
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

172 | P a g e

www.ijacsa.thesai.org

Research on Qubit Mapping Technique Based on

Batch SWAP Optimization

Hui Li, Kai Lu, Zi’ao Han, Huiping Qin, Mingmei Ju, Shujuan Liu

School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China

Abstract—The conventional approach for initial qubit

mapping in the Noisy Intermediate-Scale Quantum (NISQ) era

typically uses a static heuristic strategy, overlooking insufficient

qubit neighborhood in subsequent operations, resulting in excess

additional SWAP gates. To address this, we introduce a

multifactor interaction cost function considering qubit distance,

interaction time, and gate operation error rates, enhancing

SWAP gate selection in the traditional strategy. Considering

quantum hardware constraints, we propose Batch SWAP

Optimization Strategy (BSOS). BSOS tackles qubit mapping

challenges by leveraging optimal SWAP gate selection and a

SWAP-based batch update technique, effectively minimizing

SWAP gates throughout circuit execution. Experimental results

show that BSOS significantly reduces additional gates by

intelligently selecting SWAP gates and using batch updating,

with a 38.1% average decrease in inserted SWAP gates, leading

to a 12% reduction in hardware gate counting overhead.

Keywords—Quantum computing; quantum circuit compilation;

initial qubit mapping; Batch SWAP Optimization Strategy (BSOS);

best SWAP choice; Batch Update Technology (BUT)

I. INTRODUCTION

Quantum computing, a revolutionary paradigm, has
transformed finance [1], machine learning [2], optimization [3],
and chemistry [4]. Traditional computers face challenges in
complex problem solving and large-scale data processing due
to resource limitations. Quantum computers offer a new
solution with inherent parallelism. In quantum computing,
Hamiltonian quantities describe problem evolution, translated
for simulation using algorithms like Grover's search [5] and
Shor's algorithm [6]. The product formula, approximating
Hamiltonian exponentiation, is crucial. Quantum circuits excel
in manipulating exponents, making them powerful for
Hamiltonian simulation. Leveraging quantum circuit
advantages efficiently advances quantum computing.

High-level representations of quantum circuits are not
inherently tied to specific hardware and require translation into
an instruction set compatible with the underlying quantum
hardware for execution. In NISQ computers, the prevalent
instruction set typically comprises a single-qubit rotation gate
and one or more two-qubit gates. These quantum computers
can only apply two-qubit gates to a limited set of qubit pairs
due to constrained connections between qubits. Consequently,
it becomes essential to perform circuit-to-hardware qubit
mapping using initial qubit mapping techniques. Additionally,
to scale up the circuit by increasing the number of gates and
depth, it is necessary to reposition qubits to neighboring
locations by introducing SWAP gates.

The existing literature on time scheduling strategies [7]
offers solutions for compiling circuit depth, yet it may
encounter challenges in managing constraints and optimization,
particularly with intricate circuits. Another approach in [8],
focusing on time scheduling and constraint planning, generates
a hot-start solution but may face limitations regarding
computational complexity and algorithmic efficiency,
especially for large-scale circuits. A proposed greedy stochastic
search approach [9] proves effective for similar problems but
may struggle with complex circuits and global optimization.
Genetic algorithms with chromosome coding strategies,
introduced in [10] for optimization, might face challenges
related to algorithmic parameter sensitivity and convergence
speed. The study in [11] explores the trade-off between
switched gates and circuit depth during compilation but offers
limited consideration of hardware characteristics such as gate
error rate. The research in [12] and [13] introduces strategies
considering gate error rates, a significant advancement, yet
practical applications may necessitate a more comprehensive
consideration of hardware characteristics like cooling time and
connectivity. In summary, while these literatures contribute
valuable insights to the problem, further improvements and a
more holistic approach may be required to address complex
circuits and global optimization effectively.

In this paper, we explore Hamiltonian operator
arrangements' flexibility, propose a multifactor interaction cost
function and introduce BSOS for the initial qubit mapping
process, aiming to efficiently compile quantum circuits for 2-
local qubit Hamiltonian simulation problems. Given prevalent
NISQ computer characteristics, where two-qubit gate error
rates are typically 10 times higher than single-qubit gates, and
qubit coherence time is shorter [14], BSOS adapts to diverse
qubit topologies and gate sets. It seamlessly integrates with
various quantum circuit mapping algorithms and is suitable for
quantum approximation optimization algorithms like Quantum
Approximate Optimization Algorithm (QAOA) [15]. Through
evaluations, BSOS substantially reduces the required gate
number compared to the state-of-the-art initial qubit mapping
strategy. We further validate the effectiveness of BSOS
through experiments on an IBM quantum device.

The main contributions of this paper can be summarized as
follows:

 We focus on the initial qubit mapping phase,
identifying the challenges and limitations that are the
primary focus of this study.

 We introduce a multifactor interaction cost function,
considering qubit distance, interaction time, and gate

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

173 | P a g e

www.ijacsa.thesai.org

error rate. This cost function facilitates a more
comprehensive evaluation and optimization of quantum
circuit performance.

 We propose an optimal SWAP gate selection algorithm
and define SWAP gains. The SWAP gain is assessed
based on the benefits obtained by adding SWAP gates.
Optimal SWAP gates are selected for different
instruction sets in quantum circuits.

 We design a scalable SWAP-based batch update
technique, providing comparable results to previous
mapping-based update-by-sequence approaches. This
rapid update scheme ensures the scalability of qubit
mapping, allowing the BSOS to adapt to various
hardware architectures and accommodate larger
quantum devices in NISQ era.

