
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 12, 2023 

154 | P a g e  

www.ijacsa.thesai.org 

Implementation of a Convolutional Neural Network 

(CNN)-based Object Detection Approach for Smart 

Surveillance Applications

Weiguo Ni* 

School of UAV, Guangzhou Civil Aviation College, Guangzhou 510000, Guangdong, China 

 

 
Abstract—In the realm of smart surveillance systems, a 

fundamental technique for tracking and evaluating consumer 

behavior is object detection through video surveillance. While 

existing research underscores object detection through deep 

learning techniques, a notable gap exists in adapting these 

methods to effectively capture and recognize small, intricate 

objects. This study addresses this gap by introducing a 

customized methodology tailored to meet the nuanced 

requirements of accurate and lightweight detection for small 

objects, especially in scenarios prone to visual complexity and 

object similarity challenges. The primary objective is to furnish a 

vision-based object identification method designed for 

surveillance applications in smart stores, with a particular focus 

on locating jewelry objects. To achieve this, a Convolutional 

Neural Network (CNN)-based object detector utilizing YOLOv7 

is employed for precise object detection and location extraction. 

The YOLOv7 network undergoes rigorous training and 

verification on a unique dataset specifically curated for this 

purpose. Experimental results affirm the efficacy of the proposed 

object identification method, demonstrating its capacity to detect 

items relevant to smart surveillance applications. 
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I. INTRODUCTION 

Cameras and image sensors are frequently deployed in 
smart surveillance systems so that automated object 
identification techniques may be used to automatically detect 
and identify various objects in smart environment analysis [1, 
2]. Such automatic object recognition techniques often need 
sophisticated image/data processing tools and algorithms [3]. 
As a result, developing low-complexity automated object 
identification algorithms for use in urban surveillance 
applications becomes crucial [4, 5]. 

For computer vision applications, deep learning-based 
approaches, including Convolutional Neural Networks 
(CNNs), are among the finest solutions [6, 7]. Applications like 
object categorization and image segmentation have made 
significant strides thanks to CNNs [8].   Additionally, CNNs 
contain convolution layers that handle feature extraction; they 
are resilient to shifts and distortions in the image; they use less 
memory; training is simpler; and, as a result of the fewer 
parameters, they are better and quicker [9]. 

Object detection and monitoring in IoT Smart Shop 
Surveillance Systems have witnessed significant advancements 
in recent years. Current technologies utilize a combination of 

computer vision, IoT devices, and machine learning algorithms 
to enhance security, customer experience, and operational 
efficiency in retail environments. The integration of IoT 
devices enables real-time data collection from various sensors 
and cameras while object detection algorithms process this data 
to identify and track objects of interest. 

In previous studies, various methods have been explored 
for object detection and monitoring in IoT Smart Shops [10, 
11]. Traditional approaches, such as handcrafted features and 
rule-based algorithms, have limitations in handling complex 
and diverse scenarios. However, deep learning-based methods, 
particularly the CNNs, have gained immense popularity [12, 
13]. Deep learning models can automatically learn and extract 
relevant features from raw data, making them capable of 
handling complex object detection tasks. The ability of deep 
learning models to handle large-scale datasets and their 
superior performance in terms of accuracy have attracted 
researchers to explore and develop new approaches based on 
these techniques. 

Despite the advancements, there are still some limitations 
and research gaps in the field. One major challenge is the 
requirement for low computational costs and high accuracy 
rates [14, 15]. Many IoT devices have limited processing 
power and memory, making it necessary to develop lightweight 
deep-learning algorithms that can achieve high accuracy while 
maintaining computational efficiency. Additionally, the lack of 
publicly available datasets specifically designed for IoT Smart 
Shop Surveillance Systems poses another challenge for 
researchers. 

To address these limitations, researchers have focused on 
developing lightweight deep learning models and utilizing 
algorithms like YOLO (You Only Look Once) for efficient 
object detection. YOLO-based algorithms offer real-time 
object detection capabilities with relatively low computational 
requirements [16, 17]. Using custom datasets, researchers can 
train these models on specific Smart Shop Surveillance 
scenarios, encompassing various objects and environmental 
factors. 

