0172 0.1599±0.0162 0.1577±0.0196
35% 0.1652±0.0122 0.1646±0.0196 0.1597±0.0157 0.1643±0.0188 0.1583±0.0206
40% 0.1652±0.0122 0.1646±0.0186 0.1595±0.0167 0.1636±0.0176 0.1600±0.0154

MCPU

0% 54.0322±21.9741 59.0387±25.1172 51.6258±25.1990 54.8509±24.0867 51.7506±21.6742
5% 79.5067±24.9900 55.1369±22.8733 58.2620±23.6020 53.3418±23.6794 55.1113±26.0012
10% 114.6473±7.7572 61.2738±23.1768 58.5051±21.3603 57.3894±26.6030 53.2878±23.2898
15% 116.6586±11.1286 70.2727±24.2272 63.9712±20.8597 60.6010±26.4665 60.4078±25.1280
20% 145.8573±9.8285 78.6395±13.3020 72.2602±17.3181 68.3295±26.7257 70.3807±26.6680
25% 158.6027±46.1825 84.5457±9.5708 73.1470±15.5764 78.3080±24.5267 70.9848±22.4826
30% 159.1254±44.2106 96.0923±19.2900 72.4842±17.2320 86.3810±19.4879 66.6127±25.0384
35% 159.8816±42.8364 143.0014±24.4416 79.7272±17.8036 124.9419±26.7260 73.9987±18.2163
40% 158.9709±48.5852 160.5926±41.8149 88.6661±16.9791 160.4793±41.9984 86.0494±25.0028

Bodyfat

0% 0.0027±0.0015 0.0022±0.0017 0.0021±0.0018 0.0021±0.0018 0.0022±0.0018
5% 0.0210±0.0018 0.0027±0.0015 0.0022±0.0018 0.0022±0.0018 0.0026±0.0016
10% 0.0221±0.0026 0.0028±0.0015 0.0022±0.0018 0.0022±0.0018 0.0026±0.0016
15% 0.0197±0.0021 0.0034±0.0014 0.0022±0.0018 0.0022±0.0018 0.0027±0.0015
20% 0.0227±0.0033 0.0052±0.0018 0.0022±0.0017 0.0022±0.0018 0.0028±0.0015
25% 0.0201±0.0011 0.0233±0.0056 0.0023±0.0018 0.0215±0.0040 0.0028±0.0015
30% 0.0204±0.0025 0.0204±0.0025 0.0024±0.0018 0.0204±0.0025 0.0028±0.0015
35% 0.0234±0.0048 0.0234±0.0048 0.0032±0.0018 0.0234±0.0048 0.0030±0.0014
40% 0.0232±0.0039 0.0232±0.0039 0.0069±0.0024 0.0232±0.0039 0.0034±0.0013

AutoMPG

0% 2.8927±0.1359 2.8697±0.1619 2.9273±0.1445 2.9391±0.1228 2.8811±0.1753
5% 3.4544±0.1374 2.9082±0.1223 2.9241±0.1439 2.9038±0.1366 2.8781±0.1393
10% 4.1467±0.2067 2.9201±0.1447 2.9290±0.1170 2.8888±0.0989 2.8869±0.0785
15% 5.2720±0.3020 3.0450±0.2378 2.9650±0.1801 2.8866±0.1050 2.8976±0.0992
20% 5.9322±0.3485 3.3159±0.3372 2.9931±0.1597 2.9208±0.1188 2.8964±0.1243
25% 7.6352±0.3434 5.1168±0.5234 3.1203±0.2035 4.0939±0.8859 2.9122±0.1548
30% 7.9646±0.2458 7.8468±0.7013 3.3235±0.2356 7.1337±0.4989 2.9339±0.1536
35% 8.0838±0.2344 8.0070±0.2422 3.8620±0.5010 8.0042±0.2448 3.0375±0.2151
40% 8.2152±0.2736 8.1623±0.2287 4.9058±0.4914 8.1617±0.2289 3.1374±0.1495
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Data set
Outliers
levels

ELM
(RMSE ± Std)

WELM
(RMSE ± Std)

ORELM
(RMSE ± Std)

IRWELM
(RMSE ± Std)

RESELM
(RMSE ± Std)

BH

0% 3.3436±0.2752 3.4172±0.4053 3.4892±0.4099 3.5044±0.4771 3.3299±0.2751
5% 4.4329±0.5026 3.5431±0.4199 3.6025±0.4778 3.6465±0.3939 3.4886±0.3914

