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Abstract—The Internet of Things (IoT) data is the main
component for finding the basis that allows decisions to be made
intelligently and enables other services to be explored and used.
Data originates from smart things that have the capabilities to
connect and share data enormously with other things in the IoT
ecosystem. However, the level of intelligence obtained and the type
of services provided, all depend on whether the data is trusted
or not. High-quality data is the most trusted;, it can be used to
extract meaningful insights from an event and can also be used
to provide good services to humans. Therefore, decisions based
on high-quality and trusted data could be good, whereas those
based on low-quality or untrusted data are not only bad but could
also have severe consequences. The term Quality of Data (QoD)
is used to represent data trustworthiness and is used throughout
this paper. To the best of our knowledge, this work is the first to
coin the term QoD. The problems that hinder QoD are identified
and discussed. One if it is an outlier, it is a major feature of the
data that degrades its overall quality. Several machine-learning
techniques that detect outliers have been studied and presented,
with few data-cleaning techniques. This paper aims to present
the elements necessary to ensure QoD by presenting the overview
of the IoT state-of-the-art. Then, data quality, data in IoT, and
outliers are studied, and some quality assurance techniques that
maintain data quality is presented. A comprehensive taxonomy
is shown to provide state-of-the-art data in IoT. Open issues and
future directions were suggested at the end of the paper.
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I. INTRODUCTION

The Internet of Things (IoT) has emerged as the new
evolution of internet connecting different entities, things and
objects from different sources around the globe, thereby gen-
erating enormous amounts of data every time, every second.
The amount of data generated by the IoT is used and consumed
by the objects with which it communicates than by humans.
The number of servers needed to hold information for access
by users is very large, giving an insight into the number of
devices that connect to the internet. Then the number of IoT-
connected things and devices is ten times the number of those
internet PCs [1].

The tremendous amount of data generated by different
things brings out the realization of big data problems, in-
telligent decision-making, and the development of many IoT
applications. To start with the big data problem, when these

things generate all the data and share, exchange, and store it
in the cloud, the cloud centers need to provide enough storage
to handle this data and also enough services to manage the
data. Providing these two becomes a challenge for the cloud
centers [2]. Advances in the technology have exploited many
capabilities of these data from the things, thereby encouraging
the continuous flow of data. Thus, IoT has become a major
catalyst for big data problems.

For example, the scale of IoT is continuously expanding;
reports show that by the end of the year 2025, the number
of IoT connections could reach 24.6 billion, with a compound
annual growth rate of 13% [3]. According to the International
Data Corporation (IDC), there will be more than 38 billion
linked things in 2025 and reach about 50 billion by 2030.
Another projection by [4] reports that connections to IoT could
be about 41 billion by 2025, which could generate approxi-
mately 79 zettabytes of data. According to [5], approximately
50 billion device connections exist today, with an estimated
75.44 billion device connections by 2025.

Intelligent decision-making is achieved when enough data
is obtained from things covering enough scenarios and events
to compare, deduce, and reach a conclusion. However, the IoT
can perform all these based on the type and quality of data
received; if the data is of good quality, decisions are likely to
be good, but if the data lacks quality, decisions derived would
also be bad [6]. Therefore, for a reliable, trusted, and intelligent
decision, the data must be trustworthy.

Users and vendors found a lot of opportunities in the preva-
lence of IoT. New applications are being developed for the ease
and comfort of the user. Some researchers are also working
on AI applications that incorporate IoT, such as smart homes,
smart cities, efficient energy management and distribution, and
so on. To achieve optimality in IoT applications for both driven
applications and network optimization, research has used meta-
heuristic and heuristic algorithms to simulate physical and
biological phenomena [7].

Examples of IoT applications in smart homes includes the
adjustment of blinds according to temperature and environmen-
tal changes, the opening of doors for authorized vehicles, and
the ordering of medical services when there is an emergency. In
the traditional home, home devices are part of existing Internet
expansion, but when IoT arrives, the migration of smart things
begins to the IoT network [8]. When devices get corrupted,
the consequences are severe. For example, when smart locks
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are hacked, anyone can access the home; when baby monitors
are compromised. The homeowner can be scared; and when
microwaves are hacked, it can cause fire. If the security of
smart devices cannot to achieved, then smart homeowners may
not want to live in their smart homes. On the contrary, they can
expect to improve home safety by using intelligent surveillance
services [9]. In addition, the privacy of smart homeowners
must be preserved. However, the continuous incoming of data
from smart devices can reveal the secrets of house owners.
And this can pose serious threats to their privacy.

Some widely adopted applications include smart homes,
smart cities, smart grids and smart transportation. IoT tech-
nologies have drastically changed our way of life [10]. The
widespread interconnection of intelligent IoT objects dis-
tributed physically extends computational operation and com-
munication costs to IoT objects with different specifications.
These devices’ sensor capabilities enable them to collect real-
time data from the physical world. The analysis of such
data enables us to build an intelligent world and make better
decisions for its management. If these security concerns are not
adequately addressed, the wide adoption of IoT applications
will be severely hampered. Consider the two typical IoT ap-
plication areas, Smart Home and Smart Health, where system-
sensitive information and critical assets require high protection
[10].

IoT will continue to affect our lives in many ways, both in
our homes, offices, healthcare, cities, etc. IoT in our society
can represent a symbolic capital of power [11]. The way to
deal with this enormous amount of data has changed from
manually entered data to autonomous devices such as RFID
readers, sensor nodes, etc. Our common appliances could have
embedded components to allow them to communicate and
become more intelligent to ease our lives. Examples are the
light bulb that warns you of its remaining life, a toaster that
toasts bread and provides a weather forecast, a refrigerator, a
television, a video camera, and a solar panel roof, which might
all be IoT devices. Despite the comforts we enjoy when these
appliances generate such data, it has posed a challenge to the
servers to manage and process such a huge amount of data
from around the globe, which leads to big data problems.

During the last decade, we have worried about computer
protection. Last five years, we have been worried about our
smartphones’ protection, now we are worried about car protec-
tion; home appliances, wearables, and many other IoT devices.
According to Hewlett-Packard, in 2014, 70% of the most
common IoT devices were infected with serious vulnerabilities.
The authors of [12] discussed various current security chal-
lenges: interoperability, resource constraints, the protection of
privacy on the Internet of Things Security 297, and scalability.
Thus, the security of IoT is currently the main concern and
requires research attention.

IoT devices collect large amounts of data and transmit it
to the network. There are many personal data in these data,
such as blood pressure, pulse, electrocardiograms, place envi-
ronment data, area humidity, room temperature, etc. Another
authentication scenario is to consider the types of entities
involved in the remote client and server scenarios [13]. Clients
want to access servers’ services. After the first registration, the
client can have a mutual authentication with the server. After
the authentication, the two can create a shared key, and the

client can use this key to access the server’s service. A server
can provide its clients with different types of services. Servers
have the responsibility to perform registration and password
changes. Before these services can be provided to the client,
the server must verify whether the client is registered or not
[14].