In this study, 1170 images were collected for our custom 
dataset from the Internet and our capturing webcam-based 
process, and the image augmentation process in our custom 
dataset preparation. The dataset is used for training and 
evaluating a model based on the YOLOv7 network. This model 
has generated a weight and is used to perform object 
recognition using the YOLOv7 model on our custom dataset.  
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This study introduces novel contributions in the field of 
computer vision and deep learning for IoT Smart Shop 
Surveillance Systems. It innovates by developing a lightweight 
deep learning model tailored to the limited computational 
resources of IoT environments. The creation of a custom 
dataset, incorporating 1170 images with meticulous 
preparation, stands out as a unique aspect, emphasizing the 
study's commitment to robust methodology. The adoption of 
the YOLOv7 network architecture for object recognition 
further highlights the innovative application of state-of-the-art 
technologies to address surveillance challenges in a Smart 
Shop context. 

In terms of research contributions, three potential areas of 
focus are identified. Firstly, the development of a lightweight 
deep learning model tailored for IoT Smart Shop Surveillance 
Systems, considering the low computational resources 
available. Secondly, the creation of a custom dataset that 
represents realistic scenarios encountered in Smart Shop 
Surveillance. This dataset can enable the training and 
evaluation of the proposed model. Finally, conducting 
thorough experimental evaluations to assess the performance of 
the model in terms of accuracy, real-time detection, and 
computational efficiency. By addressing the research gap 
through the proposed lightweight deep learning model, custom 
dataset, and rigorous performance evaluations, researchers can 
contribute to advancing object detection and monitoring in IoT 
Smart Shop Surveillance Systems. The outcome of this 
research can lead to improved security, customer experience, 
and operational efficiency in retail environments, promoting 
the widespread adoption of IoT-based surveillance systems in 
the retail industry. 

The structure of this paper is as follows; Section I presents 
the introduction. The proposed approach discusses in Section 
II. Section III involves experimental results, and Section IV 
concludes the paper. 

II. RELATED WORKS 

This section reviews the related works that are focused on 
object detection in video-based surveillance systems. 

Mneymneh et al. [18] introduced a vision-based framework 
for intelligent monitoring of hardhat wearing on construction 
sites. The framework utilizes computer vision techniques to 
detect and track the presence of hardhats on individuals within 
the construction site environment. It involves stages of image 
acquisition, pre-processing, detection, and monitoring to 
identify and track individuals wearing hardhats. The study's 
limitations include reliance on a specific color-based 
segmentation approach, vulnerability to challenging lighting 
conditions, and the absence of exploration of other safety 
equipment detection. Addressing these limitations can enhance 
the framework's accuracy and broaden its applicability in 
ensuring compliance with safety regulations on construction 
sites. 

Lu et al. [19] presented a real-time object detection 
algorithm for video. The algorithm utilizes a combination of 
deep learning techniques, including Convolutional Neural 
Networks (CNNs) and feature extraction methods, to detect 
objects in video frames. The proposed algorithm achieves high 

detection accuracy and real-time performance by optimizing 
the architecture and leveraging parallel processing capabilities. 
However, the limitation of the study is that the algorithm's 
performance may be affected by complex scenes with 
occlusions or high object density, which can lead to missed 
detections or false positives. Further research could focus on 
improving the algorithm's robustness in challenging video 
scenarios to enhance its overall effectiveness in real-world 
applications. 

The authors in [20] presented a methodology based on deep 
learning for object detection in video surveillance, specifically 
focusing on the identification of small objects that are handled 
similarly. The proposed methodology utilizes binary classifiers 
and leverages deep learning techniques to achieve accurate 
object detection. The approach demonstrates promising results 
in detecting small objects in challenging video surveillance 
scenarios. However, a limitation of the study is that the 
proposed methodology may face challenges when dealing with 
highly cluttered scenes or objects that have similar visual 
characteristics but different semantic meanings. Further 
research could explore techniques to address these limitations 
and improve the methodology's robustness in handling 
complex scenarios, ultimately enhancing its applicability in 
video surveillance applications. 

Alrowais et al. [21] developed a deep transfer learning-
enabled intelligent object detection approach for crowd density 
analysis in video surveillance systems. The proposed method 
utilizes deep learning techniques and transfers learning to 
detect and analyze crowd density in video footage. By 
leveraging pre-trained models and fine-tuning them on specific 
crowd density datasets, the approach achieves accurate object 
detection and density analysis. The results demonstrate the 
effectiveness of the method in crowd density estimation. 
However, a limitation of the study is the reliance on pre-trained 
models that may not fully capture the diverse range of crowd 
dynamics and behaviors. Further research could focus on 
developing customized models or incorporating additional data 
augmentation techniques to improve the algorithm's 
performance and robustness in capturing different crowd 
scenarios. 

