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Abstract—The rapid diagnosis of COVID-19 through imaging 

is crucial in the current pandemic scenario. This study introduces 

the CovidFusionNet, a novel model adapted for efficient COVID-

19 image classification. By effectively combining fusing features 

from seven pre-trained convolutional neural networks (CNNs), 

our model presents better accuracy in detecting COVID-19 from 

X-ray images. Three separate datasets, obtained from Kaggle, 

were used in this study to ensure the reliability and robustness of 

the model. The Continuous and Discrete Wavelet Transform was 

implemented for robust multi-resolution image analysis to 

maintain image properties after denoising. A novel enhancement 

method was also proposed, combining the capabilities of 

Adaptive Histogram Equalization (AHE) and Wavelet 

Transforms to emphasize finer details and concurrently heighten 

clarity while minimizing noise. Furthermore, to mitigate class 

imbalance, an oversampling approach was implemented. 

Comprehensive validation using 12 metrics across each dataset 

verified the proposed consistent performance, with remarkable 

accuracies of 98.02% for Dataset One, 99.30% for Dataset Two, 

and 98.25% for Dataset Three. Comparing CovidFusionNet 

against seven well-known pre-trained models showed that 

CovidFusionNet appeared more capable. This research advances 

the area of image-based diagnosis using COVID-19 and provides 

a model for quick medical actions. 

Keywords—COVID-19 diagnosis; X-ray imaging; wavelet 

transform; Adaptive Histogram Equalization (AHE); 

oversampling; image denoising; image classification 

I. INTRODUCTION  

COVID-19 is a novel infectious disease caused by a new 
flu virus. It first emerged in Wuhan, China, in December 2019 
[1]. It's one of the largest worldwide challenges of the 21st 
century [2, 3]. In March 2020, the World Health Organization 
(WHO) stated it was a widespread epidemic [4, 5]. COVID-19 
is similar to other diseases like MERS and SARS since they all 
originate from the coronavirus family and harm our lungs [6, 
7]. People with COVID-19 could cough, have a fever, feel 
tired, and lose their sense of taste and smell [8]. Some feel 
severely ill, have difficulties breathing, or even face life-
threatening conditions, including kidney failure [9]. Many 
individuals died from it globally [10]. Thankfully, numerous 
companies have created vaccinations and various testing are 
being done over the world.  

Finding persons with COVID-19 quickly is critically 
crucial to stop it from spreading. One approach to test for it is 
called RT-PCR [11, 12]. This test takes roughly four to six 

hours to display results. But, since so many people require 
testing, laboratories grow incredibly busy and cannot test 
everyone quickly enough [13]. This means a few people do not 
get diagnosed and may transmit the infection to others. We 
need a speedier, automated mechanism to test individuals. It 
would be beneficial to develop a simpler test that returns 
answers even sooner, so everyone can know whether they have 
the virus. 

The rapid spread of the COVID-19 pandemic has 
necessitated the development of effective diagnostic tools for 
its timely detection. Chest X-ray imaging has emerged as a 
pivotal diagnostic method to assess the impact of the virus on 
the lungs. To enhance the efficiency and accuracy of detecting 
COVID-19 from X-ray images, researchers have proposed 
various computational methods, primarily harnessing the 
potential of deep learning. These models aim to swiftly identify 
patterns indicative of the virus, thereby aiding quicker clinical 
interventions. This literature review delves into multiple 
approaches undertaken by researchers worldwide, offering a 
comprehensive understanding of the advancement in this 
domain. 

In research [14], Terry Gao and Grace Wang employed a 
set of lung X-ray images that were used to train a deep CNN 
that can distinguish between noise and useful information. This 
CNN can then use the data to train and interpret new images by 
spotting patterns that point to COVID-19. Singh et al. in study 
[15] suggested the Covid-aid model, an extension of the 
DarkCovidNet’s architecture. With 19 convolution layers and 
six max-pooling layers, the model defines the lung X-ray 
images to determine normal, COVID-19 and pneumonia. 
Though the model could successfully classify the data, the 
classification accuracy is only 87%. Similarly, Shah et al. [16] 
proposed a hybrid model that employs a convolutional neural 
network (CNN) and Gated Recurrent Unit (GRU) to classify 
the diseases. The CNN model performs feature extraction in 
this study, whereas the GRU serves as an image classifier. The 
model is trained and validated with 200 epochs, and on the 
final epoch, the validation accuracy is as high as 93%. In [17], 
Khan et al. proposed a CNN architecture to classify COVID-19 
pneumonia. The model is constructed employing the 
transform-merge block (STM) and RE-based operation for 
feature extraction. Among the three datasets used on the study, 
the proposed model performs best on the CoV-NonCoV-15k 
dataset with an accuracy rate of 96.53%.  
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To classify COVID-19 from chest X-ray images, Gayathri 
et al. in [18] have proposed an ensemble model after 
experimenting with several pre-trained model. Among the 
experimented models, the best outcome was observed from the 
fusion of the InceptionResNetV2 and Xception models with an 
accuracy of 95.78%. However, the outcome only depends on 
the conditions under which the Sparse autoencoder is used for 
dimensionality reduction and a Feed Forward Neural Network 
is employed for COVID-19 detection. Banerjee et al. [19] 
proposed a random forest meta-learning blending algorithm. 
The strategy follows the decision score technique. For feature 
extraction of the X-ray images, DenseNet201 architecture is 
implemented. However, the model only performs well when 
the dataset is small. On the small Chowdhury et al.’s dataset, 
the model showed an accuracy rate of 98.13%, whereas, on the 
larger Wang et al.’s COVID-X dataset, the accuracy was 
94.55%.  

In the paper [20], Ismael et al. has proposed multiple 
approaches to classify COVID-19 from the chest X-ray images 
using deep learning-based models. The study used several 
CNN models to extract features from the image data. With the 
assistance of ResNet50 deep feature extractor, the SVM 
classifier obtained a classification accuracy of 94.7%. 
Additionally, the authors suggested a fine-tuned CNN model 
that gives an accuracy rate of 92.6% for the same image data. 
However, in this study, the lowest accuracy of 91.6% was 
obtained from a CNN model with end-to-end training. It can be 
understood that deep approaches are more efficient in the 
classification of COVID-19 X-ray image data. In study [21], 
Kanjanasurat et al. used a combination of CNN and RNN 
techniques. In this study, the fully connected layers of the CNN 
model, ResNet152V2, were replaced by the RNN model, GRU, 
to achieve a classification accuracy of 93.37%. Here, the CNN 
layers were responsible for extracting the features of the data 
and calculation of dependencies and classification were 
performed by the RNN layers.  