10% 5.3008±0.4367 3.7162±0.7069 3.7211±0.6146 3.6627±0.5360 3.5933±0.5327
15% 6.4081±0.3513 3.9997±0.4288 3.8031±0.4840 3.6272±0.3429 3.6239±0.4093
20% 7.4551±0.3277 4.5851±0.5451 4.0599±0.4876 3.9450±0.5606 3.8697±0.5311
25% 8.7010±0.2298 6.0587±0.4800 4.4545±0.6318 4.8437±0.5504 4.1625±0.5608
30% 9.1915±0.5201 8.1431±0.6531 4.9708±0.6748 7.2347±0.6227 4.3934±0.8690
35% 9.0939±0.4877 9.2483±0.4948 5.7650±0.4941 9.2744±0.4934 4.7559±0.9979
40% 9.0767±0.4749 9.1630±0.5199 6.7831±0.6937 9.1791±0.5311 5.2372±0.6306

Concrete

0% 6.6012±0.3947 6.7518±0.4287 6.9974±0.5071 6.7847±0.4490 6.6016±0.3934
5% 8.5968±0.4431 7.1756±1.0593 7.3170±0.6440 7.0391±0.8160 6.7927±0.8174

10% 9.8699±0.5149 7.8765±0.4552 7.9495±0.5064 7.6314±0.4311 7.3815±0.3971
15% 11.6955±0.5531 8.2027±0.3171 8.3026±0.4968 7.8751±0.3722 7.7131±0.4287
20% 11.8756±0.5302 8.5947±0.2092 8.6132±0.4671 8.0975±0.3241 7.9589±0.6622
25% 13.3383±0.5713 9.4221±0.2403 9.2141±0.5663 8.6074±0.2260 8.3641±0.3404
30% 16.4737±0.6057 12.3405±0.8420 10.1421±0.7395 10.5091±0.9161 8.4881±0.4038
35% 17.2334±0.3850 16.9023±0.9519 10.9747±0.6482 15.6942±1.0658 8.9344±0.5123
40% 17.1472±0.3705 17.1077±0.3583 12.0187±0.5392 17.0847±0.3563 9.0388±0.4906

of the five algorithms on 8 benchmark data sets with 0% to
40% outliers levels.

In the experiments, each data set is randomly divided into
training set and test set. Then different proportions of outliers
are added to the training set, which is determined by the
targets of the training set. The experiment select different
proportions of outliers from [ymin, ymax] and add these
outliers to the training samples randomly. The test set does
not take any operation. The 10-fold cross-validation is applied
on benchmark data sets, and taking the average RMSE of these
ten independent experiments as the final result.

Observing the results in Table I, RESELM performs the
best in the case of no outliers and achieves the optimal RMSE
on four data sets. The accuracy on the other data sets is
similar to the optimal RMSE. The worst performer is ELM,
which achieves the optimum only on the Concrete data set.
The performance of ORELM and IRWELM is close to each
other. On the data set with 5% outliers level, the accuracy
of ELM decreases most significantly, with a larger RMSE
than the other algorithms on each data set. The accuracy of
IRWELM is better than it would have been in the case of no
outliers. RESELM obtains more comparable robustness, and
its accuracy is optimal on most of the data sets. When the
outliers level rises to 10%, the accuracy of ELM is still not
very competitive, and the RMSE of WELM is better than that
of the ELM. RESELM maintains its advantage in robustness,
obtaining the optimal RMSE on eight data sets. The accuracy
of the IRWELM is next to that of the RESELM in most cases.
In the case of 15% and 20% outliers levels, the accuracy of
RESELM obtains the best RMSE on most of the data sets. At
the same time, ELM fails to obtain the optimal accuracy on
any of data sets and has the worst RMSE of the five algorithms
in most cases.

In the lower outliers levels (0%-20%), the optimal RMSEs
are obtained for ELM only on Concrete. The most optimal
RMSEs is RESELM with 34 times, and RESELM ranks
second in accuracy for most other cases. It can be seen that
ELM, WELM and ORELM are most negatively affected as the
outliers increase. In comparison, RESELM is hardly affected,
which shows that RESELM can effectively suppress the effect
of outliers.

This paper focuses on the improvement of RESELM in

terms of robustness. In the case of lower outliers levels, the
robustness of RESELM improves but does not achieve the
optimal RMSE on all data sets, such as on the data sets Body-
fat, which is mainly determined by the loss function, where
the difference between the true value and the predicted value
is larger, the bigger the corresponding loss function value.
Researchers have proposed various loss functions in order to
reduce the effect of outliers so that the robustness of the model
will be better [18], [19]. As shown in Table I, the loss function
of RESELM does not have a significant advantage in the
lower outliers levels, so experiments with higher outliers levels
are conducted to investigate the robustness of the proposed
algorithm.