According to review of previous studies, Addressing the 
research challenge of achieving high accuracy and lightweight 
object detection, particularly for small objects like jewelry, 
requires a tailored approach. While existing studies focus on 
object detection using deep learning techniques, adapting these 
methods to effectively capture and recognize small, intricate 
objects remains a gap. Current methodologies may struggle in 
cluttered scenes or with objects sharing similar visual 
characteristics. 

III. PROPOSED APPROACH 

This study selects jewelry objects and implements the 
approach for these kinds of objects involving rings and 
earnings. We suggest a detection method based on YOLOv7 to 
create a model that could recognize jewelry [9]. 

A. YOLO 

The YOLO model, which stands for "You Only Look 
Once," is one stage object detector [17]. YOLO predicts the 
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positions of the bounding boxes and the classes of the 
bounding boxes [19]. Objectness of the bounding boxes after 
feature-stripping image frames through a backbone, combining 
and blending features in the neck, and objectness prediction in 
the head of the network [22]. To arrive at its ultimate forecast, 
YOLO employs post-processing using NMS [23]. Fig. 1 
illustrates the basic concept of YOLO network architecture. 

B. Dataset 

Our dataset consists of two various categories of jewelry 
(earrings and rings), as mentioned earlier. The dataset includes 
images from the Internet and our captured images in the real 
environment. We gathered webcam photos from two fixed 
cameras that were placed in various places. We chose images 
with a variety of model kinds, sizes, resolutions, orientations, 
and sample counts in each picture. One thousand one hundred 

seventy example photos of two types of jewelry pieces in 
various orientations, rotations, and scales are included in our 
unique dataset. Some sample images from our dataset are 
shown in Fig. 2. 

C. Training and Testing 

It is usually a good idea to start with a model that has 
already been trained using extremely big datasets and then 
utilize the model's weights to train an object detector [24]. 
Even if the learned weights don't contain the items needed for 
this specific experiment, to deal with the training process in the 
YOLO network, initial weights are taken from a pretrained 
model that includes weights from the known dataset [25]. In 
this study, we use an initial weight that trained a model from 
the COCO dataset. 

 
Fig. 1. YOLO network architecture [23]. 

 

 
Fig. 2. Some image samples from the dataset. 
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IV. EXPERIMENTAL RESULTS 

In this section, we present the experiment's details, and then 
we show the training results using pretraining weights and 
compare the three models of YOLOv7. Fig. 3 shows the result 
of the implementation of our proposed approach. 

In the following, some analyses are presented to justify 
why the YOLOv7 can be presented accurate results and has 
superiority to apply in real-time requirements. To prove this 
superiority, some visual representations in graphs are 
illustrated. Using these graphs, a comparison of performance 
results is shown to visually demonstrate the superiority 
justifications. Inspired by [26], the graph depicts a comparison 
of YOLOv7, YOLOv4, PPYOLOE, YOLOX, YOLOR, 
YOLOv5, and Transformers object detectors. The X-axis 
represents the Inference Time, indicating the time taken for 

object detection, while the Y-axis represents the average 
precision (%) of the detectors. 

Average precision (AP) is a commonly used metric in 
object detection that measures the accuracy of a model in 
localizing and classifying objects. It calculates the precision at 
various recall levels, considering the trade-off between 
precision and recall. Higher AP values indicate better 
performance and accuracy in object detection. 

Inference Time refers to the time taken by the model to 
perform object detection on a given input. It reflects the 
efficiency and speed of the algorithm in processing frames or 
images in real-time applications. Lower inference times are 
desirable for real-time object detection scenarios. Fig. 4 
presents the comparison of object detectors [26]. 

 
(a) 

 
(b) 

Fig. 3. Experimental results (a) and (b). 
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Fig. 4. Comparison of object detectors [26]. 

As shown in Fig. 4, it can be observed that YOLOv7 
outperforms the other object detectors in terms of precision 
rate. At similar inference times, YOLOv7 consistently achieves 
higher average precision compared to PPYOLOE, YOLOX, 
YOLOR, YOLOv5, and Transformers. This suggests that 
YOLOv7 demonstrates superior accuracy in detecting and 
recognizing objects across various scenarios. 