For the classification of chest X-ray images obtained from 
various sources, Alshmrani et al. suggested a VGG19 model 
with a fully connected network [22]. The model is assisted by 
CNN model for feature extraction. This technique provides an 
accuracy of 96.48% for image classification. In study [23] 
using ensemble method, Kuzinkovas et al. suggested a model 
where ANN, LR, LDA and RF performs the task of image 
classification with an accuracy of 98.34%. During the 
classification task, the ensemble model uses ResNet50, 
VGG19, VGG16, and GLCM for feature extraction. Another 
CNN-based model was suggested by Hafeez et al. in [24] for 
COVID-19 classification. The proposed CODSC-CNN is 
consisted of 8 weighted and two fully connected layers. The 
model is inspired by the pre-trained AlexNet and VGG16 
models. The model has an 89% success rate in identifying 
COVID-19 X-ray images.  

Based upon prior research (see Table I) in the area of 
COVID-19 image identification, we found a few drawbacks in 
the present approaches. Particularly, several of these models 
struggle with challenges relating to accuracy, the complexity of 
managing unbalanced image datasets, and the limitation of 
constrained data availability. In an attempt to solve these 
inadequacies and improve the diagnostic effectiveness, we 

developed the CovidFusionNet. Our proposed model combines 
the capabilities of multiple pre-trained models to offer higher 
performance and attain exact identification of COVID-19 in 
imaging data. By employing an ensemble method, 
CovidFusionNet seeks to create a new standard in terms of 
accuracy and durability in COVID-19 identification via 
imaging. The primary motivation of CovidFusionNet is to 
optimize the efficiency and precision of COVID-19 diagnosis 
by exploiting medical imaging, particularly X-ray images. This 
involves providing medical professionals with a dependable 
and effective method to detect COVID-19 cases. This is 
essential due to the fast virus transmission and the need for 
immediate action. The main contributions in this paper are as 
follows: 

 Proposed a novel fusion model, CovidFusionNet that 
effectively utilizes the features of multiple pre-trained 
CNNs to improve COVID-19 image classification. This 
strategic fusion model assures CovidFusionNet 
heightened accuracy and flexibility in identifying 
COVID-19 cases. 

 Introduced the use of the Continuous and Discrete 
Wavelet Transform for multi-resolution analysis. This 
transformation retains the image’s pixel value 
distributions, ensuring features are preserved during 
denoising. 

 Proposed a novel enhancement method that combines 
the strengths of AHE and Wavelet Transforms. The 
method focuses on intricate details, simultaneously 
enhancing and minimizing noise for optimal image 
clarity. 

 Recognized the presence of class imbalances in the 
datasets and applied an over-sampling approach, 
ensuring unbiased model performance.  

 We employed 12 evaluation metrics across three 
distinct datasets to assess the model's reliability and 
consistency. This thorough evaluation confirms our 
model’s ability to consistently perform well across 
various datasets, underscoring its adaptability and 
reliability. Furthermore, we compared the performance 
of our proposed model with seven pre-trained models to 
demonstrate its superior capabilities and enhancements. 

The structure of the remainder of the paper is organized as 
follows: Section II presents the data collection process, data 
preprocessing techniques, handling, and the overall 
methodology of the proposed framework. Section III delves 
into the findings and results obtained from applying the 
proposed method. Section IV provides a comprehensive 
discussion on these findings, exploring their implications and 
significance. Section V provides the paper's final section, 
summarizing the main results and presenting valuable 
perspectives on possible future research areas in this field. 

II. PROPOSED METHOD 

In this study, we utilized a systematic strategy to diagnose 
COVID-19 through imaging. Using three distinctive Kaggle-
sourced X-ray datasets, our initial step was image 
denoising using Continuous and Discrete Wavelet Transforms. 
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Additionally, a unique improvement approach, merging 
Adaptive Histogram Equalization (AHE) and Wavelet 
Transforms, was applied for the enhancement of the image. 
Recognizing the difficulty of data imbalance, an oversampling 
approach was applied. The main component of our technique, 

the CovidFusionNet, fuses feature from seven pre-trained 
CNNs, achieving greater accuracy. Rigorous validation was 
undertaken across measures, and comparison analyses were 
made against renowned pre-trained models. The 
entire procedure is portrayed in Fig. 1. 

TABLE I. A CONCISE OVERVIEW OF CONTEMPORARY DEEP LEARNING RESEARCH ON X-RAYS OF COVID-19 

Reference Dataset Methodology Limitations 

2020 [14] 
Middlemore Hospital data 

CNN 
Small dataset, training set is unknown, lack of details 
performance metrics Kaggle 

2021 [15] 
Joseph Paul Cohen’s GitHub repository 

Covid-Aid 
Limited and imbalanced dataset, accuracy can be 

improved. ChestX-ray8 database structured by Wang et al. 

2021 [16] 
Joseph Paul Cohen’s GitHub repository 

CNN +GRU 
Small and limited dataset, limit to perform on multiple 

data. Kaggle repository 

2021 [17] 

CoV-Healthy-6k 

STM-RENet 
Inadequate data preparation and variability in image 
interpretation. 

CoV-NonCoV-10k 

CoV-NonCoV-15k 

2022 [18] 
Joseph Paul Cohen’s GitHub repository InceptionResNetV2 + 

Xception 
Limited dataset and absence of comparative analysis of 
pre-trained methods. Paul Mooney’s Kaggle repository 

2022 [19] 
Wang et al.’s dataset (COVID-X) 

Blended Ensemble 
Accuracy can be enhanced, insufficient preprocessing, 

and lack of model assessment. Chowdhury et al.’s dataset 

2021 [20] 

Github, 2020 Finetuned ResNet50, 
CNN, 

ResNet50 + SVM 

Model performance can be enhanced, and imbalance 

dataset. 
Kaggle, 2020 

Radiology Assistant 2020 

2023 [21] 

Joseph Paul Cohen’s GitHub repository 

ResNet152V2 + GRU 
Imbalance dataset, lack of existing model evaluation, 
and comparatively low accuracy rate. 