We researched the quality of the data in this work and
coined the term Quality (QoD), and to the best of our search
and knowledge, we are the first to coin the term QoD.
However, many factors contribute to the data inefficiency and
lack of QoD. The first problems associated with the data and
IoT devices include constraint capabilities, intermittent loss
of connection, and deployment hazards [14]. Other problems
come from smart things, such as node failure, faulty nodes,
data loss, network congestion, architectural flaws, and so on
[15]. A third-world problem is one created by humans and
launched into the deployment field to gain some benefit;
examples are side-channel attacks, node capture attacks, sensor
impersonation, stolen verifier attacks, Sybil attacks, etc. For
IoT to gain wide acceptance and embrace more deployment,
the QoD needs to be ensured.

This survey first investigated the nature of the QoD, or
data trustworthiness, in an IoT ecosystem. The data in IoT is
explored further, from the data lifecycle to its characteristics
and quality considerations in IoT, then the technology of RFID
that allows the data to be shared is studied, and then down to
the factors that affect the QoD in IoT. Some of the reliable
techniques to ensure QoD are studied, and the techniques are
presented in tabular form for ease of comparison. Data outliers,
is the main component that compromises QoD, are researched,
and the types and impacts of the outliers are presented for
prevention and measurement. A comprehensive taxonomy that
shows all the forms of data that can be used is designed for
ease of understanding. Some IoT application domains, open
issues, and future directions are presented as well.

The remainder of this article is presented as follows:
after the introduction in Section 1, data in IoT is presented
in Section II. Section III is the QoD assurance techniques
and data outliers made in Section IV. A comprehensive data
taxonomy is shown in Section V while some of the most
common IoT application domains are made in Section VI.
Open issues in QoD are presented in Section VII, and then,
lastly, future directions and conclusion are in Section VIII. The
paper has eight sections in all.

II. OVERVIEW OF DATA IN IOT

Data is an important component that makes up the IoT
paradigm and is the source of information and means of
communication. Furthermore, QoD, or trustworthiness, is an
essential requirement for any IoT ecosystem (i.e., IoT ser-
vices). In the following sub-sections, we present the data
life cycle in the context of the IoT. We also discuss the
characteristics of IoT data. In addition, we discuss QoD in
IoT. Moreover, we looked at RFID as the first technology on
which the IoT is built, which allows data sharing among IoT
devices. And then some of the factors that affect data quality
in IoT were also discussed.

Since data is considered a valuable asset because of the
insights gained about a phenomenon, it is used to provide
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intelligence in our daily lives dealings. Researchers, therefore,
exploit the insights and intelligence in the data using different
mining techniques and algorithms [16]. Data trustworthiness
is essential in QoD to have a reliable handling of the data
from the data itself, data interpretation, simulation results, and
any other form of data representation. Data is characterized
by losing its quality when some factors, such as things
constrained resources, large-scale deployment, and intermittent
connections are not obtained [17].

Some of these problems can be measured from the data
quality dimensions that arise as a result of hazardous elements.
One way to ensure that data quality is compromised is the
identification of data outliers [18]. However, some outliers
appear only to describe errors, while others describe rare
events, e.g. unusually high temperature in a warehouse, maybe
as a result of a fire. In IoT, QoD problems need to be solved.
QoD is an essential requirement for any data user (things,
entities, IoT services, and IoT user applications).

A. Data Lifecycle

In the original landscape setting of the internet, data
primarily originates from users using their computers, surfing
the web, engaging on social media networks, and generally
being utilized to offer services to these users. In contrast,
the IoT sees a paradigm shift where the majority of data
is generated by interconnected devices, serving both as the
source and primary recipient to deliver services to individuals.
The Machine-to-Machine (M2M) is a precursor to IoT, which
emphasizes data as the primary communication channel [19],
facilitating autonomous collaboration among IoT objects to
offer innovative services. Data holds significant value in the
IoT, serving as a crucial asset that provides insights into
various phenomena, individuals, or entities. These insights are
leveraged by applications to deliver intelligent services ubiqui-
tously. The accuracy of data is paramount, as any inaccuracies
may compromise the reliability of extracted knowledge and
subsequent actions based on it. Fig. 1 presents data life cycle
stages.

Fig. 1. Data life cycle stages.

B. Characteristics of IoT Data

The IoT device is embedded with a chip that can sense the
environment and collect and share data with similar devices.
The IoT devices are deployed mostly in hazardous environ-
ments, making them susceptible to natural effects such as
earthquakes, rain, erosion, wind, etc. They can also be vulnera-
ble to physical attacks and forced alteration by humans. These
IoT sensors can be designed to measure variables of interest
such as temperature, pressure, humidity, sleep habits, slope
of a pipe, fitness level, movement positions, light intensity,
and many more. However, some of the IoT characteristics are
considered omnipresent, that is, erroneous, uncertain, noisy,
distributed, voluminous, etc., while other characteristics can
be considered dependent on the measured phenomenon, that
is, continuous, smooth variation, periodicity, correlation, and
Markovian behavior [20]. Some of these characteristics are:

1) Uncertain, noisy and erroneous data: uncertainty in
QoD can make the data either incomplete, ignorant, ambiguous
or imprecision caused by the constraint nature of the IoT
nodes. Any factor that could make the data uncertain or put
noise in the data, or make the data entirely wrong and have
some wrong elements in it will compromise the QoD. And
this can easily occur in any IoT ecosystem where the data is
generated from volatile devices [21].

2) Voluminous and distributed data: In the IoT ecosystem,
sensors can be deployed at any place to measure the parameters
of interest. These sensors are densely deployed everywhere to
gather enough data for decision-making and data management.
The heterogeneous nature of IoT devices generates enormous
amounts of data that are nearly impossible to manage and have
challenges to manage. There is no standard IoT architecture to
manage the total amount of data generated by its devices [22].

3) Smooth variation: in a continuous setting of data flow,
such as the time stamp or time series, data is flown con-
tinuously at some interval. The collection and processing of
such data requires some technique (like a machine learning
technique) to collect the data and process it accordingly. An
example is watering a tomato garden at some regular intervals
[23].

4) Continuous data: The data here is similar to the smooth
variation characteristic, but not necessarily that the data comes
at a regular interval. The data can be random and have different
patterns of arrival e.g., batch, stream, or real time. An example
is to report any incident of traffic violation [24].

5) Correlation: The correlation feature exists in the IoT
data set because of the heterogeneous nature of the IoT
network. It consists of different sensors that measure different
parameters. The data can have two correlations: spatial and
temporal. When the data is correlated spatially according to the
positions of the sensors, the processing of the data can give
the best results in information form for certain phenomena.
Whereas when the data is correlated temporally, the data might
depend on its timestamp. For example, when the temperature
values for the future are to be predicted, then the current
temperature values can be used to make the prediction. It is
also possible for the data set to have both types of correlations;
the data can either be spatial (as related to memory space),
temporal (as related to the time of its arrival), or both spatial
and temporal [25].
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6) Periodicity: This can be defined as the accuracy or age
of specific data or the difference between the previous time
stamp and the current time stamp as the item’s punctuality or
the data being sufficiently up to date for a task. Data sets that
are related to scenarios may have inherently periodic patterns
where the same values may occur at specific intervals [26].

