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Abstract—The conventional approach for initial qubit 

mapping in the Noisy Intermediate-Scale Quantum (NISQ) era 

typically uses a static heuristic strategy, overlooking insufficient 

qubit neighborhood in subsequent operations, resulting in excess 

additional SWAP gates. To address this, we introduce a 

multifactor interaction cost function considering qubit distance, 

interaction time, and gate operation error rates, enhancing 

SWAP gate selection in the traditional strategy. Considering 

quantum hardware constraints, we propose Batch SWAP 

Optimization Strategy (BSOS). BSOS tackles qubit mapping 

challenges by leveraging optimal SWAP gate selection and a 

SWAP-based batch update technique, effectively minimizing 

SWAP gates throughout circuit execution. Experimental results 

show that BSOS significantly reduces additional gates by 

intelligently selecting SWAP gates and using batch updating, 

with a 38.1% average decrease in inserted SWAP gates, leading 

to a 12% reduction in hardware gate counting overhead. 
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I. INTRODUCTION 

Quantum computing, a revolutionary paradigm, has 
transformed finance [1], machine learning [2], optimization [3], 
and chemistry [4]. Traditional computers face challenges in 
complex problem solving and large-scale data processing due 
to resource limitations. Quantum computers offer a new 
solution with inherent parallelism. In quantum computing, 
Hamiltonian quantities describe problem evolution, translated 
for simulation using algorithms like Grover's search [5] and 
Shor's algorithm [6]. The product formula, approximating 
Hamiltonian exponentiation, is crucial. Quantum circuits excel 
in manipulating exponents, making them powerful for 
Hamiltonian simulation. Leveraging quantum circuit 
advantages efficiently advances quantum computing. 

High-level representations of quantum circuits are not 
inherently tied to specific hardware and require translation into 
an instruction set compatible with the underlying quantum 
hardware for execution. In NISQ computers, the prevalent 
instruction set typically comprises a single-qubit rotation gate 
and one or more two-qubit gates. These quantum computers 
can only apply two-qubit gates to a limited set of qubit pairs 
due to constrained connections between qubits. Consequently, 
it becomes essential to perform circuit-to-hardware qubit 
mapping using initial qubit mapping techniques. Additionally, 
to scale up the circuit by increasing the number of gates and 
depth, it is necessary to reposition qubits to neighboring 
locations by introducing SWAP gates. 

The existing literature on time scheduling strategies [7] 
offers solutions for compiling circuit depth, yet it may 
encounter challenges in managing constraints and optimization, 
particularly with intricate circuits. Another approach in [8], 
focusing on time scheduling and constraint planning, generates 
a hot-start solution but may face limitations regarding 
computational complexity and algorithmic efficiency, 
especially for large-scale circuits. A proposed greedy stochastic 
search approach [9] proves effective for similar problems but 
may struggle with complex circuits and global optimization. 
Genetic algorithms with chromosome coding strategies, 
introduced in [10] for optimization, might face challenges 
related to algorithmic parameter sensitivity and convergence 
speed. The study in [11] explores the trade-off between 
switched gates and circuit depth during compilation but offers 
limited consideration of hardware characteristics such as gate 
error rate. The research in [12] and [13] introduces strategies 
considering gate error rates, a significant advancement, yet 
practical applications may necessitate a more comprehensive 
consideration of hardware characteristics like cooling time and 
connectivity. In summary, while these literatures contribute 
valuable insights to the problem, further improvements and a 
more holistic approach may be required to address complex 
circuits and global optimization effectively. 

In this paper, we explore Hamiltonian operator 
arrangements' flexibility, propose a multifactor interaction cost 
function and introduce BSOS for the initial qubit mapping 
process, aiming to efficiently compile quantum circuits for 2-
local qubit Hamiltonian simulation problems. Given prevalent 
NISQ computer characteristics, where two-qubit gate error 
rates are typically 10 times higher than single-qubit gates, and 
qubit coherence time is shorter [14], BSOS adapts to diverse 
qubit topologies and gate sets. It seamlessly integrates with 
various quantum circuit mapping algorithms and is suitable for 
quantum approximation optimization algorithms like Quantum 
Approximate Optimization Algorithm (QAOA) [15]. Through 
evaluations, BSOS substantially reduces the required gate 
number compared to the state-of-the-art initial qubit mapping 
strategy. We further validate the effectiveness of BSOS 
through experiments on an IBM quantum device. 