The subsequent sections of the paper are organized as
follows: Section II presents relevant background information
on quantum simulation and quantum circuits. Section III
introduces the modification scheme for the cost function and
details the BSOS strategy. The evaluation of these approaches
is discussed in Section IV. Finally, the paper is summarized in
Section V.

II. PRELIMINARIES

A. Product Formula (Trotter’s Formula)

In the realm of quantum computing, the product formula,
also known as Trotter's formula, stands out as a fundamental
technique for constructing efficient circuit structures. It
leverages the decomposition of Hamiltonian quantities,
representing the time evolution of a system in exponential
form. The essence of the product formula lies in its ability to
approximate time evolution by breaking down the system's
Hamiltonian quantity, denoted as H, into distinct operators
comprising sums of polynomial ergodic terms. Quantum
circuits are then employed to efficiently implement these
operators. The formula can be succinctly expressed as:

1

() exp()
L

j j
j

V t ith H

 (1)

where, V(t) represents the state of the system at moment t, L
is the number of terms, hj is the coefficient of the jth term and
Hj is the corresponding ergodic operator.

If all terms are exchangeable (i.e., HjHk = HkHj), then the
product formula approximates the true time evolution U, (i.e.,
V(t) = U). However, in natural physical systems, non-
exchangeable terms are typically present. In such cases, a first-
order approximation can be used to approximate V(t) as an rth
power of V(t/r), where r is a constant greater than 1. This
process is known as the Trotterization step, and repeating this
step r times forms a Trotter sequence. By decreasing the value
of r, the cost of the simulation can be significantly reduced.

In this paper, we mainly consider the 2-local qubit
Hamiltonian quantity, as shown in Eq. (2):

(,)

uv k

u v E k V

H H H

 (2)

where, Huv represents a two-qubit Hamiltonian term and Hk
is a single-qubit Hamiltonian. The interaction graph of this
Hamiltonian quantity is represented by G(V, E), where V
represents the set of qubits and E represents the set of edges.

B. Quantum Circuit

In quantum computing, data is stored in qubits, each of
which has two fundamental states, denoted by |0⟩ and |1⟩.
Unlike classical bits, qubits can be in a superposition of these
two fundamental states, i.e., α |0⟩ + β |1⟩, where α and β are
complex numbers and satisfy | α |

2
 + | β |

2
 = 1.

Hadamard

SWAP =

H CNOT

Fig. 1. Basic gates of IBM quantum computers.

Operations in quantum computing are realized through
quantum gates, which apply specific operations like rotations,
flips, etc., between qubits. Quantum gates are mathematically
represented by unitary matrices. A Hadamard gate operates on
a single qubit, while both CNOT gates and SWAP gates act on
two qubits, as shown in Fig. 1. A CNOT gate flips the state of
the target qubit based on the state of the controlling qubit, i.e.,

CNOT: |c⟩|t⟩→ |c⟩|c⊕t⟩, where c, t ∈ {0, 1} and ⊕ denotes a

heteroskedastic operation. the SWAP gate then exchanges the

states of the two target qubits: for all a, b ∈ {0, 1}, it will

|a⟩|b⟩ → |b⟩|a⟩. The SWAP gate can be realized by a

combination of 3 CNOT gates (see Fig. 1).

A quantum circuit is a framework for describing and
manipulating quantum information, comprising a sequence of
quantum gates akin to classical logic gates. Quantum gates
enact transformations on quantum states. Quantum circuits can
be conceptualized as systems constructed from a combination
of fundamental quantum gates and quantum measurements. In
the realm of intricate quantum operations, like simulating
Hamiltonian quantities, quantum gates within quantum circuits
can be deliberately designed and fine-tuned.

The quantum mapping task involves a graph G = (V, E)
that represents the structure of the target quantum device and a
circuit C representing an ideal quantum algorithm. The gates in
circuit C are decomposed into elementary gates supported by
the target quantum device. The objective of quantum mapping
is to transform circuit C into a functionally equivalent circuit.
In this transformed circuit, each two-qubit gate acts on a pair of
neighboring nodes in the graph G of the target quantum device.
Essentially, the goal is to adapt and map the circuit C
according to the physical architecture of the target quantum
device, ensuring its compatibility with the specific quantum
hardware. Fig. 2(a) shows an example of a circuit where Q =
{q0, ..., q4}, C = {g0, ..., g6}, where g0 = CNOT (q0, q1), g1 =
CNOT (q2, q4), and so on. In the figure, each CNOT gate is
labelled with the qubit they act on. In the text, q is used to
represent logical qubits and P is used to represent physical
qubits.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

174 | P a g e

www.ijacsa.thesai.org

g6

g5

g4

g3

g2

g1

g0

0q

1q

2q

3q

H

H

a b

3P

4q

0P

1P 2P

4P

Fig. 2. (a) A logical circuit with depth 4, (b) Architecture diagram of

quantum device.

Circuit C is typically represented as a sequence of gates (g0,
g1, ..., gm-1), but this cannot imply that in all cases the (i + s)th
gate has to be executed after the ith gate (where i ≥ 0, s ≥ 1,
and 0 < i + s < m). In reality, if the two gates don't involve
common qubits, they can be executed in parallel. For instance,
considering the circuit in Fig. 2(a), it can be expressed as:

 0 1 2 4 0 1 3 1 2 3 0 4C , , , , , , , , , , , .q q q q q q q q q q q q

III. PROPOSED METHODOLOGIES

A. Problem in Initial Mapping

Qubit mapping aims to determine the optimal arrangement
of qubits, minimizing the number of qubit shift operations
needed for all two-qubit gates. Like the methodologies outlined
in [16]-[19], the qubit mapping problem is cast as a Quadratic
Assignment Problem (QAP).