 The YOLOv7 utilizes an efficient single-pass detection 
pipeline that eliminates the need for time-consuming region 
proposal techniques. This allows YOLOv7 to process images 
and videos in real-time without compromising accuracy. Other 
detectors may achieve lower inference times but often at the 
expense of reduced precision. Furthermore, YOLOv7 
incorporates advanced training strategies, including data 
augmentation techniques and optimization methods like focal 
loss and learning rate scheduling. These strategies enhance the 
model's ability to generalize and accurately detect objects 
under diverse conditions, contributing to its superior precision 
rate. 

As a result, the graph demonstrates that YOLOv7 
outperforms PPYOLOE, YOLOX, YOLOR, YOLOv5, and 
Transformers in terms of precision rate. The advanced 
architecture, efficient detection pipeline, and advanced training 
strategies employed by YOLOv7 contribute to its effectiveness 
and accuracy in object detection. 

In the following, performance analysis and comparison of 
AP are presented to justify why the YOLOv7 is better than 
other object detector algorithms. Fig. 4 demonstrates the 
comparison of object detectors in real-time [26]. 

Fig. 5 illustrates the comparison of object deters in real-
time conditions based on the presented comparison graphs. The 
graph illustrates a comparison of real-time object detection 

algorithms, including YOLOv7, PPYOLOE, YOLOX, 
YOLOR, Scaled-YOLOv4, YOLOv5, and Transformers. The 
X-axis represents the Inference Time, indicating the time taken 
for object detection, while the Y-axis represents the average 
precision (AP) of the detectors. 

As shown in Fig. 4, it can be observed that YOLOv7 
performs better than the other object detection algorithms in 
terms of precision rate while maintaining real-time capabilities. 
YOLOv7 achieves higher AP values at similar inference times 
compared to PPYOLOE, YOLOX, YOLOR, Scaled-YOLOv4, 
YOLOv5, and Transformers. This indicates that YOLOv7 
provides more accurate object detection results. Furthermore, 
YOLOv7 demonstrates its effectiveness in real-time conditions 
by achieving low inference times while maintaining high 
precision. It strikes a balance between accuracy and speed, 
making it suitable for real-time applications where accuracy 
and efficiency are crucial. 

As depicted in Fig. 4 and Fig. 5, the comparative analysis 
highlights the exceptional performance of YOLOv7 in the 
realm of object detection. The YOLOv7 stands out by 
demonstrating superior precision rates while seamlessly 
maintaining real-time capabilities. The discernible advantage 
lies in its ability to achieve higher Average Precision (AP) 
values when compared to a spectrum of other prominent object 
detection algorithms, including PPYOLOE, YOLOX, YOLOR, 
Scaled-YOLOv4, YOLOv5, and Transformers. This distinction 
is particularly noteworthy as it underscores YOLOv7's efficacy 
in delivering heightened accuracy without compromising on 
the efficiency required for real-time applications. The observed 
performance superiority positions YOLOv7 as a compelling 
choice for tasks demanding both precision and prompt 
response, further solidifying its standing as a leading solution 
in the field of object detection algorithms. 
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(a) 

 
(b) 

Fig. 5. Comparison of object detectors in real-time. 

Finally, the graph demonstrates that YOLOv7 outperforms 
PPYOLOE, YOLOX, YOLOR, Scaled-YOLOv4, YOLOv5, 
and Transformers in terms of precision rate while maintaining 
real-time capabilities. Its advanced architecture, coupled with 
efficient inference times, makes YOLOv4 an effective and 
efficient choice for real-time object detection applications. 

V. CONCLUSION 

In this paper, a robust object identification technique based 
on YOLOv7 is developed for applications in smart 
surveillance. The first step involves the meticulous preparation 
of a custom dataset, with labels configured to adhere to the 
YOLOv7 format. The chosen technique demonstrates 
remarkable accuracy in identifying and categorizing jewelry 

objects, specifically rings and money. The network efficiently 
captures coordinates of resulting bounding boxes, enabling 
precise object identification within frames. While the current 
study focuses on training YOLOv7 for two types of jewelry, 
future research directions could involve expanding the model 
to encompass a broader spectrum of jewelry classes. This 
extension would enhance the model's versatility and 
applicability in diverse contexts within the realm of smart 
surveillance. Additionally, exploring real-time applications of 
the YOLOv7-based methodology remains an open problem, 
presenting an avenue for further investigation into its efficiency 
and effectiveness in dynamic surveillance scenarios. Moreover, 
investigating strategies to improve the model's adaptability to 
varying lighting conditions and complex backgrounds stands as 
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a potential area for future research, contributing to the 
refinement of its performance in real-world surveillance 
applications. 
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