The main contributions of this paper can be summarized as 
follows: 

 We focus on the initial qubit mapping phase, 
identifying the challenges and limitations that are the 
primary focus of this study. 

 We introduce a multifactor interaction cost function, 
considering qubit distance, interaction time, and gate 
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error rate. This cost function facilitates a more 
comprehensive evaluation and optimization of quantum 
circuit performance. 

 We propose an optimal SWAP gate selection algorithm 
and define SWAP gains. The SWAP gain is assessed 
based on the benefits obtained by adding SWAP gates. 
Optimal SWAP gates are selected for different 
instruction sets in quantum circuits. 

 We design a scalable SWAP-based batch update 
technique, providing comparable results to previous 
mapping-based update-by-sequence approaches. This 
rapid update scheme ensures the scalability of qubit 
mapping, allowing the BSOS to adapt to various 
hardware architectures and accommodate larger 
quantum devices in NISQ era. 

The subsequent sections of the paper are organized as 
follows: Section II presents relevant background information 
on quantum simulation and quantum circuits. Section III 
introduces the modification scheme for the cost function and 
details the BSOS strategy. The evaluation of these approaches 
is discussed in Section IV. Finally, the paper is summarized in 
Section V. 

II. PRELIMINARIES 

A. Product Formula (Trotter’s Formula) 

In the realm of quantum computing, the product formula, 
also known as Trotter's formula, stands out as a fundamental 
technique for constructing efficient circuit structures. It 
leverages the decomposition of Hamiltonian quantities, 
representing the time evolution of a system in exponential 
form. The essence of the product formula lies in its ability to 
approximate time evolution by breaking down the system's 
Hamiltonian quantity, denoted as H, into distinct operators 
comprising sums of polynomial ergodic terms. Quantum 
circuits are then employed to efficiently implement these 
operators. The formula can be succinctly expressed as: 

1

( ) exp( )
L

j j
j

V t ith H


    (1)

where, V(t) represents the state of the system at moment t, L 
is the number of terms, hj is the coefficient of the jth term and 
Hj is the corresponding ergodic operator. 

If all terms are exchangeable (i.e., HjHk = HkHj ), then the 
product formula approximates the true time evolution U, (i.e., 
V(t) = U). However, in natural physical systems, non-
exchangeable terms are typically present. In such cases, a first-
order approximation can be used to approximate V(t) as an rth 
power of V(t/r), where r is a constant greater than 1. This 
process is known as the Trotterization step, and repeating this 
step r times forms a Trotter sequence. By decreasing the value 
of r, the cost of the simulation can be significantly reduced. 

In this paper, we mainly consider the 2-local qubit 
Hamiltonian quantity, as shown in Eq. (2): 

( , )

uv k

u v E k V

H H H
 

     (2)

where, Huv represents a two-qubit Hamiltonian term and Hk 
is a single-qubit Hamiltonian. The interaction graph of this 
Hamiltonian quantity is represented by G(V, E), where V 
represents the set of qubits and E represents the set of edges. 

B. Quantum Circuit 

In quantum computing, data is stored in qubits, each of 
which has two fundamental states, denoted by |0⟩ and |1⟩. 
Unlike classical bits, qubits can be in a superposition of these 
two fundamental states, i.e., α |0⟩ + β |1⟩, where α and β are 
complex numbers and satisfy | α |

2
 + | β |

2
 = 1. 

Hadamard

SWAP =

H CNOT



Fig. 1. Basic gates of IBM quantum computers. 

Operations in quantum computing are realized through 
quantum gates, which apply specific operations like rotations, 
flips, etc., between qubits. Quantum gates are mathematically 
represented by unitary matrices. A Hadamard gate operates on 
a single qubit, while both CNOT gates and SWAP gates act on 
two qubits, as shown in Fig. 1. A CNOT gate flips the state of 
the target qubit based on the state of the controlling qubit, i.e., 

CNOT: |c⟩|t⟩→ |c⟩|c⊕t⟩, where c, t ∈ {0, 1} and ⊕ denotes a 

heteroskedastic operation. the SWAP gate then exchanges the 

states of the two target qubits: for all a, b ∈ {0, 1}, it will 

|a⟩|b⟩ →  |b⟩|a⟩. The SWAP gate can be realized by a 

combination of 3 CNOT gates (see Fig. 1). 