7) Markovain behavior: An IoT sensor can be a function
of a previous sensor, at a given time stamp of the previous
sensor denoted by ti–1 [27].

C. Quality of Data in IoT

Quality of Data (QoD) in IoT can be seen as the possibility
to ascertain the integrity of the data provided from its origin or
the probability of the accuracy of the data [28]. Data must be
clean, sensitized, and free from errors before it is transferred
from a lower layer to an upper layer in the architectural
stack. In other words, data must be reliable and trustworthy
before it can be transmitted to preceding layers or peers for
further processing. To compute trust in IoT ecosystem, it
starts with the reliability of the sensors. Data from a reliable
sensor could be considered trustworthy whereas data from a
non-reliable sensor must be evaluated further to ascertain its
correctness. However, the deployment nature of the IoT nodes
in an unprotected environment makes the sensor vulnerable to
attacks and unreliable [29].

Mechanisms have been developed to measure the trustwor-
thiness in the WSN and the traditional internet; however, these
mechanisms may not be suitable to ascertain the correctness of
data in an IoT ecosystem due to the heterogeneous nature of
the IoT, which is not the same as in WSN and the internet [29],
[30]. Therefore, different mechanisms suitable for measuring
QoD need to be developed, assessed, and implemented. Data
is gathered massed from smart things providing ubiquitous
services to users. For QoD to be ensured, the technologies
used to allow the generation and sharing of the data should be
addressed.

The first technologies used to allow things to connect
and communicate were RFID, then WSN, which continues
to evolve into other technologies up to the most widely used
today, the internet (802.11 and its families). [31] assessed the
quality of the data considering five dimensions, which include
confidence, accuracy, timeliness, volume, and completeness.
The new arising IoT applications rely on distributed and
heterogeneous data for proper functioning; thereby, integration
into IoT data is necessary [32]. However, maintaining such data
becomes challenging due to the different sources it comes from
[33], [34].

Data integrity is an essential asset in the authentication
process of IoT devices. It ensures that node credentials are
correct and unaltered. To ensure data integrity in an IoT
distributed architecture, the MQTT protocol requires more
attention because, when a connection is established between
the nodes it has to transmit data to the destination, the
credentials must be mutually verified to ensure that they have
not been altered [35].

Assuming that the issuer ”P1” connects to the broker ”B1”
directly, where the subscriber ”S1” connects to the broker ”B2”
directly, the data is transferred from ”P1” to ”B1”, and also to

”B2” before it reaches the destination ”S1”. During this data
transfer, the credentials of the data sender and the data recipient
must be verified mutually. A common method of cryptography
to ensure data integrity is the hash function (such as SHA-1
and SHA-2) [36].

However, ensuring QoD presumes fulfilling the criteria of
accuracy, timeliness, precision, completeness, and reliability
[37], [38], [39]. The authors of [40] define “timeliness as the
data being current. That is, the most updated data in the most
recent time”. While [31], sees timeliness from two different
perspectives, i.e., “an error recovery of the data and its age
item, this distinguishes the recorded timestamp from current
system time while the regularity of the data is with respect
to its application context”. Again, [32] defines “timeliness as
the mean age value of the data in a source”. According to
[41], timeliness is defined as “the extent to which data are
sufficiently up-to-date for a task”.

D. Quality of Data in RFID

The first technology to be embraced by communicating
entities is Radio Frequency Identification (RFID) [42]. The
RFID system for authentication comprises three important
tangible components: tags, readers, and data centers. The
reader scans the tag to collect the necessary information and
stores it in the data center. RFID can be seen as a transmitter
microchip that is similar to an adhesive sticker. Active receives
batteries that always emit data signals, while passive gets
activated only when they are activated. The concept of radio
technology was developed from RFID, where the chip does
not have to view the reader in physical vision before it can
communicate with it. While barcode technology requires the
physical view of the reader to communicate with it [43]. RFID
is also an actuator that stimulates events, an action a barcode
could not do. WSN is a multi-strip wireless network connected
to a dispersed sensor field that measures a specific data col-
lection device’s speed, humidity & temperature, whose values
are transmitted to processing equipment. RFID is a short-
range communication technology that is termed asymmetric,
whereas WSN technology has a relatively long range and
communication ability in a peer-to-peer fashion.

Since IoT’s idea is to allow automatic connection and
sharing of data among entities and any object with the ability
to sense, process, transmit, and store information via the
internet, it has made the network heterogeneous due to the
different backgrounds of the objects. The early technologies
start with RFID, then WSN, then Bluetooth, then wireless
local area networks (WLANs), then wireless metropolitan area
networks (WMANs), then cellular networks (LTE, 2G, 3G,
4G, 5G, and now 6G) [44], [45]. The IoT’s vision is to
[42] enable people and things or entities to communicate to
anyone, at any time, anywhere through some sort of medium
such as the internet [46]. With the rapid development of
RFID technologies, Bluetooth, sensors, and smartphones, the
applications and usage of IoT have increased tremendously,
which directly affects daily life [47].

RFID automatically identifies entities, objects, and people.
RFID’s operation comes in three frequency ranges: the first is
low frequency (LF), the second is high frequency (HF) and
the third is ultra-high frequency (UHF). RFID devices can
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be separated into two groups: active and passive [48]. Active
RFID requires an energy source, while passive RFID does not
require any energy to power it. The encryption levels in RFID
are: the first encryption mode with no traffic encryption, the
second encryption mode with the Data Encryption Standard
(DES), and the third encryption mode with AES-128 bits [49].
RFID uses radio waves to communicate with data in electronic
devices to identify and sense the location around them.

In recent years, WSN and RFID have gained tremendous
attention in the field of IoT applications. Both technologies
have different capabilities and are used in different scenarios
depending on their needs [50]. RFIDs provide reading content
that is used to detect and identify objects they are associated
with. WSNs provide dynamic content based on the environ-
ment in which they are installed [51]. However, these technolo-
gies are used as connectors between devices and local networks
or even the wider Internet. This technology is necessary to
identify devices, share information with each other, verify each
other’s identities, and broadcast other useful information to the
network. In Table I, a list of some technologies used in the
WSN and the internet are presented.

E. Factors Affecting Quality of Data

Data in the IoT is itself the weakest point due to many
factors that affect its quality. When data lacks quality, it cannot
represent the actual scenario it is being assigned to monitor,
and it could have other negative effects both on the decision
being made and the operational levels of any business or
organization [61]. In order to have a phenomenon of interest,
some potential problems in the IoT need to be addressed. Some
of the issues facing the maintenance of QoD in the IoT include
but are not limited to:

1) Resource constraints: Since their inception, IoT devices
have been characterized as being resource constraints in nature.
Because of the limited memory available in it, the small power
consumption, and the lower computational ability of the IoT
devices, it becomes difficult to trust all the data that comes
from them especially if the data is more than what the device
can hold, and naturally, more and more data keeps coming
from these devices. The IoT devices are mostly battery-
powered, and resources are scarce, data collection policies and
trade-offs are inherently utilized to improve the quality and
cleanliness of data [62].