From Table I, it can be seen that the robustness of ELM
remains uncompetitive in the case of higher outlier levels, and
its RMSE increases with the outliers level. ELM applies a
least squares loss function, and when the residuals are small,
the least squares loss function does not differ significantly
from the exponential squared loss function. Therefore, ELM
can produce more accurate results when there are no outliers.
However, this loss function increases infinitely with the growth
of the residuals and is growing exponentially, so it cannot
effectively constrain the effect of outliers, which makes the
ELM less robust.

In the case of 25%-40% outliers levels, WELM does not
obtain the optimal RMSE, but it has better accuracy than ELM.
A weighted 2-norm loss function is proposed in WELM, which
assigns different weights according to the value of the residuals
to improve the robustness. However, the algorithm of WELM
relies too much on the initial accuracy of the model, and the
results obtained are not satisfactory.

ORELM has a better increase in accuracy than the lower
outliers levels, and has the smallest difference from the optimal
RMSE in most cases. ORELM uses the 1-norm loss function,
which has a larger function value than the others when
the residuals are small, and therefore has poorer accuracy.
However, after the residuals increase, it has an advantage over
the least squares loss function and the weighted 2-norm loss
function. This is the reason that why ORELM is worse than
IRWELM in most cases in the lower outliers levels but has
better RMSEs than IRWELM in the cases of 25% to 40%
outliers levels.
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(a) Cooling (b) Yacht

(c) Space (d) NO2

(e) Heating (f) Airfoil

(g) Abalone (h) MG

Fig. 2. The performance of ELM, WELM, ORELM, IRWELM and RESELM on data sets with different outliers levels.
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IRWELM is the opposite of ORELM. The accuracy of
IRWELM ranks second 25 times in the lower outliers levels,
and its ability to suppress outliers is worse than ORELM when
the outliers level increases. IRWELM and WELM apply the
same loss function, but IRWELM is more robust than WELM
because IRWELM’s solution method is an iterative reweighting
algorithm. Compared with WELM which solves the output
nodes directly, the iterative approach of IRWELM makes it
obtain more accurate output nodes than those of WELM.

In the higher outliers levels, the RESELM has a significant
advantage. The optimal RMSE is achieved 37 times due to
the insensitive nature of the exponential squared loss function
to higher outliers, it does not grow indefinitely, and the
optimization problem is solved using an iterative approach
in RESELM. Therefore, RESELM can effectively suppress
outliers and has excellent generalizability.

Compared with ELM, WELM, ORELM, and IRWELM,
RESELM obtains better accuracy than them in most cases.
The RMSE is usually used in the study of improved models
for ELM to illustrate the performance of the model in terms
of accuracy, and experiments are conducted in [15], [16], [27]
to verify the ability of the model to suppress outliers. The
experiments in this paper show that the RMSE of RESELM
is smaller than the other four models, so the proposed method
effectively improves the robustness of ELM and has excellent
generalization.

In Fig. 2, 8 benchmark data sets are chosen to show the

variation of RMSE with the increasing outliers level for the
five algorithms by line chart. It is more intuitive to observe
the outliers level’s effect on the algorithms’ accuracy by the
line chart. The line of ELM is almost always at the top of the
axis and is most obvious on the Cooling, Yacht, Space, and
Heating data sets, which have higher fold line from 0% outlier
level to 40% outliers level than the other algorithms. WELM
and IRWELM sometimes have worse RMSE than ELM in the
higher outliers levels, as seen on the NO2, Airfoil, Abalone,
and MG data sets. The fold line of ORELM are in the middle
of ELM and RESELM on all data sets except the MG data set,
which illustrates that the robustness of ORELM has improved
somewhat compared to ELM but still suffer some effect in the
higher outlier level compared to RESELM. The fold line of
RESELM is always below all the folds except on the MG data
set. Its accuracy is least affected by outliers, which means it
has the best robustness.

B. Parameter Influence

Different parameters have an effect on the performance
of the model. Next, the effect of hidden layer nodes L and
the upper bound parameter σ of the exponential squared loss
function on the performance of RESELM is examined. The
experiments are conducted on four data sets without outliers,
Cooling, Yacht, Airfoil, and Heating. In the experiments, the
optimal parameters are selected for all parameters except the
ones to be studied. The experiments reflect the effects of the
parameters by RMSE.