Chowdhury et al.’s dataset 
Kang’s dataset 

Kermany’s dataset 

2023 [22] 

Various Public datasets 

VGG19 + CNN Inadequate model evaluation RSNA + SIRM + Radiopaedia 

Various research articles 

2023 [23] COVID-QU-Ex dataset ANN+ LR+ LDA+RF The absence of diverse datasets for model assessments 

2023 [24] 
COVID19 dataset (2020) 

CNN Decreased accuracy with varied datasets 
Kaggle repository 

 

 

Fig. 1. Proposed workflow of our study for COVID-19 detection.
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A. Data Dimensions 

For the study on COVID-19 identification, we acquired 
three different datasets from Kaggle. The first dataset 
comprises 4,551 X-ray images. Among them, 1,281 images 
are COVID-19, whereas the remaining 3,270 are normal. This 
dataset is a compilation of COVID-19 Chest X-ray images 
gathered by aggregating 15 publicly accessible datasets. The 
second dataset gives us 4,626 images, split equally, with 2,313 
indicating COVID-19 abnormalities and the other 2,313 being 
normal. The X-ray data used in this second dataset were 
obtained from numerous sources, such as the GitHub 
repository, Radiopaedia, the Italian Society of Radiology 
(SIRM), and the Figshare data repository sites. Our third and 
final dataset contains 2,159 X-ray images, out of which 576 
show COVID-19 features, while 1,583 are categorized as 
normal. Fig. 2 displays the samples of three datasets. To 
improve our study's accuracy, we implemented 
several preprocessing methods. These comprised Image 
Denoising, Image Enhancement, and Image Balancing. These 
processes helped make the images more apparent, ensure they 
were accurately recognized, and make the data more 
consistent. 

 

Fig. 2. Sample images from all three datasets. 

B. Data Preparation 

Data preparation is crucial since it eliminates 
inconsistencies and inaccuracies, assuring data accuracy. It 
prepares data for study by reducing noise and irrelevant 
information [25]. Preprocessing assists in discovering patterns 
that could be hidden in raw data. Ultimately, it boosts the 
performance and reliability of deep learning models. 

1) Wavelet Transformation (Image Denoising): The 

Wavelet Transform enables a multi-resolution analysis of a 

given function or signal by describing it in terms of basic 

functions obtained from the dilation and translation of a 

prototype function, nicknamed the "mother wavelet," 

indicated a     . For the Continuous Wavelet Transform 

(CWT), the transform of a function      can be described as:  

         
 

    
 ∫       

   

 
   

 

  
 (1) 

Here,         denotes the wavelet coefficient, with   being 
the dilation parameter and   the translation parameter. The 
transformation process encompasses the complete domain of 

    . Crucially, the selected mother wavelet      must conform 
to the admissibility requirement, defined as:  

    ∫  
        

   
     

 

  
  (2) 

In this instance,       stands for the Fourier transform of 
    . When transferring to the domain of discrete signals, 
especially crucial for digital applications, the Discrete Wavelet 
Transform (DWT) becomes increasingly significant. In the 
DWT, the continuous parameters   and  are discretized, 
generally specified as      and       , with   and   
being integers. This discretization allows a hierarchical 
examination of the function. The DWT is applied in both row 
and column directions for two-dimensional data such as 
images. This leads to four sets of coefficients capturing 
different information: the approximation     , horizontal 
    , vertical     , and diagonal details     . A fundamental 
virtue of the wavelet transform is its reversibility, allowing for 
the original function or image to be rebuilt from its wavelet 
coefficients using the inverse wavelet transform. Fig. 3 
illustrates the output of the Wavelet Transformation with its 
histogram. The histograms of the original and reconstructed 
images are remarkably similar, it shows that the wavelet 
transform (and its inverse) has successfully retained the pixel 
value distributions of the original image. This positive 
indicator shows that the wavelet transformation has kept the 
image's features well. 

Algorithm 1. Hybrid AHE-Wavelet Image Enhancement 

(HAWIE) 

1: Procedure HAWIE (Image  , SavePath S) 

2:    Load necessary libraries: numpy, OpenCv,    

       PyWavelets, Matplotlib 

3:    function AHE_Enhancement (Image) 

4:        Apply Adaptive Histogram Equalization on the 

Image 

5:        return Enhanced image using AHE 

6:    end function 

7:    function Wavelet_Enhancement (Image) 

8:        Convert image to floating-point representation 

9:        Decompose image into wavelet coefficients 

10:      Modify wavelet coefficients  

11:      Reconstruct image from modified coefficients 

12:      return wavelet-enhanced image 

13:   end function 

14:         = AHE_Enhancement (Image  ) 
15:              = Wavelet_Enhancement (    ) 

16:    if SavePath   is provided then 

17:       Save           to   

18:    end if 

19:    return  ,           

20: end procedure 

2) Hybrid AHE-Wavelet Image Enhancement (HAWIE): 

In this study, we proposed a Hybrid AHE-Wavelet image 

enhancement (HAWIE) method as a novel approach for image 

improvement. This approach combines the comprehensive 

contrast refinement of Adaptive Histogram Equalization 

(AHE) with the multi-resolution capabilities of Wavelet 
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Transforms. Specifically, AHE concentrates on very small 

overlapping regions of an image, ensuring that every 

microscopic feature is properly accentuated, whether in a 

bright or dark location. Following the AHE process, the 

Wavelet Transform takes center stage, breaking the image into 

an array of frequency components. This enables a more 

focused enhancement, where certain visual elements may be 

enhanced while any undesired noise is concurrently 

minimized. Our findings, as illustrated in Fig. 4, give an 

impressive visual illustration of this hybrid method. The 

difference image, in particular, emerges as a useful tool, 

clearly emphasizing places that have received adjustments or 

upgrades. This visualization becomes even more informative 

when matched with the accompanying scatter plot, where the 

X-axis indicates pixel values from the original image. At the 

same time, the Y-axis exhibits those from the improved 

image. Each point on this figure encapsulates a pixel, its 

position demonstrating the association between the original 

and enhanced pixel values. The deviations from the "Line of 

Identity", a red dashed line showing identical pixel values in 

both images, give essential insights into the transformational 

power of the HAWIE approach, emphasizing its capabilities, 

particularly in vital sectors such as medical imaging. 