A quantum circuit is a framework for describing and 
manipulating quantum information, comprising a sequence of 
quantum gates akin to classical logic gates. Quantum gates 
enact transformations on quantum states. Quantum circuits can 
be conceptualized as systems constructed from a combination 
of fundamental quantum gates and quantum measurements. In 
the realm of intricate quantum operations, like simulating 
Hamiltonian quantities, quantum gates within quantum circuits 
can be deliberately designed and fine-tuned. 

The quantum mapping task involves a graph G = (V, E) 
that represents the structure of the target quantum device and a 
circuit C representing an ideal quantum algorithm. The gates in 
circuit C are decomposed into elementary gates supported by 
the target quantum device. The objective of quantum mapping 
is to transform circuit C into a functionally equivalent circuit. 
In this transformed circuit, each two-qubit gate acts on a pair of 
neighboring nodes in the graph G of the target quantum device. 
Essentially, the goal is to adapt and map the circuit C 
according to the physical architecture of the target quantum 
device, ensuring its compatibility with the specific quantum 
hardware. Fig. 2(a) shows an example of a circuit where Q = 
{q0, ..., q4}, C = {g0, ..., g6}, where g0 = CNOT (q0, q1), g1 = 
CNOT (q2, q4), and so on. In the figure, each CNOT gate is 
labelled with the qubit they act on. In the text, q is used to 
represent logical qubits and P is used to represent physical 
qubits. 
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Fig. 2. (a) A logical circuit with depth 4, (b) Architecture diagram of 

quantum device. 

Circuit C is typically represented as a sequence of gates (g0, 
g1, ..., gm-1), but this cannot imply that in all cases the (i + s)th 
gate has to be executed after the ith gate (where i ≥ 0, s ≥ 1, 
and 0 < i + s < m). In reality, if the two gates don't involve 
common qubits, they can be executed in parallel. For instance, 
considering the circuit in Fig. 2(a), it can be expressed as: 

 0 1 2 4 0 1 3 1 2 3 0 4C , , , , , , , , , , , .q q q q q q q q q q q q  

III. PROPOSED METHODOLOGIES 

A. Problem in Initial Mapping 

Qubit mapping aims to determine the optimal arrangement 
of qubits, minimizing the number of qubit shift operations 
needed for all two-qubit gates. Like the methodologies outlined 
in [16]-[19], the qubit mapping problem is cast as a Quadratic 
Assignment Problem (QAP). 

Similar to the previous approach, a SWAP operation is 
employed to alter the state between two qubits, facilitating the 
adjustment of qubit mapping. Introducing 1 SWAP gate 
increases the circuit's depth by 3. Multiple swap gates enable 
the relocation of a logical qubit to any physical qubit position. 
Fig. 3 illustrates that after inserting a SWAP operation between 
q0 and q2 following the third CNOT gate, the modified 
quantum circuit becomes executable. The first 3 CNOT gates 
can be executed under the initial qubit mapping, and after 
inserting the SWAP, the mapping is updated to {q0 → p2, q1 → 
p1, q2 → p0, q3 → p3, q4 → p4}, and the remaining two CNOT 
gates can now be executed under this updated mapping. 

Comparing the initial and optimized circuits in Fig. 2(a) 
and Fig. 3, it is evident that the number of gates increases from 
7 to 10, and the circuit depth increases from 4 to 7. The 
introduction of additional SWAP gates notably enhances the 
circuit's execution time. Hence, the primary objective of the 
mapping process is to minimize the number of additional 
SWAP gates inserted, aiming to reduce the overall error rate 
and total execution time of the final hardware-adapted circuit. 

Definition 1 Qubit mapping [6]: given a coupling map of 
input quantum circuits and quantum devices, find the initial 
qubit mapping and the intermediate qubit mapping 
transformations (by insertion swapping) to satisfy all two qubit 
constraints and try to minimize the number of additional gates 
and the circuit depth in the final hardware-compatible circuit. 