(a) Cooling (b) Yacht

(c) Airfoil (d) Heating

Fig. 3. The effect of L on RMSE.
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(a) Cooling (b) Yacht

(c) Airfoil (d) Heating

Fig. 4. The effect of σ on RMSE.

There is no exact method to determine the number of hid-
den layer nodes L in ELM, and in practice previous experience
or experimental methods within a certain range are usually
used, but the number of L can affect the model’s accuracy.
When the L is too small, the model may have difficulty dealing
with more complex problems. When L is too large, some nodes
will not be meaningful to the model performance, which makes
the model training time longer without improving the model
accuracy. Therefore, the appropriate L is significant for the
model’s performance.

The effect of L on the model’s accuracy is shown in Fig.
3, with L taking values from {100, 200, 300, 400, 500, 600,
700, 800, 900, 1000}. The figure visualizes the effect of L.
In Fig. 3(a) and (d), the curves of RMSE show a decreasing
trend. The RMSE at L=1000 is the smallest, indicating that a
minimum value is achieved in the given range. In Fig. 3(b) and
(c), the RMSE decreases and then increases, and the optimal
L is found in [300, 500]. The curves on four data sets are
not smooth, which indicates that RESELM is a little sensitive
to the network size. Therefore, when conducting experiments,
choosing a more appropriate number of hidden layer nodes has
an essential impact on the performance of RESELM.

To investigate the effect of σ on accuracy, experiments are
conducted on four data sets using different σ chosen from the
range [0, 1] with an interval of 0.05. In Fig. 4, the curves on the
four data sets demonstrate that the RMSE first decreases and

then continues to increase as σ increases. The global optimum
is found in [0,0.5]. Although slightly different on the Airfoil
data set, the global optimum is still in [0, 0.5]. The optimal
RMSE can be obtained when the σ is small. By observing Fig.
1, it can be observed when the σ is small, the upper bound of
the loss function also becomes smaller. When the residuals are
larger, the value of the proposed loss function is also smaller
for smaller σ, and the robustness of the model is better.

V. CONCLUSION

This paper proposes a robust ELM based on the exponential
squared loss function (RESELM) for training samples con-
taminated with noise and outliers. The loss function used in
the model is obtained based on correntropy. The nonconvexity
of the exponential squared loss function enables RESELM
to control the effect of outliers effectively. However, the
nonconvexity also makes the model difficult to optimize. The
proposed model is solved by formulating it as a DC program-
ming and then adopting DCA. Experiments were conducted
to verify the performance of RESELM on benchmark data
sets with different outliers levels. The experimental results
demonstrated that RESELM is non-sensitive to outliers and
can obtain better robustness with a significant advantage in
accuracy, especially in the case of 25% to 40% outliers levels.
This paper discusses offline ELM, but in real-world problems,
online learning is usually required, so future work considers
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extending RESELM to online sequential learning for better
application to real-world problems.

ACKNOWLEDGMENT

The work was supported by the National Natural Sci-
ence Foundation of China under Grant No. 61833005 and
61907033, the Postdoctoral Science Foundation of China under
Grant No. 2018M642129.

REFERENCES

[1] G. Huang, Q. Zhu, and C. Siew, “Extreme learning machine: a
new learning scheme of feedforward neural networks,” in 2004 IEEE
international joint conference on neural networks (IEEE Cat. No.
04CH37541), vol. 2, pp. 985–990, Ieee, 2004.

[2] G. Huang, Q. Zhu, and C. Siew, “Extreme learning machine: theory
and applications,” Neurocomputing, vol. 70, no. 1, pp. 489–501, 2006.

[3] G. Huang, L. Chen, C. Siew, et al., “Universal approximation using
incremental constructive feedforward networks with random hidden
nodes,” IEEE Trans. Neural Networks, vol. 17, no. 4, pp. 879–892,
2006.

[4] G. Huang, Q. Zhu, and C. Siew, “Real-time learning capability of neural
networks,” IEEE Trans. Neural Networks, vol. 17, no. 4, pp. 863–878,
2006.

[5] G. Huang, “Learning capability and storage capacity of two-hidden-
layer feedforward networks,” IEEE transactions on neural networks,
vol. 14, no. 2, pp. 274–281, 2003.

[6] D. Zheng, Z. Hong, N. Wang, and P. Chen, “An improved lda-based
elm classification for intrusion detection algorithm in iot application,”
Sensors, vol. 20, no. 6, pp. 1–19, 2020.