Algorithm 1 provides the overview structure of HAWIE. 

 

Fig. 3. Output of the wavelet transform with the histograms of the original and reconstructed images. The histogram comparison highlights the wavelet 

transform's efficacy in maintaining the image's features. 

 

Fig. 4. Illustration of the HAWIE technique effects. The difference image reveals regions of enhancement, while the scatter plot showcases the relationship 

between original and enhanced pixel values, with deviations indicating modifications. 
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3) Image Balancing (Oversampling): In this study, we 

utilized three datasets for analysis. While Dataset 2 was 

already balanced, Datasets 1 and 3 demonstrated class 

imbalance, where some classes contained fewer samples than 

others. This mismatch may lead to biased model performance, 

perhaps favoring the more dominant classes. We utilized an 

oversampling approach to solve this difficulty, particularly for 

the minority classes in Datasets 1 and 3.  

The oversampling approach operates by first selecting the 
class with the maximum number of samples, known as 
max_count. This count then sets the aim for all classes in the 
balanced dataset. For those classes with samples less than 
max_count, the oversampling strategy duplicates their samples 
until this goal number is attained. Replication is cyclic, 
meaning that once the end of a class's sample list is reached, it 
returns to the beginning, assuring a smooth continuation until 
the target sample count is attained. By applying this strategy, 
every class in the enlarged datasets (Datasets 1 and 3) now has 
an equal representation. This parity creates a balanced basis for 
subsequent data modeling and analysis. By executing this 
oversampling programmatically, the balanced datasets were 
stored in a different directory, guaranteeing clarity for later 
operations. The ultimate purpose of this technique is to 
reinforce the models' generalizability, trained on the modified 
datasets, ensuring they give unbiased insights unaffected by the 
over-representative classes of the original datasets. Table II 
represents the final datasets after all preprocessed attempts. 

TABLE II. DISTRIBUTION OF SAMPLES ACROSS CLASSES IN DATASETS 1, 
2, AND 3, ILLUSTRATING POST-OVERSAMPLING 

Parameters Dataset 1 Dataset 2 Dataset 3 

Wavelet Transformation ✓ ✓ ✓ 

HAWIE ✓ ✓ ✓ 

Oversampling ✓ -- ✓ 

Total Images 6540 4626 3166 

Train (70%) 4578 3241 2216 

Test (20%) 1308 925 633 

Validation (10%) 654 460 317 

C. Model Selection 

For our study, we methodically selected seven pretrained 
models, each known for particular abilities in image 
processing. We included VGG19 for its comprehensive feature 
extraction from its deep 19-layer architecture. MobileNetV2 
was selected for its best balance between computing 
performance and accuracy, which is appropriate for real-time 
activities. AlexNet, a pioneering model from the ImageNet 
competition, offers a basic baseline. Simultaneously, the 
innovative residual blocks of ResNet50, the multi-scale feature 
capture of InceptionV3, the fine-grained classifications from 
DenseNet201, and the efficiency of Xception each bring 
unique value. Together, this collection provides for complete 
performance evaluations across diverse architectures. Building 
on their distinct strengths, we next combined the special 
features of all seven deep learning models to develop our 
proposed innovative fusion model: CovidFusionNet. 

1) VGG19: VGG19 is a well-known deep-learning 

architecture for classification of images [26]. It has 19 layers 

in total, including 16 convolutional layers, three fully 

connected levels, and five max-pooling layers. The persistent 

use of tiny 3×3 convolutional filters with a stride of 1, which 

are effective at extracting detailed information when stacked 

in succession, is a distinguishing characteristic of VGG19. 

VGG19 ensures the capture of detailed patterns at different 

spatial hierarchies by gradually increasing the number of 

filters from 64 in the initial layers to 512 in the deeper ones. 

The convolutional layers are separated by max-pooling layers 

with a 2×2 filter size and a stride of 2, which down-samples 

the spatial dimensions while retaining essential information. 

Following the convolutional layers, there are three fully 

connected layers, each having 4096, 4096, and 1000 neurons. 

Each convolutional layer has a ReLU activation to include 

nonlinearity in the model. While the uniform structure 

minimizes architectural complexity, the depth of VGG19 

necessitates large processing resources. Nonetheless, its 

architecture has significantly impacted the field, emphasizing 

the promise of deeper networks for improved picture 

identification. 

2) MobileNetV2: MobileNetV2 is a simplified deep-

learning architecture designed for mobile devices and 

computationally constrained applications [27]. Inverted 

residuals and linear bottlenecks are central to its architecture, 

where channels are first reduced using a 1×1 convolution, 

followed by a 3×3 depthwise convolution, and then enlarged 

again, optimizing computational efficiency without 

compromising feature extraction capabilities. The model 

makes use of depthwise separable convolutions to reduce 

parameter counts by separating spatial and channel-wise 

calculations. MobileNetV2 slims its design even further by 

preceding fully connected layers in favor of average pooling 

leading into a SoftMax layer, giving it the highest level of 

efficiency and performance in on device deep learning 

applications. 

3) AlexNet: AlexNet, a significant deep learning 

architecture, was essential in advancing the deep learning 

domain, particularly in the classification of images [28]. The 

network is composed of five convolutional layers, which are 

followed by three fully connected layers. The use of bigger 

filter sizes in AlexNet's first layers is a distinguishing feature; 

particularly, the first convolutional layer has 11×11 kernels 

with a stride of 4. As the network grows, it utilizes smaller and 

smaller filters, such as 5×5 and 3×3. AlexNet was among the 

first to use ReLU as activation functions, overcoming the 

vanishing gradient issue that afflicted networks that used 

classic sigmoid activations. Another novel idea introduced 

was the notion of dropout layers, in which a part of a neuron is 

randomly deactivated during training to prevent overfitting. 