In the initial qubit mapping phase of quantum circuit 
compilation, several challenges need to be addressed. This 
paper considers the following limitations: 

 Selection of physical qubits: It is crucial to choose the 
appropriate physical qubits to map the logical qubits. 
Taking into account the hardware's topology, physical 
qubits are selected to minimize communication 
overhead. 

 Connectivity limitation: Some hardware platforms only 
permit direct communication between specific qubits, 
while other communications need to be achieved 
through SWAP gates. 

 SWAP gate cost: The execution cost of SWAP gates is 
typically high, so the cost of SWAP gates is taken into 
account when choosing the initial qubit mapping 
scheme, with a preference for less costly SWAP 
operations. 

 Optimal performance trade-off: The goal of the initial 
qubit mapping is to achieve efficient quantum gate 
operations while minimizing the communication 
overhead. Different performance metrics such as 
communication overhead, SWAP gate cost, etc., need to 
be weighed when choosing the physical qubits and 
order. 
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Fig. 3. (a) Original code block, (b) Updated hardware-compliant quantum circuit, (c) Updated code block. 
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Improving the quality of the initial qubit mapping requires 
addressing the following questions: 

 How to determine the appropriate mapping targets? 
This involves identifying, for a selected gate, which 
qubits are the targets. In other words, it determines 
which qubits need to be communicated or exchanged 
during the execution of the gate. Once the best mapping 
target has been selected, the appropriate mapping 
operation can be performed, such as the execution of a 
SWAP gate to exchange the positions of qubits. This 
ensures that the target operation can be executed 
correctly in hardware. 

 How to efficiently choose where to insert SWAP gates, 
and how many to insert, in order to improve the 
mapping and minimize the total number of SWAP 
gates. 

B. Design the Cost Function 

In the exploration of potential SWAP gates, the role of the 
cost function is to prioritize the SWAP gate that closely aligns 
with the target mapping in terms of cost. Assessing potential 
SWAP gates entails the selection of the most favorable SWAP 
sequence, constituting an ongoing decision-making process 
integral to the overall mapping strategy. The arrangement 
requires reevaluation when updating the qubit mapping 
following each SWAP operation, constituting a dynamic 
process. To achieve optimal mapping outcomes, the mapping 
must be recalibrated and adjusted subsequent to each SWAP 
insertion through the utilization of a cost function. 

Among numerous mapping methods, the cost function 
serves as a pivotal tool for assessing the effectiveness of a 
mapping strategy. However, prevailing cost functions typically 
focus on a singular factor, predominantly relying on distance as 
the fundamental metric—whether physical or logical distance 
between qubits. These functions often lack the capability to 
consider multiple factors. Physical distance impacts the 
operational speed and error rate, as qubits situated farther apart 
may necessitate more steps and involve intermediate bits with a 
higher probability of errors during operations. 

To address the aforementioned issue, this paper introduces 
a multifactor interaction cost function as shown in Eq. (3). This 
function incorporates three primary factors: distance, 
interaction time, and error rate of gate operation. Minimizing 
the cost function enables the identification of the most efficient 
and accurate strategies and configurations for accomplishing a 
specific quantum computing task. This cost function is 

2

cos ( ) ( ) ( ) ( )

1 1

( , , ) min ( )
n

n n

t ij i j ij i j
S

i j

Y E f d Ef d   


 

  (3)

where, Sn denotes all possible permutations, fij represents 
the interaction time between logic qubits i and j in the circuit, 
and the interaction time can be estimated based on hardware 
specifications or empirical experiments. e denotes the 
probability of an error occurring for the execution of a double 

quantum gate, where 0 ≤ E ≤ 1, and d(i)(j) denotes the physical 

distance between the qubits (i) and (j) on the hardware, 

which can be calculated by using the Floyd-Warshall algorithm 
to perform the calculation. 

The physical distance between qubits plays a pivotal role in 
influencing the speed and efficacy of their interactions. 
Increased distances directly contribute to heightened 
computational complexity and error rates, with the square 
factor of distance exerting a substantial impact on overall 
computational cost, thereby influencing the efficiency and 
accuracy of quantum computation. Interaction time serves as a 
determinant of task execution speed, with prolonged 
interaction times resulting in extended task execution 
durations. Introducing interaction time as a factor in the cost 
function underscores its significance in determining the overall 
computational cost and efficiency. Quantum gate operations 
inherently incur error rates, where elevated error rates 
undermine computational accuracy and reliability. The 
incorporation of gate operation error rates into the cost function 
underscores the critical influence of accuracy and reliability on 
the cost and efficiency of quantum computing. By 
amalgamating these three factors, the initial qubit mapping of a 
quantum circuit can be generated with a more comprehensive 
consideration of hardware limitations and practical 
implementation constraints. 