[7] J. Zeng, B. Roy, D. Kumar, A. S. Mohammed, D. J. Armaghani, J. Zhou,
and E. T. Mohamad, “Proposing several hybrid pso-extreme learning
machine techniques to predict tbm performance,” Engineering with
Computers, pp. 1–17, 2021.

[8] S. S. Chakravarthy and H. Rajaguru, “Automatic detection and classifi-
cation of mammograms using improved extreme learning machine with
deep learning,” Irbm, vol. 43, no. 1, pp. 49–61, 2022.

[9] A. Boukerche, L. Zheng, and O. Alfandi, “Outlier detection: Methods,
models, and classification,” ACM Computing Surveys (CSUR), vol. 53,
no. 3, pp. 1–37, 2020.

[10] B. Frénay and M. Verleysen, “Classification in the presence of label
noise: a survey,” IEEE transactions on neural networks and learning
systems, vol. 25, no. 5, pp. 845–869, 2013.

[11] D. Nettleton, A. Orriols-Puig, and A. Fornells, “A study of the effect
of different types of noise on the precision of supervised learning
techniques,” Artificial intelligence review, vol. 33, pp. 275–306, 2010.

[12] P. Meer, C. V. Stewart, and D. E. Tyler, “Robust computer vision: An in-
terdisciplinary challenge,” Computer Vision and Image Understanding,
vol. 78, no. 1, pp. 1–7, 2000.

[13] S. Mehrkanoon, X. Huang, and J. A. Suykens, “Non-parallel sup-
port vector classifiers with different loss functions,” Neurocomputing,
vol. 143, pp. 294–301, 2014.

[14] A. Ghosh, H. Kumar, and P. S. Sastry, “Robust loss functions under label
noise for deep neural networks,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 31, 2017.

[15] W. Deng, Q. Zheng, and L. Chen, “Regularized extreme learning
machine,” IEEE symposium on computational intelligence and data
mining, pp. 389–395, 2009.

[16] K. Zhang and M. Luo, “Outlier-robust extreme learning machine for
regression problems,” Neurocomputing, vol. 151, pp. 1519–1527, 2015.

[17] K. Chen, Q. Lv, Y. Lu, and Y. Dou, “Robust regularized extreme learn-
ing machine for regression using iteratively reweighted least squares,”
Neurocomputing, vol. 230, pp. 345–358, 2017.

[18] Y. Feng, Y. Yang, X. Huang, S. Mehrkanoon, and J. A. Suykens,
“Robust support vector machines for classification with nonconvex and
smooth losses,” Neural computation, vol. 28, no. 6, pp. 1217–1247,
2016.

[19] X. Wang, K. Wang, Y. She, and J. Cao, “Zero-norm elm with non-
convex quadratic loss function for sparse and robust regression,” Neural
Processing Letters, pp. 1–33, 2023.

[20] K. Wang, J. Cao, and H. Pei, “Robust extreme learning machine in
the presence of outliers by iterative reweighted algorithm,” Applied
Mathematics and Computation, vol. 377, p. 125186, 2020.

[21] H. Pei, K. Wang, Q. Lin, and P. Zhong, “Robust semi-supervised ex-
treme learning machine,” Knowledge-Based Systems, vol. 159, pp. 203–
220, 2018.

[22] W. Liu, P. Pokharel, and J. Principe, “Correntropy: Properties and
applications in non-gaussian signal processing,” IEEE Transactions on
signal processing, vol. 55, no. 11, pp. 5286–5298, 2007.

[23] H. Xing and X. Wang, “Training extreme learning machine via regular-
ized correntropy criterion,” Neural Computing and Applications, vol. 23,
pp. 1977–1986, 2013.

[24] L. An and P. Tao, “The dc (difference of convex functions) programming
and dca revisited with dc models of real world nonconvex optimization
problems,” Annals of operations research, vol. 133, no. 1, pp. 23–46,
2005.

[25] R. Horst and N. Thoai, “Dc programming: overview,” Journal of
Optimization Theory and Applications, vol. 103, no. 1, pp. 1–43, 1999.

[26] G. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine
for regression and multiclass classification,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 2,
pp. 513–529, 2011.

[27] P. Horata, S. Chiewchanwattana, and K. Sunat, “Robust extreme learn-
ing machine,” Neurocomputing, vol. 102, pp. 31–44, 2013.

[28] T. Hodson, “Root mean square error (rmse) or mean absolute error
(mae): when to use them or not,” Geoscientific Model Development
Discussions, vol. 15, no. 14, pp. 5481–5487, 2022.

www.ijacsa.thesai.org 1074 | P a g e