2) Scalability: IoT is today being deployed on a global
scale, starting from organizations to homes to cities and now
to the globe. Any setting of the IoT deployment generates large
amounts of data, and merging any setting or integrating any
application makes the data even larger, thereby increasing the
chances of error occurrence in the data [63].

3) Heterogeneity: IoT devices are heterogeneous in nature,
they come from different settings and backgrounds the same
way their data differs from the background it comes from. It is
always more challenging to manage data of the same kind with
data of different kind. IoT devices can only achieve functional
optimality if they integrate heterogeneous data. Therefore, the
issue of heterogeneity needs to be addressed perfectly [64].

4) Sensors: When sensors are deployed, they may suffer
from a lack of accuracy in reporting their readings or from

a loss of calibration. Some sensors may become faulty and
then report incorrect data. This is a challenge that makes it
mostly difficult to find the faulty sensor, especially in a large
deployment setting [65].

5) Environment: The deployment is mostly in an unpro-
tected surrounding affected by hazards and natural effects such
as rain, earthquake, erosion, the mountain’s summit, wind, or
the intended attack by humans [66].

6) Network: The connection often gets lost and regained
again due to limited resources, bad weather, infrastructural
interference, and a bad signal. IoT is an IP network with
a constrained higher loss of packets than the conventional
network [67].

7) Vandalism: The environment is mostly unprotected and
therefore suffers from physical attacks that include damage,
stealing, altering, and forceful extraction of data from it. The
vandalism also extends to animals whose aim is to search for
food or scatter in any setting they come across. Therefore, this
factor affects the QoD [68].

8) Dead node: It often happens in many circumstances that
a node is dead, but data is continuously received from the node.
This has made the quality of the data untrustworthy [69].

9) Privacy: This is a major part of the acceptance of IoT
globally. People’s data is not guaranteed to be secure, and when
data is breached (like a patient’s data), the damage is too high
[70].

10)Data stream: Data from the smart IoT device is received
and sent continuously in the back-end pervasive applications
that use them [71].

Other problems include sleeplessness habits of some nodes,
unauthorized access, altering the source code & attributes,
incompleteness, etc. In the the memory devices could neither
send large packets nor report events frequently due to con-
straints; therefore, only small-sized messages could be sent,
which is insufficient to report all events. Also, the scarcity
of resources will cause things to go into sleep mode to
save energy. However, Internet Protocols (IP) maintain the
backbone of IoT connectivity and are unsuitable for sleep
modes so it requires the smart things to be operational at all
times, unreliable readings, multi-source data inconsistencies &
alignment, data duplication, data leakage, etc.

III. DATA OUTLIERS

A data outlier is an uncertainty in an event or scenario; it
is a deviation from the normal distribution setting, resulting
in problems in the data set and incorrect results in the model.
Outliers are the major manifestations of QoD problems. Data
outliers can also be defined as phenomena with extremely
small chances of occurrence. It is again defined as points in
a data set that is highly unlikely to happen in a given model
[72].

In other words, anomalies are defined as patterns in data
that do not conform to a well-defined notion of normal behav-
ior [73]. Data outliers belong to a class of unreliable sets or
groups; they fall outside of the normal status. In most machine
learning models, they are considered the unusual points in a
given data set [74]. Although these points have few chances
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TABLE I. THE USE OF RFID & WSN TECHNOLOGY IN IOT, PROS AND CONS

N0 AUTHORS DOMAIN TECHNOLOGY OBJECTIVE PROS CONS

1 [3] WSN RFID To provide ultra-lightweight
authentication by exploiting
the RFID cache reader

It achieves reduced compu-
tational cost especially when
authenticating a large number
of tags, It achieves security

However, it needs to provide
or expand storage space for a
large number of tags

2 [52] Big Data RFID To provide lightweight au-
thentication based on simpler
authentication protocols

The scheme combines mul-
tiple authentication protocols
and runs well

Availability is guaranteed

3 [53] WSN WLAN To develop a protocol needed
to incorporate the TEPANOM
solution and its architecture
with the EAP infrastructure

This EAP supports many au-
thentication mechanisms by
introducing lower communi-
cation overhead compared to
others, it does not require any
global infrastructure, thus it is
scalable

It cannot integrate closely the
TEPANOM solution and its
architecture with the EAP in-
frastructure

4 [54] Smart Grid 6LowPAN, CoaP,
IEEE, 802.15.4

To provide a lightweight au-
thentication in the smart grid
application

It maintains message integrity The scheme is only tested and
proved on a small scenario
field nodes

5 [55] WSN GWN To introduce a novel authenti-
cation and key agreement us-
ing bio hashing to eliminate
false accept rate and false re-
ject rate

Bio hashing has some func-
tional advantages over bio-
metrics such as high secure
operation of imposter popula-
tions and genuine zero equal
error rate level

The design is inefficient with
limitations to support for-
ward secrecy and unlinkabil-
ity in two factor authentica-
tion. Also lack a dynamic
identity mechanism to involve
nonpublic key

6 [56] WSN GWN SN To develop a lightweight bio-
metric scheme to authenticate
remote users and key agree-
ment scheme for secure IoT
services

User is authenticated remotely
and offline

Memory requirements need to
be found in the testbed and the
lightweight feature extends to
real IoT devices

7 [57] IIoT WSN To design a lightweight com-
putational biometric user au-
thentication and key agree-
ment scheme

The protocol is lightweight
and less complex authentica-
tion is achieved. Authentica-
tion, availability, and integrity
of data packets are guaranteed
and the protocol needs further
investigation

8 [58] WSN WLAN To design a light Weight
node-to-node and node-to-
node authentication protocols
continuously

It authenticates each data
transmitted between two
nodes within a pre-defined
time period in the IoT
ecosystem

A more accurate model needs
to be designed to minimize
use of battery energy con-
sumption and to discover
more dynamic device features
is challenging

9 [59] NFC RFID To develop an Ultralight
Weight Mutual Authentication
Protocol to achieve forward
security by using sub key and
sub index number into its key
update

Computational wise, the
scheme is lightweight and
proved to protect against
synchronization attack

The NFC authentication needs
to improve performance and
function while still consider-
ing the security and privacy of
the system

10 [60] NFC NFC To develop a novel
lightweight NFC identity
authentication protocol for
mobile NFC IoT networks

It has three working modes in
the NFC mobile phone that
it can work in the tag as the
card, the reader, and support
peer-to-peer file sharing

Its application electronic fi-
nancial services still need pri-
vacy for public trust

to occur in the whole data set, but they often occur. Another
formal metric-based outlier is the distance-based outlier (DB)
[75]. It is defined when an object, let’s say, ‘x’ in a given data
set ‘T’, and the fraction of ‘x’ is higher than the distance ‘D’
within the context of ‘DB’, is considered an outlier. Fig. 2
shows an example of an outlier.