Similar to the previous approach, a SWAP operation is
employed to alter the state between two qubits, facilitating the
adjustment of qubit mapping. Introducing 1 SWAP gate
increases the circuit's depth by 3. Multiple swap gates enable
the relocation of a logical qubit to any physical qubit position.
Fig. 3 illustrates that after inserting a SWAP operation between
q0 and q2 following the third CNOT gate, the modified
quantum circuit becomes executable. The first 3 CNOT gates
can be executed under the initial qubit mapping, and after
inserting the SWAP, the mapping is updated to {q0 → p2, q1 →
p1, q2 → p0, q3 → p3, q4 → p4}, and the remaining two CNOT
gates can now be executed under this updated mapping.

Comparing the initial and optimized circuits in Fig. 2(a)
and Fig. 3, it is evident that the number of gates increases from
7 to 10, and the circuit depth increases from 4 to 7. The
introduction of additional SWAP gates notably enhances the
circuit's execution time. Hence, the primary objective of the
mapping process is to minimize the number of additional
SWAP gates inserted, aiming to reduce the overall error rate
and total execution time of the final hardware-adapted circuit.

Definition 1 Qubit mapping [6]: given a coupling map of
input quantum circuits and quantum devices, find the initial
qubit mapping and the intermediate qubit mapping
transformations (by insertion swapping) to satisfy all two qubit
constraints and try to minimize the number of additional gates
and the circuit depth in the final hardware-compatible circuit.

In the initial qubit mapping phase of quantum circuit
compilation, several challenges need to be addressed. This
paper considers the following limitations:

 Selection of physical qubits: It is crucial to choose the
appropriate physical qubits to map the logical qubits.
Taking into account the hardware's topology, physical
qubits are selected to minimize communication
overhead.

 Connectivity limitation: Some hardware platforms only
permit direct communication between specific qubits,
while other communications need to be achieved
through SWAP gates.

 SWAP gate cost: The execution cost of SWAP gates is
typically high, so the cost of SWAP gates is taken into
account when choosing the initial qubit mapping
scheme, with a preference for less costly SWAP
operations.

 Optimal performance trade-off: The goal of the initial
qubit mapping is to achieve efficient quantum gate
operations while minimizing the communication
overhead. Different performance metrics such as
communication overhead, SWAP gate cost, etc., need to
be weighed when choosing the physical qubits and
order.

Original code block

CNOT q0,q1

CNOT q2,q4

H q0

CNOT q1,q3

CNOT q0,q4

CNOT q1,q2

c

H q3

Updated code block

CNOT q0,q1

CNOT q2,q4

H q0

CNOT q1,q3

CNOT q0,q4

CNOT q1,q2

H q3

SWAP q0,q2

bg6

g5

g4

g3

g2

g1

g0

H

H

a

4q

1q

3q

4q

2q

0q

0q

1q

2q

3q

Fig. 3. (a) Original code block, (b) Updated hardware-compliant quantum circuit, (c) Updated code block.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

175 | P a g e

www.ijacsa.thesai.org

Improving the quality of the initial qubit mapping requires
addressing the following questions:

 How to determine the appropriate mapping targets?
This involves identifying, for a selected gate, which
qubits are the targets. In other words, it determines
which qubits need to be communicated or exchanged
during the execution of the gate. Once the best mapping
target has been selected, the appropriate mapping
operation can be performed, such as the execution of a
SWAP gate to exchange the positions of qubits. This
ensures that the target operation can be executed
correctly in hardware.

 How to efficiently choose where to insert SWAP gates,
and how many to insert, in order to improve the
mapping and minimize the total number of SWAP
gates.

B. Design the Cost Function

In the exploration of potential SWAP gates, the role of the
cost function is to prioritize the SWAP gate that closely aligns
with the target mapping in terms of cost. Assessing potential
SWAP gates entails the selection of the most favorable SWAP
sequence, constituting an ongoing decision-making process
integral to the overall mapping strategy. The arrangement
requires reevaluation when updating the qubit mapping
following each SWAP operation, constituting a dynamic
process. To achieve optimal mapping outcomes, the mapping
must be recalibrated and adjusted subsequent to each SWAP
insertion through the utilization of a cost function.

Among numerous mapping methods, the cost function
serves as a pivotal tool for assessing the effectiveness of a
mapping strategy. However, prevailing cost functions typically
focus on a singular factor, predominantly relying on distance as
the fundamental metric—whether physical or logical distance
between qubits. These functions often lack the capability to
consider multiple factors. Physical distance impacts the
operational speed and error rate, as qubits situated farther apart
may necessitate more steps and involve intermediate bits with a
higher probability of errors during operations.

To address the aforementioned issue, this paper introduces
a multifactor interaction cost function as shown in Eq. (3). This
function incorporates three primary factors: distance,
interaction time, and error rate of gate operation. Minimizing
the cost function enables the identification of the most efficient
and accurate strategies and configurations for accomplishing a
specific quantum computing task. This cost function is

2

cos () () () ()

1 1

(, ,) min ()
n

n n

t ij i j ij i j
S

i j

Y E f d Ef d

 (3)

where, Sn denotes all possible permutations, fij represents
the interaction time between logic qubits i and j in the circuit,
and the interaction time can be estimated based on hardware
specifications or empirical experiments. e denotes the
probability of an error occurring for the execution of a double

quantum gate, where 0 ≤ E ≤ 1, and d(i)(j) denotes the physical

distance between the qubits (i) and (j) on the hardware,

which can be calculated by using the Floyd-Warshall algorithm
to perform the calculation.