The network also used data augmentation methods such as 

image translations and horizontal flips to increase the quantity 

and variety of the training dataset, which improved model 

generalization. AlexNet's exceptional performance entrenched 
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deep neural networks as the dominant technique for picture 

classification, setting the framework for future architectural 

improvements in deep learning. 

4) ResNet50: ResNet50, a member of the Residual 

Network group, transformed deep learning architectures by 

introducing residual connections, which are referred to as 

"skip connections." These connections enable the output of 

one layer to skip one or more following layers before being 

summed with the output of the latter, so minimizing the 

vanishing gradient issue and allowing the training of even 

deeper networks [29]. ResNet50 is made up of 50 layers that 

are organized as a blend of convolutional and identity blocks. 

Each block generally has three convolutional layers with filter 

sizes of 1×1, 3×3, and 1×1, which are used to decrease 

dimensionality, collect spatial data, and then restore 

dimensionality. Strides vary depending on the location of the 

layer, with stride-2 convolutions used to minimize spatial 

dimensions, half the height and length while doubling the 

number of filters. One of ResNet50's key characteristics is its 

capacity to retain information from previous layers, allowing 

it to capture both low-level and high-level features. 

Throughout the network, batch normalization and ReLU 

activation are employed to stabilize training and induce non-

linearity. ResNet50's novel architecture, designed for high 

accuracy in image classification tasks, not only aids deeper 

model training but also establishes a new benchmark in deep 

learning, driving further design advances. 

5) InceptionV3: InceptionV3 is a well-known deep 

learning model for image categorization. Its advanced 

"modules" execute concurrent convolutional processes with 

various kernel sizes, such as 1×1, 3×3, and 5×5, inside a single 

layer [30]. This multi-path technique allows InceptionV3 to 

record various spatial feature hierarchies at the same time, 

incorporating both granular and larger viewpoints. The use of 

factorized convolutions, which split bigger filters into smaller, 

asymmetric ones like 1×3 and 3×1, is one of InceptionV3's 

innovations, assuring computational efficiency without losing 

receptive scope. "Auxiliary classifiers" are deliberately put in 

the network's intermediate layers to push gradients to inner 

layers and boost regularization. Batch normalization is used 

consistently throughout the layers, giving stability to the 

activations and allowing for smoother training dynamics. 

Despite its sophisticated design, which combines multi-scale 

feature extraction with computational prudence, InceptionV3 

exemplifies what is possible in terms of balancing accuracy 

and resource needs in the area of deep image classification. 

6) DenseNet201: DenseNet201 distinguishes itself among 

deep learning architectures developed for image categorization 

by virtue of its remarkable dense connectivity [31]. Unlike the 

traditional technique, in which each layer gets information 

only from its immediate predecessor, DenseNet201 guarantees 

that each layer receives input from all previous levels, 

resulting in an extensive network of connections. This 

configuration encourages feature reuse and ensures more 

efficient gradient flow across the network, solving issues such 

as the disappearing gradient problem, which is common in 

deep architectures. Each layer, which is divided into 

interconnected blocks, generally employs 3×3 convolutional 

filters, with precise growth rates defining the insertion of 

additional filters as the network deepens. To regulate and 

aggregate feature-map dimensions, transition layers of 1×1 

convolutional filters with a stride of 2 are alternated between 

these dense blocks. DenseNet201, with its 201 layers, is 

capable of collecting sophisticated image patterns without a 

massive rise in parameters due to its dense design. 

DenseNet201's architecture, which emphasizes continuous 

feature propagation and efficient gradient distribution, makes 

it highly resistant to overfitting and places it as a model of 

choice for complex image classification tasks. 

7) Xception: Xception, which stands for "Extreme 

Inception," is a complex classification architecture that 

redefines the traditional inception technique by using 

depthwise separable convolutions [32]. This fundamental 

breakthrough divides convolutional processes into spatial and 

channel-based tasks, maximizing efficiency. The Xception 

model is composed of 71 layers that are organized into 

modules. Unlike standard Inception modules, which utilize a 

variety of filter sizes, Xception's architecture relies heavily on 

3x3 convolutional kernels for depthwise operations, ensuring a 

thorough extraction of spatial data. 1x1 convolutions are 

utilized for cross-channel operations inside these modules. 

The model achieves strategic downsampling by adopting 

strides of 2 in selected modules. Xception incorporates 

residual connections, similar to the ResNet structure, to 

maintain smooth gradient flow throughout its depth, further 

strengthening its resilience. Xception proposes an architecture 

that delivers outstanding performance on picture classification 

tasks while assuring computational economy by combining 

the ideas of depthwise separable convolutions, intentional 

kernel choices, and a thoughtfully built layering scheme. 

8) CovidFusionNet (Proposed Model): In this study, we 

proposed a novel CovidFusionNet model to increase 

classification performance, particularly for differentiating 

images related to COVID, by combining the strength of 

numerous pre-trained convolutional neural networks (CNNs) 

and their feature extraction capabilities. 

The CovidFusionNet model begins by representing each 
image as   with a shape of 224×224×3. For each base model   
within our ensemble model   (which encompasses seven 
models), the image undergoes a transformation through 
function   , generating a feature map    according to the 
equation 3: 

            (3) 

A harmonizing step is essential due to the varied spatial 
dimensions of the feature maps yielded by the different 
architectures. A resizing function, represented as R, refines 
each feature map to achieve a uniform shape: 

             (4) 
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Resultantly,     is consistent with a dimension of 
224×224×  , where    marks the depth as per model  . The 
essence of CovidFusionNet lies in its strategic feature fusion. 
Feature maps from all models are concatenated in depth, 
forming an integrated tensor   : 

                  
       

 
                   

              (5) 

After this fusion,    undergoes flattening and is channeled 
through a series of dense layers. Initially, it interacts with a 
weight matrix    and bias    to produce an output: 

                    (6) 

Post the application dropout regularization for model 
robustness, the final output is calculated as: 

                      (7) 

The Categorical Cross entropy loss   supervises the 
training of the CovidFusionNet: 

    ∑   
 
             (8) 

This ensures optimal weight adjustments during training, 
directing the model toward accurate COVID-19 detection. 
Algorithm 2 depicts the operation of the proposed model. 