A. Types of Outliers

Data outliers as defined, are anomalies that do not conform
with the normal behavior of the remaining data in the data set.
Sometimes an outlier may represent an error, sometimes it may
represent an incompatible element in a cluster, and sometimes
it may even represent useful information. There are different
types of data outliers in a model, but the most common ones
are as follows:

Fig. 2. Data outliers.
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1) Error: This is any value generated as a result of node
failure or node malfunction. When the node’s battery is drained
and is not replaced and the node continues to send data to the
user’s access point, it is very likely that the data is wrong
or that repetitive data is sent. Sometimes the node may be
altered by an attacker and forced to send the wrong data
[76]. Attackers often try to extract some useful information
from a captured node while trying to let it continue to send
information to the base station. This process has already altered
the normal process, so therefore, wrong data may be sent. It
can also be affected by some natural effects, such as wind
displacement, i.e., when a node is deployed in an environment
and configured to measure a parameter of interest within a
given ratio and the node is displaced outside that ratio, then
the readings sent will not represent that area of interest [77].

2) Event: This is any scenario with an associated value
generated due to a change in a certain setting or phenomenon.
This can be demonstrated by a natural effect of event occur-
rence; for example, if in a hazardous environment, there is an
accident or any natural phenomenon that changes the setting
of the environment suddenly, then definitely the reading from
the node at that particular time follows any sudden change as
well, thereby not giving the expected outcome [78].

3) Point anomaly: This is the deviated data, a group of
similar data that differ in value, behavior, and attributes. When
usual data occurs in a given data set, deviating from the normal
distribution pattern of the remaining data and the difference
is huge enough to believe that it is out of context, then that
outlier is considered a point anomaly [79]. For example; a
model records the card withdrawals of an employee in Asia to
occur once every day and then there appears to be a withdrawal
transaction in Europe three hours from the last transaction in
Asia, this translates into an impossible scenario; therefore, the
data point of the transaction in Europe is classified as a clear
point anomaly [80].

4) Contextual anomaly: This represents a value that could
be an anomaly, but it does not depend on the context. Some-
times a deviation may occur, and still, the data may not be
an outlier due to the context of the data set it belongs to
[72]. Many scenarios happen where unusual data becomes an
outlier in one context while being considered normal in another
context. For example, given two data sets A and B, where data
set A is a small data set in size, let’s say with 100 rows, and
data set B is large let’s say it has 1000 rows. The calculation
of its ‘variance’ using the same data point may become an
outlier in data set A while proving normal in data set B [80].

5) Collective anomaly: represents a set of collected values
that differs largely from other values in the data set. When
more than one anomaly, let’s say a group of anomalies appears
in the data set, forming another cluster of anomalies, then it
is referred to as a collective anomaly. This type of outlier is
mostly identified in clustering algorithms such as the K-means
algorithm, the Naive Bayes algorithm, the Decision Tree, etc.
[81]. Fig. 3 gives examples of some of these outliers.

B. An Outlier from the Confusion Matrix

A machine learning model is a powerful technique widely
used to detect an outlier in a data set [82]. Today, there is
seamless integration between the IoT domain and machine

Fig. 3. Types of outliers.

learning models. Many machine learning models are designed
to solve IoT problems. One technique used to solve an IoT
problem is the identification of an outlier by a model called
the confusion matrix. This model has two true classes and
two negative classes that are passed to the machine mode. An
output is given by the model based on what it has learned. The
four classes are described as follows:

1) True positive: when a true instance is passed to the
model, the machine model computes the prediction and gives
an output based on the data it learned. If the prediction
corresponds to the actual or real event, then it is considered
True Positive. For example, when it rains, the event is passed
to the model, and the outcome is confirmed to be ‘rain’ or ‘it
rains’.

2) True negative: When the model receives the actual event
and predicts wrongly giving an output that does not correspond
to the expected outcome, then the scenario is considered True
Negative. An example is when, in reality, it rains, the event is
passed to the model, and the model predicts ‘not to rain’ or
‘not raining’.

3) False positive: The other way around is to supply the
model with the wrong event and expect it to learn and produce
an output based on what it learns. When the outcome produced
reveals the actual scenario that occurred while it was fed with
the wrong event, then it is considered a False Positive. For
example, when the status of an impregnated woman is passed
to the model and it gives the output that the woman is pregnant
then it is considered a False Positive.

4) False negative: But when the event passed to the model
is the wrong event and the algorithm learns and predicts that
the event is the wrong one, then it is called a False Negative.
For example, if the model is fed with the woman’s status as
not being pregnant and produces the output as ‘not pregnant’.
Fig. 4 illustrates the confusion matrix in a diagram.

C. Impact of Outliers in the IOT

In IoT, environment data is obtained from the sensor as
a result of measurement of parameters of interest, such as
temperature, pressure, humidity, etc. and serves as an input to
mine data so as to gain insights about a monitored phenomenon
(e.g home, environment, health, etc. [83]. Based on these
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Fig. 4. The confusion matrix.

insights, decisions can be made from different angles. It is
clear that the conclusions reached from an erroneous data will
produce bad and unsound decisions. For example, a model
giving out too many false positives and false negatives such
as a scenario of a campus fire alarm, the alarm system rings
many times every week while in reality there is no cause for
the panic [84].

Another scenario involves monitoring forest fires to re-
spond quickly and take appropriate measures. In addition to
component monitoring applications, the data on the state of the
components should be reported accurately in order to protect
expensive systems and avoid damage. An inability to provide
accurate data can cause damage to whole systems or even the
lives of people [75]. Other examples include forest fire alerting
system that requires quick action, earthquake that requires
quick evacuation to safe zones, etc.

The importance of accurate and reliable data is paramount,
consider the examples above and imagine if any of the system
do not alert about the occurrence of the dangers happening
or the model reports otherwise about the danger, the conse-
quences will be very severe and the lives of the people and
entities is as high risk. When these nodes report actual data
and the model predicts right and the system alarms correct,
it will help and save lives and properties while if the nodes
report faulty data, the model may easily predict wrong and
the whole system may not function well to give the correct
outcome, this is jeopardizing lives and properties.

The trustworthiness of the data is essential to the engage-
ment of users and to the acceptance of IoT services and is
therefore important to the success of the large-scale implemen-
tation of the IoT domain [85]. Data as a component of a holistic
approach to managing IoT trust collection, reliability, and
accuracy are the main concerns of data perception reliability.

As experiments and simulations are a good way to demon-
strate and understand IoT systems likewise machine learning
models are a good way to identify and prevent outliers in any
given dataset. Many IoT experimentation test beds, such as the
FIT-Equipex exist [86]. the authors of [87] examined several
other existing testbeds (public and private). However, in order
to study more on the impact of data anomalies. There are two
real-world cases that examine the impact of QoD problems on
the field of electronic health applications.