The physical distance between qubits plays a pivotal role in
influencing the speed and efficacy of their interactions.
Increased distances directly contribute to heightened
computational complexity and error rates, with the square
factor of distance exerting a substantial impact on overall
computational cost, thereby influencing the efficiency and
accuracy of quantum computation. Interaction time serves as a
determinant of task execution speed, with prolonged
interaction times resulting in extended task execution
durations. Introducing interaction time as a factor in the cost
function underscores its significance in determining the overall
computational cost and efficiency. Quantum gate operations
inherently incur error rates, where elevated error rates
undermine computational accuracy and reliability. The
incorporation of gate operation error rates into the cost function
underscores the critical influence of accuracy and reliability on
the cost and efficiency of quantum computing. By
amalgamating these three factors, the initial qubit mapping of a
quantum circuit can be generated with a more comprehensive
consideration of hardware limitations and practical
implementation constraints.

C. Best SWAP Choice

In the realm of quantum computing, any multi-quantum
gate can be decomposed into a combination of single quantum
gates and CNOT gates. The execution of these gates
necessitates the inclusion of SWAP gates to alter the
connectivity pattern between qubits. To minimize the surplus
of added SWAP gates, strategic selection of SWAP gates that
can yield more nearest-neighbor (NN) gates is crucial. This
practice contributes to the implementation of intricate quantum
operations and algorithms, enhancing the coherence of the
circuit. The significance of SWAP gates lies in two primary
aspects: Firstly, SWAP gates facilitate the interchange of states
between two qubits, thereby reshaping the relationships
between qubits and optimizing the structure and efficiency of
the quantum circuit. Secondly, in practical quantum operations,
achieving the target superposition quantum state often involves
constructing a combination of corresponding quantum gates. A
higher count of NN gates enhances the likelihood of attaining
this objective. Formally, SWAP gate gains are defined as
follows:

Definition 2 SWAP gate gains: let P be the set of non-
nearest-neighbor (non-NN) gates, Q be the set of executable
SWAP gates, VSWAP = {P, Q} be the list of SWAP gains, N1 be
the set of executable VSWAP, i.e., the number of NN gates after
adding this SWAP gate. N0 is the number of NN gates when
the VSWAP set is not executed. The optimal benefit VSWAP set is
determined by selecting max {N1 - N0}.

SWAP 1 0V N N (4)

We introduce a heuristic-based strategy designed to
optimize the selection of SWAP gates, with the goal of
minimizing the compilation overhead in quantum circuits. The
strategy involves simulating the execution of a SWAP
operation for each potential candidate, resulting in a new
mapping. Subsequently, the sizes of the elements in VSWAP

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

176 | P a g e

www.ijacsa.thesai.org

are compared, determined by the number of NN gates
generated under the new mapping with different SWAP gates
inserted. Among all feasible SWAP operations, the one with
the largest element size is chosen. This approach enables a
more intelligent selection of SWAP gates, thereby reducing the
overall count of SWAP gates and enhancing the overall
performance of the quantum circuit.

Algorithm 1 Best SWAP Choice

Input.
nn_gate_count: The number of nearest-neighbor gates in the circuit
after adding a swap gate between two qubits
moves: A set of insertable SWAP gates with the same cost
Output.

best_move: Optimal insertable SWAP gate

1. begin

2. max_nn_gate_increase ← 0

3. best_move ← None

4. for move in moves do

5. nn_gate_increase ← nn_gate_count[move]

6. if nn_gate_increase > max_nn_gate_increase

7. max_nn_gate_increase ← nn_gate_increase

8. best_move ← move

9. end if

10. end for

11. end

Details of the pseudo-code can be found in Algorithm 1 in
the text, while a specific application example is provided in
Fig. 4.

Compile an 8-qubit 2-local Hamiltonian into the lattice
architecture depicted in Fig. 4. In the presence of a set of
insertable SWAP gates with identical costs, the approach
outlined in this paper is to identify the one with the highest
gain among these gates. Fig. 4(a) presents a qubit map of a
circuit along with a scenario where specific quantum
operations algorithms cannot be implemented without the
insertion of SWAP gates. The upper figure displays the
inserted SWAP gates and the CNOT gates implemented after
insertion, while the lower figure illustrates the qubit graph,
where nodes represent qubits, and edges signify their
connectivity. To prevent confusion, the SWAP gates in the

figure are applied to the corresponding hardware qubits. For
enhanced readability, they are plotted on the circuit qubits.

In the circuit, CNOT (0, 1) and CNOT (1, 5) are direct
mappings, but SWAP gates are needed to perform the
remaining CNOT gates. SWAP gates with the same cost are
calculated according to Eq. (3), such as SWAP (2, 5) and
SWAP (5, 6) in figure. Subsequently, the filtered SWAP gates
are inserted into the circuits separately to see the number of
NN gates generated under the new mapping. As in Fig. 4(b)
SWAP (q2, q5) is inserted and VSWAP = 2 under the current
mapping (see Eq. 4). Whereas in Fig. 4(c), VSWAP = 1 after
inserting SWAP (q5, q6) By comparison, a set of SWAP gates
with a larger number of NN gates is selected and inserted into
the circuit to update the mapping. And so on until all the
quantum gates are mapped and the final mapping result is
shown in Fig. 4(d). This strategy ensures that the selected
SWAP gates maximize the number of NN gates and optimize
the mapping of the quantum circuit.

D. Batch Update Technology

The traditional approach to quantum mapping involves
real-time updates of mappings to adjust the relationship after
each SWAP operation. However, as quantum circuits increase
in size, this method becomes inefficient. To address this issue,
we propose a Batched Update Technique (BUT).