C. Best SWAP Choice 

In the realm of quantum computing, any multi-quantum 
gate can be decomposed into a combination of single quantum 
gates and CNOT gates. The execution of these gates 
necessitates the inclusion of SWAP gates to alter the 
connectivity pattern between qubits. To minimize the surplus 
of added SWAP gates, strategic selection of SWAP gates that 
can yield more nearest-neighbor (NN) gates is crucial. This 
practice contributes to the implementation of intricate quantum 
operations and algorithms, enhancing the coherence of the 
circuit. The significance of SWAP gates lies in two primary 
aspects: Firstly, SWAP gates facilitate the interchange of states 
between two qubits, thereby reshaping the relationships 
between qubits and optimizing the structure and efficiency of 
the quantum circuit. Secondly, in practical quantum operations, 
achieving the target superposition quantum state often involves 
constructing a combination of corresponding quantum gates. A 
higher count of NN gates enhances the likelihood of attaining 
this objective. Formally, SWAP gate gains are defined as 
follows: 

Definition 2 SWAP gate gains: let P be the set of non-
nearest-neighbor (non-NN) gates, Q be the set of executable 
SWAP gates, VSWAP = {P, Q} be the list of SWAP gains, N1 be 
the set of executable VSWAP, i.e., the number of NN gates after 
adding this SWAP gate. N0 is the number of NN gates when 
the VSWAP set is not executed. The optimal benefit VSWAP set is 
determined by selecting max {N1 - N0}. 

SWAP 1 0V N N    (4)

We introduce a heuristic-based strategy designed to 
optimize the selection of SWAP gates, with the goal of 
minimizing the compilation overhead in quantum circuits. The 
strategy involves simulating the execution of a SWAP 
operation for each potential candidate, resulting in a new 
mapping. Subsequently, the sizes of the elements in VSWAP 
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are compared, determined by the number of NN gates 
generated under the new mapping with different SWAP gates 
inserted. Among all feasible SWAP operations, the one with 
the largest element size is chosen. This approach enables a 
more intelligent selection of SWAP gates, thereby reducing the 
overall count of SWAP gates and enhancing the overall 
performance of the quantum circuit. 

Algorithm 1 Best SWAP Choice 

Input.  
nn_gate_count: The number of nearest-neighbor gates in the circuit 
after adding a swap gate between two qubits 
moves: A set of insertable SWAP gates with the same cost 
Output. 

best_move: Optimal insertable SWAP gate 

1. begin 

2. max_nn_gate_increase ← 0 

3. best_move ← None 

4. for move in moves do 

5. nn_gate_increase ← nn_gate_count[move] 

6. if nn_gate_increase > max_nn_gate_increase 

7. max_nn_gate_increase ← nn_gate_increase 

8. best_move ← move 

9. end if 

10. end for 

11. end 

Details of the pseudo-code can be found in Algorithm 1 in 
the text, while a specific application example is provided in 
Fig. 4. 

Compile an 8-qubit 2-local Hamiltonian into the lattice 
architecture depicted in Fig. 4. In the presence of a set of 
insertable SWAP gates with identical costs, the approach 
outlined in this paper is to identify the one with the highest 
gain among these gates. Fig. 4(a) presents a qubit map of a 
circuit along with a scenario where specific quantum 
operations algorithms cannot be implemented without the 
insertion of SWAP gates. The upper figure displays the 
inserted SWAP gates and the CNOT gates implemented after 
insertion, while the lower figure illustrates the qubit graph, 
where nodes represent qubits, and edges signify their 
connectivity. To prevent confusion, the SWAP gates in the 

figure are applied to the corresponding hardware qubits. For 
enhanced readability, they are plotted on the circuit qubits. 