The first case study by [88] examines the effect of QoD
problems on electronic health monitoring applications. This

work identifies QoD issues that affect QoD criteria (e.g.
accuracy, precision, timeliness, accessibility, and consistency)
that are critical to providing appropriate help to the patient.
There are three levels of data management defined to monitor
cardiac scenarios: Data Acquisition, Data Processing, and Data
Discovery. For example, at the level of data collection, the
problems relate mainly to the performance of body sensors, the
amount of data processed, and the quality of communications
[89].

The second reported case study by [90] examines the
poor impact of QoD on Ambient Assisted Living systems
(AAL) systems, which results from the convergence of ambient
intelligence and assisted living technologies. AAL supports
monitoring applications (i.e. monitoring of health and well-
being) to people in their homes. This paper argues that poor
QoD alters the representation of events that occur, which hin-
ders the system from giving appropriate support to users and
causes incorrect reports on the health of patients, inefficient
management of environmental conditions at home, etc. [91].
The application of e-health is one of the most important IoT
applications taking into account the factors affecting human
life and therefore tolerating uncertainty in the QoD.

IV. QUALITY OF DATA ASSURANCE TECHNIQUES

In conventional programming, a common rule states:
“Never trust user input,” while in IoT the rule can be stated as:
“Never trust things”. This is proven as a result of uncertainties
and inconsistencies in sensor data. In order to reduce the
expensive effects of low QoD, a technique is needed to prepare
data and improve its quality [92]. The following are five main
techniques that could promise QoD in an IoT paradigm:

A. Outlier detection

This is to find the elements that differ from the normal
distribution setting or deviate from the normal behavior of the
data. The ultimate goal is to highlight outliers [93]. Identifying
outlier detection in a model increases its overall reliability
and efficiency. In addition, detecting outliers is the first step
needed to handle all the events of inconsistencies. The next
is the accuracy and reliability of data processing. If these
are handled, then QoD will be ensured and better decisions
will be made. Note that individual data element accuracy at
the level itself does not increase because it relates only to
the source of data generation and processing and cannot be
improved [94]. The parameters used to detect outliers pay
attention to highlighting data value differences to find out the
outliers (for example, values that are not consistent with an
established model) [95]. However, the QoD dimension values
used to evaluate data are seen as insufficient, for example, the
accuracy extracted from the measurement precision class of the
sensor specified by the manufacturer. When the sensor fails to
clean due to any cause, the accuracy becomes unreliable and
irrelevant.

B. Interpolation

Interpolation is defined as a data generation method that
can hence improve the QoD dimension of the data size (i.e.,
add the available data elements). However, interpolation is
the opposite of completeness in effect, i.e., the ratio of the
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available data to non-interpolated items (i.e., both interpolated
and non-interpolated) in the stream window in question. This
scenario can be explained as an optimization effect to find the
best compromise between these two dimensions, but nonethe-
less, is limited to satisfying user-defined QoD requirements
[96]. Furthermore, when selecting interpolation techniques,
it is important to consider the accuracy of the interpolation
value [63], which is expected to meet user requirements. This
technique involves the use of missing values based on a dataset.
Data flows are described as missing data flow attributes or
tuples (from sensor malfunctions and loss of connection) [97].
The missing data points represent gaps in the dataset that is
available for a particular entity or a topic of interest. A model
knowledge-generating processing of such a dataset, including
those missing gaps in it would have incomplete knowledge and
hence reduce QoD.

C. Data Integration

All the heterogeneous data from different landscapes must
be integrated to overcome structural differences and inconsis-
tencies and really benefit the universal service. Frameworks for
Data Quality (DQ) techniques such as Resource Description
Framework (RDF) and Web Ontology Language (OWL, 2009)
provide standard mechanisms for data description to perform
search, retrieval, and processing tasks more directly [98]. Also,
linked data is a reliable approach to trigger data retrieval and
integration in the IoT ecosystem. Another framework proposed
by [99] integrates semantic data that uses the principles of
Linked Data and semantic web technologies. The authors
of [100] proposed an architectural model to integrate and
incorporate all intelligent features into the smart application.
Again, a Service Architecture Paradigm (SOA) model that
extracts heterogeneity in intelligent objects and improves inter-
operability in the context of e-health applications is developed.

D. Data Deduplication

is a technique for the compression of data designed to
lessen the volume of data stored by deleting duplicate data
elements and replacing them with unique data references
that remain unchanged. Data deduplication is a process of
duplicating redundant data elements. It decreases the amount
of data and affects the QoD of the data volume. [101] proposed
a video duplication technique with considerations for privacy
protection. The authors of [102] specify the deduplication
technology for cloud-storage encrypted data. While [103]
proposed a model for exploiting the deduplication capabilities
together with the Hadoop framework.

E. Data Cleaning

The cleaning of data defines the life cycle of data; it starts
with the selection of errors and goes down to the correction
of identified errors and the identification of potential errors.
It is also defined that the detection of anomalies is limited
to the identification of anomalies, while data cleaning goes
further to suppress the elements discovered. It has become a
widely adopted technique for enterprise data management in
data warehouses [104]. Data cleaning is a widespread topic
of research in big data analysis [105]. It consists of three
main stages: (i) determining the type of error; (ii) identifying
potential errors; and (iii) correcting identified errors. It is also

very common to manage enterprise data in the context of data
storage. Fig. 5 presents some QoD techniques.

Fig. 5. QoD Assurance techniques.

V. TAXONOMY FOR QUALITY OF DATA IN IOT

The IoT and other similar domains such as WSN, have
a set of attributes, features, characteristics, protocols, and
technologies that are suited for their deployment and imple-
mentation. With a taxonomy, it can be seen what techniques
have been used to measure data trustworthiness, what are
the most important parameters to consider in ensuring QoD,
what domains are integrated in the IoT data trustworthiness
ecosystem, and what has been done and what needs to be
done in the area.

A. Data Source

The data comes from one or more sources, and the source
of the data determines whether the data can be trusted or
not. Data could come from a sensor configured to provide
the readings of an event, which is the source of the data, or
from humans directly, especially in situations where interactive
information is required by the model or the environment [106].

B. Data Processing

The first form is called stream or batch where data is
usually sent at some specific time interval. The data in the same
batch is mostly similar or has the same attributes. Data from
the sensor could be sent in batch for processing, the data is first
gathered and stored in the temporary memory of the device and
then sent across the network to the server, or any base station
provided. An example of batch processing can be any event
whose action is not urgent [106]. Real-time processing is when
the data is sensitive and needs to be processed immediately
after it is obtained. In real-time, events such as fast decision-
making making, banking transactions are examples of such
scenarios. Another form of processing the data is computed
in the near time, where the history of data is referred before
making any computation. The processing of such data is not
immediate, but time is also to be considered.

C. Data Type

The data obtained from the sensor could be presented to the
user in the form of either Numeric, Alpha, Alpha Numeric, or
even Symbols. The type of the data depends on the parameter
measured and result representation [20].
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D. Trust Type

The type of trust can be either direct or indirect. When
data is gotten directly from a sensor it is considered as direct
trust, likewise when the data is obtained from other sensors
passing it to neighboring nodes, the quality of the data might
degrade or the data may be intercepted and altered by natural
phenomena, so therefore, the data is considered as indirect trust
[20].