The design of the BUT is based on reducing the cost
associated with frequent mapping updates in conventional
quantum mapping methods. The strategy aims to enhance the
efficiency of quantum circuit mapping by decreasing the
frequency of updates, incorporating the overall circuit
structure, and balancing mapping performance with the
associated update costs, among other theoretical
considerations. The fundamental concept is to holistically
consider multiple mapping update operations to reduce
interference with circuit execution operations and achieve a
trade-off between mapping quality and update costs.
Specifically, each batch update takes into account all relevant
SWAP operations and executes mapping updates for these
operations simultaneously. This approach reduces the number
of mapping updates stemming from a single SWAP operation,
thereby diminishing latency and energy consumption in
quantum computing.

Problem circuit

CNOT q0,q1

CNOT q1,q5

CNOT q2,q4

CNOT q3,q5

CNOT q2,q7

q0 q2 q3q1

q5 q6 q7q4

q0 q5 q3q1

q2 q6 q7q4

q0 q2 q3q1

q6 q5 q7q4

a b c

Insert SWAP q2,q5 Insert SWAP q5,q6

CNOT q2,q4

CNOT q3,q5

CNOT q2,q7

CNOT q2,q4

CNOT q3,q5

CNOT q2,q7

×

×

×

Final circuit

CNOT q0,q1

CNOT q1,q5

CNOT q2,q4

CNOT q3,q5

CNOT q2,q7

q0 q5 q3q1

q2 q7 q6q4

SWAP q2,q5

SWAP q6,q7

d

Fig. 4. Examples of compiling a 8-qubit 2-local Hamiltonian to a grid architecture. (a) A problem circuit, (b-c) Insert SWAP. (b) The NN gate that can be

realized after inserting SWAP (q2, q5), (c) The NN gate that can be realized after inserting SWAP (q5, q6), (d) Final circuit.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

177 | P a g e

www.ijacsa.thesai.org

P0

IBM Q20 Tokyo

P1 P2 P3 P4

P5 P6 P7 P8 P9

P10 P11 P12 P13 P14

P15 P16 P17 P18 P19

q0 q1 q2 q3

q6

q8q7

q10

q15

q19

q13q12

CNOT q0, q1

CNOT q2, q3

CNOT q1, q5

CNOT q2, q6

CNOT q2, q7

CNOT q3, q8

CNOT q6, q8

CNOT q0, q6

CNOT q6, q12

CNOT q8, q12

CNOT q12, q18

CNOT q13, q17

CNOT q10, q15

CNOT q13, q19

Original code block 2

CNOT q7, q11

P0 P1 P2 P3 P4

P5 P6 P7 P8 P9

P10 P11 P12 P13 P14

P15 P16 P17 P18 P19

q1 q0 q2 q3

q6

q8q7

q10

q15

q19

q13q12

q5

CNOT q1,q5

CNOT q6,q8

CNOT q0,q6

CNOT q6,q12

CNOT q12,q18

CNOT q13,q17

non-NN

CNOT q7,q11

SWAP q0,q1

SWAP list

SWAP q6,q7

SWAP q13,q18

b

c

a d e
Fig. 5. (a) Original code block 2, (b) Coupling graph of IBM q20, (c) non-NN quantum gate, (d) List of SWAP gates to be executed, (e) Batch update mapping

results.

In extensive quantum circuits, the interaction constraints
between qubits necessitate multiple SWAP operations to
facilitate the exchange between non-adjacent qubits. Each
SWAP operation triggers a mapping update, contributing to
inefficiency. Consequently, consolidating multiple operations
and updating the mapping collectively after completing all
operations emerges as an appealing solution. The BUT
scrutinizes the entire quantum circuit to identify which two-
qubit gates can be optimized through a shared SWAP
operation. When a SWAP gate is chosen for execution, it gets
added to a "list of SWAP operations to be performed," with a
defined condition dictating when to cease additions, such as
reaching a predetermined list length. During batch execution of
SWAP operations, the algorithm iterates through the list,
executes all listed SWAP operations, and updates the qubit
mapping collectively upon completion.

Fig. 5 shows an example, assuming the circuit shown in
Fig. 5(a) is run on the 20-qubits device Tokyo (Fig. 5(b)). First,
two-qubit gates that are NNs on the initial qubit layout, such as
those labelled purple in Fig. 5(a), are filtered from the original
circuit list2. Map these gates directly to the corresponding
hardware (e.g., the qubits labelled pink in Fig. 5(b)), i.e.

q0 → p0, q1 → p1, q2 → p2, q3 → p3, q6 → p6, q7 → p7, q8 → p8,

q10 → p10, q12 → p12, q13 → p13, q15 → p15, q19 → p19.

For non-NN two-qubit gates, the costs between qubits are
compared by means of a computed cost function. The qubit
pair with the smallest cost is chosen as the target of the
mapping, assuming that the SWAP gate with the smallest cost
is evaluated as {q0, q1}. The previous method is to add that
SWAP gate to the execution list, update the qubit mapping, and
remove the NN gates from the unmapped set of gates. The
steps are repeated until all double qubit gates are mapped.
Instead of executing the SWAP gates directly, the strategy in
this paper puts the SWAP (q0, q1) into the SWAP list (e.g., Fig.
5(d)), and then searches for the next SWAP gate, which is also
added to the list. When the length of the list reaches a
predefined value, it traverses the "list of SWAP operations to
be performed" and then performs all SWAP operations in the
list. After all the above SWAP operations are completed, the
qubit mapping is updated uniformly.