In the circuit, CNOT (0, 1) and CNOT (1, 5) are direct 
mappings, but SWAP gates are needed to perform the 
remaining CNOT gates. SWAP gates with the same cost are 
calculated according to Eq. (3), such as SWAP (2, 5) and 
SWAP (5, 6) in figure. Subsequently, the filtered SWAP gates 
are inserted into the circuits separately to see the number of 
NN gates generated under the new mapping. As in Fig. 4(b) 
SWAP (q2, q5) is inserted and VSWAP = 2 under the current 
mapping (see Eq. 4). Whereas in Fig. 4(c), VSWAP = 1 after 
inserting SWAP (q5, q6) By comparison, a set of SWAP gates 
with a larger number of NN gates is selected and inserted into 
the circuit to update the mapping. And so on until all the 
quantum gates are mapped and the final mapping result is 
shown in Fig. 4(d). This strategy ensures that the selected 
SWAP gates maximize the number of NN gates and optimize 
the mapping of the quantum circuit. 

D. Batch Update Technology 

The traditional approach to quantum mapping involves 
real-time updates of mappings to adjust the relationship after 
each SWAP operation. However, as quantum circuits increase 
in size, this method becomes inefficient. To address this issue, 
we propose a Batched Update Technique (BUT). 

The design of the BUT is based on reducing the cost 
associated with frequent mapping updates in conventional 
quantum mapping methods. The strategy aims to enhance the 
efficiency of quantum circuit mapping by decreasing the 
frequency of updates, incorporating the overall circuit 
structure, and balancing mapping performance with the 
associated update costs, among other theoretical 
considerations. The fundamental concept is to holistically 
consider multiple mapping update operations to reduce 
interference with circuit execution operations and achieve a 
trade-off between mapping quality and update costs. 
Specifically, each batch update takes into account all relevant 
SWAP operations and executes mapping updates for these 
operations simultaneously. This approach reduces the number 
of mapping updates stemming from a single SWAP operation, 
thereby diminishing latency and energy consumption in 
quantum computing. 

Problem circuit
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Fig. 4. Examples of compiling a 8-qubit 2-local Hamiltonian to a grid architecture. (a) A problem circuit, (b-c) Insert SWAP. (b) The NN gate that can be 

realized after inserting SWAP (q2, q5), (c) The NN gate that can be realized after inserting SWAP (q5, q6), (d) Final circuit. 
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c
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Fig. 5. (a) Original code block 2, (b) Coupling graph of IBM q20, (c) non-NN quantum gate, (d) List of SWAP gates to be executed, (e) Batch update mapping 

results. 

In extensive quantum circuits, the interaction constraints 
between qubits necessitate multiple SWAP operations to 
facilitate the exchange between non-adjacent qubits. Each 
SWAP operation triggers a mapping update, contributing to 
inefficiency. Consequently, consolidating multiple operations 
and updating the mapping collectively after completing all 
operations emerges as an appealing solution. The BUT 
scrutinizes the entire quantum circuit to identify which two-
qubit gates can be optimized through a shared SWAP 
operation. When a SWAP gate is chosen for execution, it gets 
added to a "list of SWAP operations to be performed," with a 
defined condition dictating when to cease additions, such as 
reaching a predetermined list length. During batch execution of 
SWAP operations, the algorithm iterates through the list, 
executes all listed SWAP operations, and updates the qubit 
mapping collectively upon completion. 

Fig. 5 shows an example, assuming the circuit shown in 
Fig. 5(a) is run on the 20-qubits device Tokyo (Fig. 5(b)). First, 
two-qubit gates that are NNs on the initial qubit layout, such as 
those labelled purple in Fig. 5(a), are filtered from the original 
circuit list2. Map these gates directly to the corresponding 
hardware (e.g., the qubits labelled pink in Fig. 5(b)), i.e. 

q0 → p0, q1 → p1, q2 → p2, q3 → p3, q6 → p6, q7 → p7, q8 → p8, 

q10 → p10, q12 → p12, q13 → p13, q15 → p15, q19 → p19. 