E. Trust Computation Location

The location of the node can be computed to determine
the trustworthiness of the node. The computation can either
be distributed or centralized. A cluster-based wireless sensor
architecture can have the cluster head to compute the trustwor-
thiness of the sensor node in the network, which is below a
certain assigned value, where the actual data is sent to the
gateway and then to the application layer. This considered
as a centralized computation. Whereas in distributed trust
computation, the node assesses the trustworthiness itself and
send actual data to the cluster and gateway [107]

F. Trust Aggregation Method

is used to summarize trust evidence that has been gathered
via nearby sensor node feedback or self-observations [108].
The majority of the literature’s work use the following meth-
ods:

1) Weighted sum: This is the simplest model for aggregat-
ing trust scores. The method can summarise several factors
that contribute to trust scores, the factors are multiplied by
the specified weight, then adds up all results that contribute
to a product that represents the trust score. Therefore, it is a
commonly used technique for calculating trust score [108].

2) Bayesian inference: Due to its simplicity and solid sta-
tistical foundation, Bayesian inference is a popular confidence
calculation model. This method considers trust as a random
variable that follows a distribution of probability and which
parameters are updated with new results.

3) Belief theory: The theory of belief, also known as the
theory of evidence or Dempster-Shafer Theory (DST) provides
a method for summarising confidence values from different
pieces of evidence using Dempster’s Rule of Combination. The
rule assumes that this evidence is independent. Evidence is the
confidence values computed by different sensor nodes in the
network [109].

4) Regression analysis: Regression analysis is a method of
aggregating confidence scores by calculating the relationships
between data. The scores are calculated based on estimating
the relationships of the trust factors and a number of other
variables that affect the trust.

5) Fuzzy logic: This is a method that deals with estimation
rather than fixed and exact conclusions, fuzzy logic also
provides rules for reasoning. The confidence value determined
with fuzzy logic can have a value between 0 and 1 with fuzzy
measures [108].

6) Game theory: This involves making decisions between
two or more decision-makers involved in certain conflicts or
competitions. Game theory can be used to predict competitive
rules of action with certainty. An example of using game theory
models to ensure data reliability is the work of [19], which
develops a defense strategy that ensures that sensor nodes are
protected against attacks so that the difference between the
value accepted by the sink and the true sense value is below
a certain assigned value.

G. Trust Establishment

This refers to how to end a trust score from multiple
properties. There are two aspects of the establishment of trust,
namely single trust and multi-trust. A single trust implies
that only one trust property is taken into account in the
calculation of the total trust rating. On the contrary, multi-trust
is a combination of trust and trust. Establishments use several
trust factors to calculate the total data trust. Many proposed
techniques utilize multi-trust factors to calculate trust scores,
with two factors chosen on average. Among the factors used
were communication, nodes’ familiarity, energy, and nodes’
reliability [20].

H. Trust Results

These are also called Trust Decisions, and are considered
as an element of data trust calculation that deals with how
the results are presented to the requestor or user. There are
two options for representing the results either in binary or in
a range of values or judgments. Binary represents the results
as either trust or non-trust only. From this point of view, users
or application layers can simply choose trusted data to process
further. In terms of range, this means that the data reliability
value calculated can fall within any range of possible degrees
of trust. This is similar to the Likert scale, but the trust values
can be determined by more than two options. As such, the
requestor or user and application layers can decide accordingly
on the basis of their decision logic [107].

I. Data QoS

The summation of all the packets involved in the transmis-
sion having the maximum delay (i.e., 400ms standard) and a
regular jitter interval between its consecutive packets (i.e., 1ms
interval) should then be able to produce the maximum number
of packets received [110].

J. Node Quality

This is of two types: a resistant node which is able to
prevent itself against side-channel attack and unclonability and
any form of memory extraction. Most of such nodes have
multiple ICs designed over one another to make it harder for
an attack to recover anything from it. An unresistant node is
one that is unable to protect itself from the attack mentioned
[107].

K. Node State

A node can either be in a passive state where it remains
ideal until it is triggered to send data, this node performs better
in such a state since its battery will last longer while an active
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node is the one that is continuously measuring and sending
data, the problem associated with this type of node is called
sleep deprivation attack [111].

L. Measurable Parameters

These nodes are deployed to measure some readings called
parameters. The parameters include but are not limited to the
volume of an object, the temperature of a room or place, the
pressure of equipment, humidity of a place, slope position of
ground, fitness level of things, sleep habits in pipelines, state
of the area, movement positions of liquids, etc. [107].

M. Data Accuracy

The data from the node is considered accurate as long as it
is precise, correct, and reliable. The basis for having a sound
decision is from accurate data while bad data produces a severe
decision that comes with consequences. When data is accurate
it is said to represent the actual scenario of an event [112].

N. Data Consistency

For the data to be consistent, it should satisfy standards and
integrity, and the codes with which it is burned to the device
must also be consistent in producing the actual result any time
it is being run.

O. Data Completeness

Data is said to be complete if its record in the database
is complete, the field data is complete and the single Unique
Identifier is complete [112].

P. Data Timeliness

The timeliness or the regularity of the data is measured
from its time stamp as well as its real-time updates [113].

Q. Data Relevance

Data is relevant according to the user requirements it
satisfies and the contextual relevance of the data.

R. Data Robustness

When data is robust it should be able to accommodate fault
tolerance by being resilient as well as quality monitoring [111].

S. Data Security

There are many forms to protect the data but for the sake of
this research the most commonly practiced are access control
mechanisms, encryption (symmetric and asymmetric), and data
masking [110].

T. Metadata Quality

Metadata is the data from which data is made up or simply
some supporting data that helps in the execution of the actual
data. In Fig. 6, a comprehensive taxonomy for QoD in IoT is
shown.

VI. IOT APPLICATION DOMAINS

• Smart Home: Smart homes have the vision to integrate
intelligence into everyday objects such as appliances,
door locks, surveillance cameras, garage doors, etc.,
and to communicate with existing cyber infrastructure
[6]. Adding intelligence to physical objects is benefi-
cial for improving people’s lives, such as improving
their comfort, convenience, security, and effective use
of natural resources. For example, a smart home can
adjust the blinds according to environmental changes,
open garage doors automatically when an authorized
vehicle approaches, or order medical services when
there is an emergency. In smart homes, traditional
home devices are part of existing Internet expansion.
When devices are damaged, the consequences can be
serious. For example, successfully hacking smart locks
allows strangers to enter the house; compromising
baby monitors can scare visitors away from the baby;
hacking microwaves can cause a fire at home [8].
Smart homeowners may not want to live in smart
homes if security is not guaranteed. On the contrary,
they can expect to improve home safety by using in-
telligent surveillance services. In addition, the privacy
of smart homeowners must be preserved. However, the
continuous collection of data from smart home devices
can reveal the private activities of house owners, as
indicated in [9]. It poses serious threats to the privacy
of owners.