In this process, handling multiple operations
simultaneously may introduce some complexity, as it is
necessary to ensure that there are no conflicts between batch
operations and to update the qubit mapping correctly.
Whenever a new SWAP operation is added to the "pending
SWAP operation list," a conflict check is performed for this
operation with other operations already in the list. Specifically,
it is ensured that the new SWAP operation does not impact or
be impacted by the SWAP operations already in the list. The
qubit mapping is then updated in bulk based on the selected
SWAP list, i.e., when each new SWAP operation is added to
the "pending SWAP operation list.", i.e.

q0→ p1, q1 → p0, q2 → p2, q3 → p3, q5 → p5, q6 → p7, q7 → p6,

q8 → p8, q10 → p10, q11 → p11, q12 → p12, q13 → p18, q15 → p15,

q17 → p17, q18 → p13, and q19 → p14

Remove the NN from the unmapped gates and empty the
"list of pending SWAP operations" in preparation for the next
batch of SWAP operations. Repeat until all double-qubit gates
are mapped.

IV. RESULT AND DISCUSSION

Similar to earlier studies, this paper uses the following
metrics to evaluate the performance of different compilers: the
aggregate count of inserted SWAP gates (lower values are
preferable) and the overall count of executed two-qubit gates
on the hardware (lower values are preferable). These metrics
enable the evaluation of algorithm performance, particularly in
handling intricate circuits. The benchmarking procedure aligns
with IBM's Qiskit quantum program, utilizing the Qiskit
compiler for decomposition and optimization of the CX/CNOT
gate set. The benchmarking methodology outlined in [13],
focusing on the QAOA model, was adopted, wherein the time
evolution of Hamiltonian quantities is conducted by
multiplying Eq. (5) by:

1() (exp(/))L r

j j jV t ih H t r (5)

where, r is the number of iterations of Trotter. The
coefficients of Hj were randomly selected in the range (0, π).
The evaluation ranges from 4 to 22 qubits, running their
mapping process five times and selecting the best result.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

178 | P a g e

www.ijacsa.thesai.org

0

10

20

30

40

50

60

70

22 20 18 16 14 12 10 8 6 4

SW
A

Ps

qubit

SWAPs t|ket> SWAPs 2QAN SWAPs BSOS

0

20

40

60

80

100

120

140

22 20 18 16 14 12 10 8 6 4

SW
A

Ps

qubit

SWAPs Qiskit SWAPs 2QAN SWAPs BSOS

0

20

40

60

80

100

120

22 20 18 16 14 12 10 8 6 4

CN
O

Ts

qubit

CNOTs t|ket> CNOTs 2QAN CNOTs BSOS

0

20

40

60

80

100

120

22 20 18 16 14 12 10 8 6 4

CN
O

Ts

qubit

CNOTs Qiskit CNOTs 2QAN CNOTs BSOS

a b

dc

Fig. 6. (a) Comparison of SWAP gate compilation cost between BSOS technology and t|ket⟩ and 2QAN, (b) Comparison of CNOT gate compilation cost

between BSOS technology, t|ket⟩ and 2QAN, (c) Comparison between BSOS technology and Qiskit and Comparison of SWAP gate compilation cost of 2QAN, (d)

Comparison of BSOS technology, t|ket⟩ and 2QAN, (e) Comparison of SWAP gate compilation cost of 2QAN (c) Comparison between BSOS technology and
Qiskit and Comparison of SWAP gate compilation cost of 2QAN, (d) Comparison of BSOS technology with CNOT gate compilation cost of Qiskit and 2QAN.

0

0.2

0.4

0.6

0.8

1

1.2

t|ket> 2QAN BSOS Optimize ratio

SWAPs

qubit 12~22 qubit 4~10 a

0

0.2

0.4

0.6

0.8

1

1.2

Qiskit BSOS 2QAN Optimize ratio

SWAPs

qubit 12~22 qubit 4~10 b

0

0.5

1

1.5

2

t|ket> BSOS 2QAN Optimize ratio

CNOTs

qubit 12~22 qubit 4~10
c

0

0.5

1

1.5

2

2.5

3

3.5

4

Qiskit BSOS 2QAN Optimize ratio

CNOTs

qubit 12~22 qubit 4~10 d

Fig. 7. The BSOS strategy was evaluated for circuits with 4 to 10 qubits and 12 to 22 qubits. (a) SWAP gate optimization rate of BSOS relative to t|ket⟩ and

2QAN, (b) SWAP gate optimization rate of BSOS relative to Qiskit and 2QAN, (c) CNOT gate optimization rate of BSOS relative to t|ket⟩ and (d) CNOT gate

optimization rate of BSOS relative to t|ket⟩ and 2QAN. optimization rate of BSOS relative to Qiskit and 2QANs

BSOS was implemented in Python 3.9 and all compilations
were performed on a laptop with an Intel Core i5 processor
(2.30GHz and 8GB RAM).

Compare the BSOS compilation strategy with the
compilation overheads of t|ket⟩ and Qiskit. Fig. 6 and Fig. 7
show the compilation results on the IBM. Compared to t|ket⟩
and Qiskit, BSOS has the least compilation overhead in terms
of the number of SWAP gates inserted, the number of
hardware dual-quantum gates, and the circuit depth.

Specifically, the t|ket⟩ compiler [20] (version 0.11.0) and the
Qiskit compiler [21] (version 0.26.2, optimization level 3),
equipped with the recommended "FullPass", are considered.

The IBM quantum compiler is limited to CNOT or CZ gate
sets, so the models were evaluated using the compilation
results on the IBM quantum computer. Of all the benchmarks
and quantum computers, the run using the BSOS strategy in the
QAP mapping turned out to be the best, as can also be seen in
Fig. 6, where the optimization is more pronounced with a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

179 | P a g e

www.ijacsa.thesai.org

higher number of qubits. For 22 qubits, BSOS inserts 43% less
SWAP counts than t|ket⟩ and 65% less than Qiskit (Fig. 6(a)
(b)). This reduction in SWAP count will lead to a reduction in
the number of hardware double-qubit gates, and BSOS reduces
the double-qubit gate overhead by 17% and 14% (Fig. 6(c)
(d)).