Algorithm 2. Proposed CovidFusionNet Development and 

Operation 

1: Procedure CovidFusionNet(Image  ) 

2:  Load pre-trained models into set   

3:  Freeze the weights of the models in   

4:  for each model   in   do 

5:       Transform image   using   to get feature map    

6:       if    does not have dimension 7×7×   

7:           Resize    to     of dimension 7×7×   

8:       else 

9:                   

10:              end if  

11:       Store     in list of feature maps    
12: end for 

13: Concatenate feature maps in    along depth to get    

14: Flatten    to get 1D tensor   

15:     Dense layer with ReLU activation on   

16: Apply dropout on    

17:    Dense layer with Softmax activation on result 

18: return   

19: end procedure 

The CovidFusionNet model exhibits remarkable 
improvements over to prior methodologies in medical image 
classification, specifically for identifying COVID-19. The 
main benefit of this approach is the use of numerous pre-
trained convolutional neural networks (CNNs), which allows 
for a more extensive and diverse extraction of features 
compared to models that rely on a single CNN architecture. 
The variety of methods used to extract features leads to a 
classification that is less vulnerable to errors and more precise, 
which is essential for the specific needs of medical imaging. 
CovidFusionNet specifically tackles the issue of spatial 
dimension variability, which is a common occurrence when 
merging information from various CNNs. The resizing 
function is utilized to normalize feature maps prior to fusion, 

promising a consistent and harmonic integration of features. 
This strategy addresses the constraints associated with the 
restricted feature representation commonly observed in single-
model approaches. 

III. PERFORMANCE EVALUATION 

Several evaluation metrics were examined to evaluate the 
efficacy of various deep-learning models. These measures, 
particularly Accuracy, Loss, Precision, Recall, F1-Score, 
Specificity, NPV, FOR, FPR, FDR, FNR, and Kappa Score, 
highlight the efficiency and dependability of the models under 
assessment. Fig. 5 to Fig. 10 presents a visual illustration of 
these scores. These figures show an in-depth visual 
representation of performance metrics [33] for the deep 
learning models analyzed in our study, including proposed 
CovidFusionNet (CvNet), VGG19 (VGG), MobileNetV2 
(MV2), AlexNet (AxNT), RestNet50 (RsNT), Incep-tionV3 
(InV3), DenseNet201 (DSNT), and Xception (XPTN). The 
metrics are placed across two separate rows inside the image, 
covering a wide variety of assessment criteria. 

A. Performance Evaluation 

To evaluate the efficacy of our employed classifiers in 
identifying COVID-19 from X-ray images, we applied a 
complete set of evaluation metrics (9) to (20). Where TP, FP, 
TN, and FN stand for the number of true positive, false 
positive, true negative and false negative cases, respectively.  

Accuracy: Proportion of all X-ray images correctly 
identified, be it COVID-19 positive or negative. 

         
       

             
   (9) 

Loss: Quantifies how well the prediction model performs 
compared to the actual outcomes. 

                                    (10) 

Precision: The percentage of X-rays that were accurately 
diagnosed as COVID-19 positive. 

          
  

       
  (11) 

Recall: The proportion of true COVID-19 positive X-rays 
that the model identified. 

       
  

       
   (12) 

F1-Score: Harmonic mean of precision and recall, ensuring 
a balance between them. 

            
                

                
  (13) 

Specificity: The percentage of COVID-19 negative X-rays 
that the model accurately detected out of all the actual images.  

            
  

       
  (14) 

NPV (Negative Predictive Value): The percentage of X-
rays that were appropriately diagnosed as COVID-19 negative. 

    
  

       
   (15) 
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FOR (False Omission Rate): percentage of COVID-19 
positive cases that were actual but were misclassified as 
negative by the model. 

    
  

       
   (16) 

FPR (False Positive Rate): The proportion of real COVID-
19 negative cases that were misclassified as positive by the 
model. 

    
  

       
   (17) 

FDR (False Discovery Rate): The proportion of X-rays 
mistakenly classified as COVID-19 positive but truly negative. 

    
  

       
   (18) 

FNR (False Negative Rate): The percentage of real 
COVID-19 positive cases that the model failed to predict. 

    
  

       
   (19) 

Kappa Score: Measures validity of predicted and actual 
classifications, adjusting for chance. A score near to 1 indicates 
outstanding alignment. 

  
      

     
   (20) 

where,    is the observed agreement, and    is the expected 
agreement. 

B. Performance for Dataset 1 

From the analysis of dataset 1, CvNet appears as a highly 
effective classifier, obtaining an ACC of 98.02%. Specifically, 
with CvNet, we notice an excellent PRE of 98.5%. It is 
followed at some distance by MV2, which records a score of 
91.5%. Moving to the REC criteria, RsNT and InV3 exhibit 
impressive scores of 86.5%, but CvNet stands out with a 
significant score of 97.5%. Concerning F1S, whereas XPTN 
remains with a score of 82.75%, CvNet increases by reaching 

its highest point with a score of 98%. In terms of Specificity, a 
parameter important for understanding the real negative rate, 
CvNet again outperforms with 98.5%, with most other models.  

The NPV, FOR, FPR, FDR, FNR, and the Kappa Score 
further show the capabilities of each model. Notably, CvNet 
differentiates out across these criteria. With an NPV of 98, it 
greatly beats VGG, which gets 84.5%. In analyzing the FOR, 
both VGG and InV3 score on the upper side at 15.5% and 
15%, respectively. In comparison, CvNet has a respectable low 
score of 2%. Focusing on FPR, models like VGG, RsNT, and 
XPTN indicate heightened values of 15%, 13%, and 17%. Yet 
again, CvNet excels with a minimum 1.5%. As for FDR, 
XPTN's rate of 16.5% is in significant contrast to CvNet's low 
1.5%. On the FNR front, although XPTN achieves a high 18%, 
CvNet displays its efficiency with only 2.5%. Lastly, 
considering the Kappa Score, CvNet's quality shines with 0.96, 
implying an excellent match with actual labels. On the other 
hand, XPTN scores 0.66, with MV2 and DSNT coming in 
between 0.82 and 0.78, respectively. Fig. 5 shows the 
performance of the models on dataset 1. 