• Another typical IoT application is the creation of
smart networks, Smart grids are designed and im-
plemented to improve the reliability, cost reduction,
and efficiency of traditional power grid systems. It
not only integrates green and renewable energy such
as solar power, wind power, heat, etc. but also aims
to improve the reliability and efficiency of traditional
energy networks. Intelligent grid data communication
networks connect many smart grid devices and play
an essential role in achieving the above-mentioned
objectives. It collects energy consumption data and
monitors the state of smart grid systems. More appli-
cations can be developed based on smart and commu-
nication networks. For example, utilities can allocate
and balance load more wisely based on energy use
information collected. It can also help to design fair
but scaled pricing models by taking into account un-
balanced energy consumption in space and time. With
a smart grid status monitoring application, you can
identify faults in the grid system as quickly as possible
and as well design new fault-tolerant mechanisms to
better react to them. Many technologies, including
Automatic Measurement Infrastructure (AMI), have
been proposed to build smart network communication
networks. Because so much data is moving around
the mission-critical system, security is one of the
most important concerns of such systems. Invading the
smart grid [114] and cutting the supply of electricity
to a large area can cause enormous physical and
economic damage to society. Analyzing energy usage
data can also reveal people’s daily private activities.

• By embedding smart medical devices into the medical
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Fig. 6. Taxonomy of QoD in IOT.
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infrastructure, health professionals can better monitor
patients and use the data to determine those who need
the most attention. In other words, healthcare profes-
sionals believe that prevention is more important and
effective than treatment, so they can build proactive
management systems based on collected data using
the best of these networks of devices. Researchers
also studied other possible techniques for implanting
sensors into human bodies to monitor people’s health
status [115]. Using the collected data, health person-
nel can discover behavioral changes in the body of
patients and medicines during treatment. Security is
also an essential issue in Smart Connected Health. In
network medical devices, data collection and moni-
toring of the status of the device is convenient, but
there are also risks because instructions can be sent to
terminate the device functions [116]. Stopping medical
devices that are important to the patient’s life such as
heart injuries is extremely dangerous.

• Intelligent Transportation System (ITS) refers to the
use of advanced technologies and data-based solutions
to improve the efficiency, safety, and sustainability
of transportation systems. Smart transportation uses
technology and data to create more efficient, safer,
and sustainable transportation systems that benefit
individuals and communities. These systems play a
key role in addressing urbanization, congestion, and
environmental impacts in rapidly developing cities.
In addition, IoT applications can manage passenger
luggage at airports, and advise drivers about road
conditions [117].

• The telecommunications industry includes a variety of
technologies and services such as Global System for
Mobile Communications (GSM) and Digital mobile
network standards for voice and data communications
on mobile phones and a few others. The Bluetooth
technology is a short-range data exchange that is
commonly used to connect headphones, speakers, and
other peripheral devices. Wireless Local Area Network
(WLAN): Wireless network technology allows devices
to connect to the Internet or local network within
a limited area. Wi-Fi called (wireless fidelity) is a
service that allows voice calls and texts to be sent
via Wi-Fi networks, providing coverage in areas with
weak mobile signals [118]. Global Positioning Sys-
tem (GPS) is a satellite-based navigation system that
provides accurate location information and is widely
used in mobile phones, navigation devices, and vehicle
tracking [119]. These technologies are essential to
modern communication, connectivity, and location-
based services.

• Logistics and Supply Chain Management: In logis-
tics, RFID-embedded intelligent shelves enable real-
time tracking of items, improving inventory visibility,
accuracy, and efficiency [120]. This technology sim-
plifies business, reduces errors, and helps companies
optimize their supply chains to improve their per-
formance and customer satisfaction. RFID-embedded
smart shelves track items in real-time.

• Aerospace and Aviation Industry: In the aerospace and

aviation industries, the Internet of Things (IoT) plays
an essential role in enhancing safety, maintenance,
and efficiency. Sensors and connected devices monitor
aircraft components, collect performance data, allow
real-time maintenance, improve reliability and safety,
and reduce operational costs [121]. IoT has revolution-
ized the aerospace and aviation industries by providing
real-time data and connectivity solutions to improve
safety, reduce costs, improve passenger experience,
and optimize the entire ecosystem, improve safety and
security of elements.

• Automotive Industry: In the automotive industry, the
IoT has changed the design, manufacture, operation,
and maintenance of vehicles. It revolutionizes the au-
tomotive industry by making connected, autonomous,
and safer vehicles, improving manufacturing pro-
cesses, and improving consumer driving experiences.
Sensors monitor and report vehicle parameters [122].

VII. OPEN ISSUES IN QUALITY OF DATA FOR IOT

The following are a few issues that require additional
research presented in four broad categories:

A. Scalability

The IoT can now be seen being deployed on a bigger
scale, to say on an unprecedented scale that exceeds even
the scale of the traditional Internet. Most of the solutions,
however, are concentrated, and unlike distributed architectures,
they do not provide sufficient flexibility and scaling for large-
scale deployment [123].

B. Heterogeneity of Data Sources

The data generated in the IoT ecosystem comes from
multiple types of objects, entities, sensors, RFID tags, etc.
The architecture developed for IoT must be able to adapt
to the heterogeneity of data origin. Furthermore, proposed
technologies must be able to process different variables to
meet the requirements of IoT applications. In order to meet the
requirements of IoT applications, which may provide complex
services based on multiple parameters such as user behavior,
energy management, and home temperature relative to external
temperature [124].

C. Domain-agnostic/automated verification

In IoT visions, things share data automatically with neigh-
boring nodes based on their configuration. Domain-agnostic
data cleaning methods confirm that data transmitted between
“things” is uninterrupted, without human involvement, and
with minimal human control, which is essential to the creation
of a seamless IoT service [125].

D. Distributed Architectures

In addition to IoT scaling issues, distributed architectures
also provide a platform that can adapt to faults and failure
resilience. These functions are vital in the IoT perspective,
because of the continuity and accessibility of data cleaning
infrastructure, providing all-encompassing services even in the
event of failures in ecosystems [126].
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VIII. CONCLUSION AND FUTURE DIRECTIONS

IoT offers great potential to connect millions of everyday
objects and provide intelligent and ubiquitous services to
help you live. The amount of data generated from the IoT
infrastructure is very large. The collected data serves as the
basis for obtaining insights that aid in decision-making, data
management, and other services. QoD is an important interest
in this scenario. Data security is linked to data quality, and the
security of any model begins with data trustworthiness, which
is essential to user participation and acceptance in the IoT
paradigm. IoT is a promising domain, and there have been
exciting results recorded in this field. In this context, QoD
plays an important role. However, more research is needed
to investigate how to improve QoD to ensure the widespread
adoption and acceptance of IoT. Therefore, more work needs
to be done to ensure effective and perfect decision-making,
since data reliability is highly needed in IoT. The following
are a few suggestions for future work to maintain QoD in IoT:
Lightweight outlier detection Techniques, IoT network Traf-
fic based Outlier Detection, Personalized QoD management
platforms, QoD assessment-based outlier techniques, and QoD
management middleware.
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