In the t|ket⟩ compiler, for the case of 4 to 10 qubits, the
average reduction in the number of inserted SWAP gates is
26.4%, while the average reduction in the number of inserted
CNOT gates is 13.8%. This optimization effect is 10% higher
than using only 2QAN. After optimization for 12 to 22 qubits,
the average reduction in the number of inserted SWAP gates
across all evaluated benchmarks is 40%, and the average
reduction in the number of inserted CNOT gates is 12.8%. This
optimization effect is 70% higher than using only 2QAN (see
Fig. 7(a) (b)).

In the Qiskit compiler, for 4 to 10 qubits, the average
reduction in the number of inserted SWAP gates is 26%, while
the average reduction in the number of inserted CNOT gates is
10.8%. This optimization effect is 30% higher than using only
2QAN. For 12 to 22 qubits, after optimization, the average
reduction in the number of inserted SWAP gates is 60%, and
the average reduction in the number of inserted CNOT gates is
10.6% (see Fig. 7(c) (d)).

In this study, optimizing the placement of qubits is taken as
the main concern. To solve this problem efficiently, the Tabu
search algorithm was chosen. This algorithm is very fast in
solving small scale problems, e.g., for the QAOA model with 4
qubits, it takes only about 0.221 seconds in the t|ket⟩ compiler
and about 0.004 seconds in the Qiskit compiler, as shown in
Table I. However, the processing speed drops significantly
when faced with problems of larger size. For example, the
QAOA model with 20 qubits takes about 24.218 seconds in the
t|ket⟩ compiler and about 0.0176 seconds in the Qiskit compiler.

By applying this cost function, quantum computing
researchers and engineers can more accurately quantify the
impact of different designs and strategies on the system
performance, providing a scientific basis for decision-making
and advancing the development of quantum computing
technology. In order to verify the accuracy and effectiveness of
the proposed cost function, a comparison experiment is
conducted in the t|ket⟩ compiler for the distance-only cost
function and the cost function proposed in this paper, and the

results are shown in Fig. 8. From the figure, it can be seen that
the compilation result of the cost function in this paper is better.
For 12~22 bits, SWAP is reduced by 28.52% and CONT is
reduced by 35.81% on average. While for 4~10 bits, SWAP is
reduced by 7.32% and CONT is reduced by 13.74% on average.

TABLE I. COMPARING AVERAGE RUNNING TIMES OF 2QAN AND BUT

IN COMPILERS T|KET⟩ AND QISKIT

qubit
Running time

BUT 2QAN

22
t|ket⟩ 22.218 22.553

Qiskit 0.0176 0.0184

20
t|ket⟩ 10.274 10.954

Qiskit 0.0178 0.0178

6
t|ket⟩ 0.318 0.361

Qiskit 0.005 0.006

4
t|ket⟩ 0.221 0.244

Qiskit 0.004 0.004

The superior performance of BSOS in the 22-qubit scenario
primarily manifests in its intelligent SWAP gate selection
strategy, the comprehensive consideration using a multifactor
interaction cost function, and the introduction of batch update
techniques. These advantages enable BSOS to more effectively
optimize the placement of quantum bits in large-scale quantum
circuits. Specifically, the intelligent SWAP gate selection and
comprehensive consideration of multiple factors enhance the
overall mapping performance, while the batch update
technique reduces mapping costs. These optimization effects
are particularly pronounced in the case of 22 qubits.

The BSOS algorithm not only demonstrates outstanding
performance in the 22-qubit scenario but also holds broad
potential applications and future research directions. The
application areas of BSOS include the compilation and
execution of large-scale quantum circuits, especially well-
suited for highly optimized quantum tasks. Future research
directions may encompass optimizing nested quantum
algorithms, adapting the BSOS algorithm to dynamic scenarios,
deeper integration of quantum hardware characteristics, and
incorporating BSOS into comprehensive quantum compilation
automation tools, providing support for the further
development of quantum computing technology.

0

10

20

30

40

50

60

70

80

90

100

22 20 18 16 14 12 10 8 6 4

SW
AP

SWAPs in t|ket> Distance SWAPs in t|ket> our cost

0

50

100

150

200

250

22 20 18 16 14 12 10 8 6 4

CN
O

T

CNOTs in t|ket> Distance CNOTs in t|ket> our costa b

Fig. 8. (a) The number of SWAP gates under different cost functions, (b) The number of CNOT gates under different cost functions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

180 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION

In the NISQ era, there is still a significant gap between
quantum software and imperfect NISQ hardware. This research
introduces a Bulk SWAP Optimization Strategy (BSOS)
specifically designed for addressing the 2-local qubit
Hamiltonian simulation problem. Focusing on the adaptable
operators within Hamiltonian quantities, the primary
optimization targets the initial qubit mapping of qubits. A
comprehensive evaluation reveals that the BSOS strategy
significantly mitigates compilation overhead on the IBM
quantum computer, demonstrating superior performance
compared to the other two general-purpose compilers.