Fig. 6 shows the confusion matrix for multiple models, 
including CvNet, VGG, MV2, AxNT, RsNT, InV3, DSNT, 
and XPTN, when discriminating between COVID-19 and 
normal situations. For instance, evaluating the CvNet model, it 
can be determined that out of the COVID-19 instances, 638 
were properly categorized as COVID-19 (True Positives) and 
16 were wrongly classified as normal (False Negatives). On the 
other hand, when evaluating the normal cases, 644 were 
properly recognized as normal (True Negatives), and 10 were 
misclassified as COVID-19 (False Positives). Similar 
classification accuracy and error patterns were also found for 
the other models. For instance, the VGG model accurately 
recognized 549 COVID-19 samples but misclassified 105 as 
normal. Simultaneously, 556 normal samples were identified 
correctly, whereas 98 were misdiagnosed as COVID-19. 
However, the performance scores indicate that the CvNet 
model surpassed all other models in the classification 
performance for dataset 1. 

 

Fig. 5. Comparative performance metrics across the models on dataset 1. 
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Fig. 6. Confusion matrices of deep learning models for COVID-19 vs. normal classification on dataset 1. 

C. Performance for Dataset 2 

From the examination of dataset 2, CVNet emerged as the 
most efficient classifier, obtaining an accuracy of 99.30%. 
Specifically, with CVNet, we observe an exceptional precision 
of 99.4%. Following that, MV2 obtained a score of 93.2%. 
Turning to the recall parameter, RsNT and InV3 exhibit 
impressive results, but CVNet surpasses with a significant 
score of 99.2%. In terms of F1-score, whereas Xception 
(XPTN) achieves a score of 90.10%, CVNet reaches the 
highest point with a score of 99.30%. For specificity, an 
essential statistic for distinguishing an actual negative rate, 
CVNet continues to dominate with 99.3%, outperforming the 
other models. 

Other metrics, including NPV, FOR, FPR, FDR, FNR, and 
the Kappa Score, further emphasize the capabilities of each 

model. Furthermore, CvNet differentiates itself across these 
parameters. With an NPV of 99.3%, it greatly surpasses VGG, 
which settles at 89.1%. Analyzing the FOR, both VGG and 
InV3 score better with 10.9% and 16.3%, respectively, 
although CvNet excels with a low score of 0.7%. Focusing on 
the FPR, models such as VGG, RsNT, and XPTN exhibit 
increased rates. Yet again, CvNet outperforms with a minimum 
0.7%. In terms of the FDR, XPTN rate of 9.7% compares 
strongly with CvNet only 0.6%. On the FNR, XPTN displays a 
higher number, while CvNet demonstrates its efficiency with a 
modest 0.8%. Finally, while reviewing the Kappa Score, the 
quality of CvNet shows effectively with 0.986, indicating a 
nearly perfect agreement with true labels. In comparison, 
XPTN obtains 0.802, with MV2 and DSNT slowing with their 
respective scores. Fig. 7 visually represents the model 
performances with a comprehensive comparison. 

 

Fig. 7. Comparative performance metrics across the models on dataset 2. 

  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 12, 2023 

150 | P a g e  

www.ijacsa.thesai.org 

Fig. 8 illustrates the confusion matrix for all of the 
employed models including CvNet, VGG, MV2, AxNT, 
RsNT, InV3, DSNT, and XPTN) in the context of identifying 
between COVID-19 and normal cases. Upon assessing the 
CvNet model, it's observed that out of the total COVID-19 
cases, 495 were accurately recognized as COVID-19 (True 
Positives), whereas seven were misclassified as normal (False 
Negatives). In comparison, for the normal cases, 493 
occurrences were adequately identified as normal (True 
Negatives), while five were mislabeled as COVID-19 (False 
Positives). Observing comparable patterns with different 
models, take the VGG model as an instance: it correctly 
recognized 441 occurrences of COVID-19, but mislabeled 61 
as normal. Concurrently, out of the normal samples, 439 were 
appropriately identified, while 59 were incorrectly classed as 
COVID-19. Despite the variances between models, the 

performance measures indicate CvNet as the standout, 
exemplifying higher classification for dataset 2 compared to 
other models. 

D. Performance for Dataset 3 

From the assessment of our dataset 3, CvNet emerges as 
the best classifier with an outstanding accuracy of 98.25%. 
Specifically, with CvNet, we see an outstanding precision of 
98.7%. Besides, MV2 achieves an accuracy of 93.8%. As for 
the recall, both RsNT and AxNT produced substantial results, 
CvNet reached out with a higher score of 98%. Moving to the 
F1-score, though XPTN gains a score of 91.9%, CvNet 
achieves its highest rating with 98.35%. In specificity, a critical 
parameter for determining the real negative rate, CvNet 
maintains its dominance with a remarkable 98.9%, surpassing 
the other models. 

 

Fig. 8. Confusion matrices of deep learning models for COVID-19 vs. normal classification on dataset 2. 

 

Fig. 9. Comparative performance metrics across the models on dataset 3. 
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We learn more about each model's effectiveness by 
exploring other metrics, such as NPV, FOR, FPR, FDR, FNR, 
and the Kappa Score. CvNet is one of them that sticks out 
particularly. CvNet significantly exceeds VGG, which has an 
NPV of 84.8%, with an NPV of 98.3%. In contrast to CvNet's 
admirable 1.7%, both VGG and DSNT models exhibit greater 
rates when analyzing FOR, 15.2% and 16.1%, 
respectively. The VGG, RsNT, and DSNT exhibit greater rates 
in terms of FPR, CvNet excels with a rate of only 1.1%. In 
terms of the FDR, XPTN has a respectable rate of 7.7%, 

whereas CvNet excels with only 1.3%. XPTN has a little 
higher value while monitoring FNR, however, CvNet performs 
better with pure 2%. Lastly, CvNet's Kappa Score of 0.965 is 
remarkable and perfectly matches true labels. This rating 
distinguishes it from other models like XPTN, MV2, and 
DSNT. Fig. 9, a visual representation, helps clarify these 
comparisons and provides an extensive overview of how well 
the models performed, showing their advantages and possible 
weaknesses. 

 

Fig. 10. Confusion matrices of deep learning models for COVID-19 vs. normal classification on dataset 3. 