For non-NN two-qubit gates, the costs between qubits are 
compared by means of a computed cost function. The qubit 
pair with the smallest cost is chosen as the target of the 
mapping, assuming that the SWAP gate with the smallest cost 
is evaluated as {q0, q1}. The previous method is to add that 
SWAP gate to the execution list, update the qubit mapping, and 
remove the NN gates from the unmapped set of gates. The 
steps are repeated until all double qubit gates are mapped. 
Instead of executing the SWAP gates directly, the strategy in 
this paper puts the SWAP (q0, q1) into the SWAP list (e.g., Fig. 
5(d)), and then searches for the next SWAP gate, which is also 
added to the list. When the length of the list reaches a 
predefined value, it traverses the "list of SWAP operations to 
be performed" and then performs all SWAP operations in the 
list. After all the above SWAP operations are completed, the 
qubit mapping is updated uniformly. 

In this process, handling multiple operations 
simultaneously may introduce some complexity, as it is 
necessary to ensure that there are no conflicts between batch 
operations and to update the qubit mapping correctly. 
Whenever a new SWAP operation is added to the "pending 
SWAP operation list," a conflict check is performed for this 
operation with other operations already in the list. Specifically, 
it is ensured that the new SWAP operation does not impact or 
be impacted by the SWAP operations already in the list. The 
qubit mapping is then updated in bulk based on the selected 
SWAP list, i.e., when each new SWAP operation is added to 
the "pending SWAP operation list.", i.e. 

q0→ p1, q1 → p0, q2 → p2, q3 → p3, q5 → p5, q6 → p7, q7 → p6, 

q8 → p8, q10 → p10, q11 → p11, q12 → p12, q13 → p18, q15 → p15, 

q17 → p17, q18 → p13, and q19 → p14 

Remove the NN from the unmapped gates and empty the 
"list of pending SWAP operations" in preparation for the next 
batch of SWAP operations. Repeat until all double-qubit gates 
are mapped. 

IV. RESULT AND DISCUSSION 

Similar to earlier studies, this paper uses the following 
metrics to evaluate the performance of different compilers: the 
aggregate count of inserted SWAP gates (lower values are 
preferable) and the overall count of executed two-qubit gates 
on the hardware (lower values are preferable). These metrics 
enable the evaluation of algorithm performance, particularly in 
handling intricate circuits. The benchmarking procedure aligns 
with IBM's Qiskit quantum program, utilizing the Qiskit 
compiler for decomposition and optimization of the CX/CNOT 
gate set. The benchmarking methodology outlined in [13], 
focusing on the QAOA model, was adopted, wherein the time 
evolution of Hamiltonian quantities is conducted by 
multiplying Eq. (5) by: 

1( ) ( exp( / ))L r

j j jV t ih H t r    (5)

where, r is the number of iterations of Trotter. The 
coefficients of Hj were randomly selected in the range (0, π). 
The evaluation ranges from 4 to 22 qubits, running their 
mapping process five times and selecting the best result. 
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Fig. 6. (a) Comparison of SWAP gate compilation cost between BSOS technology and t|ket⟩ and 2QAN, (b) Comparison of CNOT gate compilation cost 

between BSOS technology, t|ket⟩ and 2QAN, (c) Comparison between BSOS technology and Qiskit and Comparison of SWAP gate compilation cost of 2QAN, (d) 

Comparison of BSOS technology, t|ket⟩ and 2QAN, (e) Comparison of SWAP gate compilation cost of 2QAN (c) Comparison between BSOS technology and 
Qiskit and Comparison of SWAP gate compilation cost of 2QAN, (d) Comparison of BSOS technology with CNOT gate compilation cost of Qiskit and 2QAN. 
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Fig. 7. The BSOS strategy was evaluated for circuits with 4 to 10 qubits and 12 to 22 qubits. (a) SWAP gate optimization rate of BSOS relative to t|ket⟩ and 

2QAN, (b) SWAP gate optimization rate of BSOS relative to Qiskit and 2QAN, (c) CNOT gate optimization rate of BSOS relative to t|ket⟩ and (d ) CNOT gate 

optimization rate of BSOS relative to t|ket⟩ and 2QAN. optimization rate of BSOS relative to Qiskit and 2QANs 

BSOS was implemented in Python 3.9 and all compilations 
were performed on a laptop with an Intel Core i5 processor 
(2.30GHz and 8GB RAM). 

Compare the BSOS compilation strategy with the 
compilation overheads of t|ket⟩ and Qiskit. Fig. 6 and Fig. 7 
show the compilation results on the IBM. Compared to t|ket⟩ 
and Qiskit, BSOS has the least compilation overhead in terms 
of the number of SWAP gates inserted, the number of 
hardware dual-quantum gates, and the circuit depth. 