The optimal SWAP gate selection algorithm optimizes
circuit locality by selecting SWAP gates that generate a larger
number of newly added NN gates, while the SWAP updating
strategy reduces the frequency of mapping by batch updating
and optimizing the timing, which improves the overall
efficiency of quantum circuit mapping. On the other hand, the
introduction of qubit interaction time and the error rate of gate
operation in the cost function helps to improve the efficiency
and reliability of quantum computation, which makes up for
the lack of comprehensiveness and accuracy of previous
methods. This makes the proposed method more applicable to
NISQ computers with different characteristics and optimization
goals, and provides a useful improvement direction for the
efficient execution of mesoscale quantum computation.
Looking ahead, more optimization work is planned and other
possible research directions are explored. By applying error
mitigation techniques, it is expected that the error rate can be
further reduced, thus further improving the performance and
reliability of quantum computation.

ACKNOWLEDGMENT

This work was partially supported by the Natural Science
Foundation in Heilongjiang Province of China, under Grant
LH2022F035; in part by the University Nursing Program for
Young Scholars with Creative Talents in Heilongjiang
Province, under Grant UNPYSCT-2020212; and in part by the
Science Foundation of Harbin Commerce University, under
Grant XL0095.

REFERENCES

[1] Stamatopoulos, N., Egger, D. J., Sun, Y., Zoufal, C., Iten, R., Shen, N.,
& Woerner, S. (2020). Option pricing using quantum
computers. Quantum, 4, 291.

[2] Zoufal, C., Lucchi, A., & Woerner, S. (2019). Quantum generative
adversarial networks for learning and loading random distributions. npj
Quantum Information, 5(1), 103.

[3] Harwood, S., Gambella, C., Trenev, D., Simonetto, A., Bernal, D., &
Greenberg, D. (2021). Formulating and solving routing problems on
quantum computers. IEEE Transactions on Quantum Engineering, 2, 1-
17.

[4] Jang, S. J. (2023). Quantum Mechanics for Chemistry. Quantum.

[5] Grover, L. K. (1996, July). A fast quantum mechanical algorithm for
database search. In Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing (pp. 212-219).

[6] Shor, P. W. (1999). Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM review, 41(2),
303-332.

[7] Cotta, C., & Fernández, A. J. (2007). Memetic algorithms in planning,
scheduling, and timetabling. In Evolutionary Scheduling (pp. 1-30).
Berlin, Heidelberg: Springer Berlin Heidelberg.

[8] Booth, K., Do, M., Beck, J., Rieffel, E., Venturelli, D., & Frank, J.
(2018, June). Comparing and integrating constraint programming and
temporal planning for quantum circuit compilation. In Proceedings of
the International Conference on Automated Planning and
Scheduling (Vol. 28, pp. 366-374).

[9] Oddi, A., & Rasconi, R. (2018). Greedy randomized search for scalable
compilation of quantum circuits. In Integration of Constraint
Programming, Artificial Intelligence, and Operations Research: 15th
International Conference, CPAIOR 2018, Delft, The Netherlands, June
26–29, 2018, Proceedings 15 (pp. 446-461). Springer International
Publishing.

[10] Rasconi, R., & Oddi, A. (2019, July). An innovative genetic algorithm
for the quantum circuit compilation problem. In Proceedings of the
AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 7707-
7714).

[11] Li, G., Ding, Y., & Xie, Y. (2019, April). Tackling the qubit mapping
problem for NISQ-era quantum devices. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (pp. 1001-1014).

[12] Tannu, S. S., & Qureshi, M. K. (2018). A case for variability-aware
policies for nisq-era quantum computers. arXiv preprint
arXiv:1805.10224.

[13] Murali, P., Baker, J. M., Javadi-Abhari, A., Chong, F. T., & Martonosi,
M. (2019, April). Noise-adaptive compiler mappings for noisy
intermediate-scale quantum computers. In Proceedings of the twenty-
fourth international conference on architectural support for
programming languages and operating systems (pp. 1015-1029).

[14] Li, S., Nguyen, K. D., Clare, Z., & Feng, Y. (2023, October). Single-
Qubit Gates Matter for Optimising Quantum Circuit Depth in Qubit
Mapping. In 2023 IEEE/ACM International Conference on Computer
Aided Design (ICCAD) (pp. 1-9). IEEE.

[15] Tate, R., Farhadi, M., Herold, C., Mohler, G., & Gupta, S. (2023).
Bridging classical and quantum with SDP initialized warm-starts for
QAOA. ACM Transactions on Quantum Computing, 4(2), 1-39.

[16] Dousti, M. J., Shafaei, A., & Pedram, M. (2014, May). Squash: a
scalable quantum mapper considering ancilla sharing. In Proceedings of
the 24th edition of the great lakes symposium on VLSI (pp. 117-122).

[17] Bahreini, T., & Mohammadzadeh, N. (2015). An MINLP model for
scheduling and placement of quantum circuits with a heuristic solution
approach. ACM Journal on Emerging Technologies in Computing
Systems (JETC), 12(3), 1-20.

[18] Lao, L., van Wee, B., Ashraf, I., van Someren, J., Khammassi, N.,
Bertels, K., & Almudever, C. G. (2018). Mapping of lattice surgery-
based quantum circuits on surface code architectures. Quantum Science
and Technology, 4(1), 015005.

[19] Lao, L., & Browne, D. E. (2022, June). 2qan: A quantum compiler for 2-
local qubit hamiltonian simulation algorithms. In Proceedings of the
49th Annual International Symposium on Computer Architecture (pp.
351-365).

[20] Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., &
Duncan, R. (2020). t|ket⟩: a retargetable compiler for NISQ
devices. Quantum Science and Technology, 6(1), 014003.

[21] Carrazza, S., Efthymiou, S., Lazzarin, M., & Pasquale, A. (2023,
February). An open-source modular framework for quantum computing.
In Journal of Physics: Conference Series (Vol. 2438, No. 1, p. 012148).
IOP Publishing.