 

Fig. 11. Class-wise performance metrics of various models for COVID-19 detection across three datasets: (a) Dataset 1, (b) Dataset 2, and (c) Dataset 3 
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Fig. 10 exhibits the confusion matrices for all the models 
evaluated, including CvNet, VGG, MV2, AxNT, RsNT, InV3, 
DSNT, and XPTN, in their attempts to identify COVID-19 and 
normal cases. A detailed review of the CvNet model indicates 
that of the total supposed COVID-19 cases, 295 were 
accurately recognized as COVID-19 (True Positives), whereas 
20 were erroneously tagged as normal (False Negatives). 
Conversely, among the samples identified as normal, 305 were 
properly marked as normal (True Negatives), with 5 being 
mistakenly indicated as COVID-19 (False Positives).  VGG 
model properly discovered 250 instances of COVID-19, but 
wrongly categorized 60 as normal. However, out of the normal 
samples, 240 were correctly recognized, while 50 were 
incorrectly categorized as COVID-19. Moreover, CvNet 
distinguishes itself as being better by classifying Dataset 3 with 
more accuracy when compared to the other models. 

E. Classwise Performance Analysis 

Fig. 11(a) exhibiting Dataset 1 indicates that 
CovidFusionNet produced outstanding accuracy for the 
COVID class (98.5%). For the COVID class, CovidFusionNet 
achieved a highest F1-score (98%) whereas ResNet closely 
followed with an F1-score of 87%. For the Normal class, 
CovidFusionNet scored the best accuracy value (97.59%) and 
its recall was equally effective at 98.47%. This implies that for 
the categories COVID and Normal, while CovidFusionNet 
outperforms in one measure, other models such as ResNet or 
AlexNet tend to follow closely, showing their complementing 
potential. Fig. 11(b) depicting Dataset 2 demonstrates that 
CovidFusionNet once again came out with the highest 
accuracy for the COVID class (99.4%). In terms of the COVID 
class, CovidFusionNet retained the top F1-score (99.30%). For 
the Normal class, both accuracy and recall values were 
generally stable across the models, with CovidFusionNet 
winning once again with an F1-score of 99.3%. The superior 
performance of CovidFusionNet across these measures 
reinforces its great competence in discriminating between both 
classes. Fig. 11(c) from Dataset 3 highlights that 
CovidFusionNet continues its trend with outstanding accuracy 
for the COVID class (98.7%). MobileNetV2 obtained an 
excellent F1-score (93.4%) for the COVID class, whereas for 
the Normal class, Xception performed amazingly with the top 
F1-score (92.9%). 

IV. DISCUSSION 

The CovidFusionNet is specifically designed for high-
resolution medical imaging, with a focus on X-ray images. It 
showcases its capabilities by combining several Convolutional 
Neural Networks (CNNs) with Wavelet Transforms, which are 
essential for precise identification of patterns and reliable 
diagnosis of COVID-19. The oversampling strategy employed 
by this system enhances its ability to effectively handle 
datasets with class imbalances, which are often seen in medical 
data. As a result, this system is especially relevant in the 
present healthcare scene. In addition, CovidFusionNet's ability 
to do multi-resolution image analysis, utilizing both 
Continuous and Discrete Wavelet Transform, enables the 
detection of anomalies at various scales. Furthermore, 
integrating Adaptive Histogram Equalization with Wavelet 
Transforms for image improvement is particularly effective for 

datasets requiring precise feature retention and noise reduction. 
Although it demonstrates exceptional performance in these 
domains, its utilization with other data formats, such as MRI or 
CT scans, may necessitate appropriate modifications to achieve 
ideal outcomes. In consideration of this recognition, further 
study will prioritize the extension of CovidFusionNet's 
utilization to a range of data formats, thereby thoroughly 
assessing its efficacy in different clinical environments. This 
study aims to improve the effectiveness and expand the range 
of applications of the model in medical imaging, thereby 
transforming it into a flexible instrument in the advancing field 
of medical diagnostics. We have compared the performance of 
our proposed model with state-of-the-art methods, and the 
comparative results are represented in Table III. 

TABLE III. COMPARING PROPOSED METHOD PERFORMANCE WITH STATE-
OF-THE-ART METHODS 

Reference Dataset Methodology Accuracy 

[14] X-ray CNN 91% 

[15] X-ray Covid-Aid 87% 

[16] X-ray CNN +GRU 93% 

[17] X-ray STM-RENet 96.53% 

[18] X-ray 
InceptionResNetV2 + 

Xception 
95.78% 

[20] X-ray ResNet50 + SVM 94.7% 

[21] X-ray ResNet152V2+GRU 93.37% 

[22] X-ray VGG19 + CNN 96.48% 

Proposed X-ray CovidFusionNet 

Dataset 1 (98.02%) 

Dataset 2 (99.30%) 

Dataset 3 (98.25%) 

V. CONCLUSION 

In this study, we introduced the CovidFusionNet, a cutting-
edge CNN model based on fusion and optimized for accurately 
classifying COVID-19 X-ray images across three distinct 
datasets. We improved image clarity and detail preservation by 
combining features from seven pre-trained convolutional 
neural networks, incorporating the Continuous and Discrete 
Wavelet Transform, and using an innovative enhancement 
technique that combines Adaptive Histogram Equalization and 
Wavelet Transforms (HAWIE). Our model outperformed 
seven well-known pre-trained models in accuracy and 
consistency when combined with an oversampling strategy to 
solve the class imbalance. This work advances the field of 
image-based COVID-19 diagnosis by providing a tool ready 
for clinical use and pointing out potential directions for further 
investigation into the effects of image quality on detection 
effectiveness. 

Data Availability Statement: Dataset 1 can be found at 
https://www.kaggle.com/datasets/unaissait/curated-chest-xray-
image-dataset-for-covid19 (Accessed on 1 September 2023); 
Dataset 2 can be found at https://www.kaggle.com/ 
datasets/amanullahasraf/covid19-pneumonia-normal-chest-
xray-pa-dataset, (Accessed on 2 September 2023); Dataset 3 
can be found at https://www.kaggle.com/datasets/jtiptj/chest-
xray-pneumoniacovid19tuberculosis, (Accessed on 2 
September 2023). 
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