Specifically, the t|ket⟩ compiler [20] (version 0.11.0) and the 
Qiskit compiler [21] (version 0.26.2, optimization level 3), 
equipped with the recommended "FullPass", are considered. 

The IBM quantum compiler is limited to CNOT or CZ gate 
sets, so the models were evaluated using the compilation 
results on the IBM quantum computer. Of all the benchmarks 
and quantum computers, the run using the BSOS strategy in the 
QAP mapping turned out to be the best, as can also be seen in 
Fig. 6, where the optimization is more pronounced with a 
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higher number of qubits. For 22 qubits, BSOS inserts 43% less 
SWAP counts than t|ket⟩ and 65% less than Qiskit (Fig. 6(a) 
(b)). This reduction in SWAP count will lead to a reduction in 
the number of hardware double-qubit gates, and BSOS reduces 
the double-qubit gate overhead by 17% and 14% (Fig. 6(c) 
(d)). 

In the t|ket⟩ compiler, for the case of 4 to 10 qubits, the 
average reduction in the number of inserted SWAP gates is 
26.4%, while the average reduction in the number of inserted 
CNOT gates is 13.8%. This optimization effect is 10% higher 
than using only 2QAN. After optimization for 12 to 22 qubits, 
the average reduction in the number of inserted SWAP gates 
across all evaluated benchmarks is 40%, and the average 
reduction in the number of inserted CNOT gates is 12.8%. This 
optimization effect is 70% higher than using only 2QAN (see 
Fig. 7(a) (b)). 

In the Qiskit compiler, for 4 to 10 qubits, the average 
reduction in the number of inserted SWAP gates is 26%, while 
the average reduction in the number of inserted CNOT gates is 
10.8%. This optimization effect is 30% higher than using only 
2QAN. For 12 to 22 qubits, after optimization, the average 
reduction in the number of inserted SWAP gates is 60%, and 
the average reduction in the number of inserted CNOT gates is 
10.6% (see Fig. 7(c) (d)). 

In this study, optimizing the placement of qubits is taken as 
the main concern. To solve this problem efficiently, the Tabu 
search algorithm was chosen. This algorithm is very fast in 
solving small scale problems, e.g., for the QAOA model with 4 
qubits, it takes only about 0.221 seconds in the t|ket⟩ compiler 
and about 0.004 seconds in the Qiskit compiler, as shown in 
Table I. However, the processing speed drops significantly 
when faced with problems of larger size. For example, the 
QAOA model with 20 qubits takes about 24.218 seconds in the 
t|ket⟩ compiler and about 0.0176 seconds in the Qiskit compiler. 

By applying this cost function, quantum computing 
researchers and engineers can more accurately quantify the 
impact of different designs and strategies on the system 
performance, providing a scientific basis for decision-making 
and advancing the development of quantum computing 
technology. In order to verify the accuracy and effectiveness of 
the proposed cost function, a comparison experiment is 
conducted in the t|ket⟩ compiler for the distance-only cost 
function and the cost function proposed in this paper, and the 

results are shown in Fig. 8. From the figure, it can be seen that 
the compilation result of the cost function in this paper is better. 
For 12~22 bits, SWAP is reduced by 28.52% and CONT is 
reduced by 35.81% on average. While for 4~10 bits, SWAP is 
reduced by 7.32% and CONT is reduced by 13.74% on average. 

TABLE I. COMPARING AVERAGE RUNNING TIMES OF 2QAN AND BUT 

IN COMPILERS T|KET⟩ AND QISKIT 

qubit 
Running time 

 
BUT 2QAN 

22 
t|ket⟩ 22.218 22.553 

Qiskit 0.0176 0.0184 

20 
t|ket⟩ 10.274 10.954 

Qiskit 0.0178 0.0178 

6 
t|ket⟩ 0.318 0.361 

Qiskit 0.005 0.006 

4 
t|ket⟩ 0.221 0.244 

Qiskit 0.004 0.004 

The superior performance of BSOS in the 22-qubit scenario 
primarily manifests in its intelligent SWAP gate selection 
strategy, the comprehensive consideration using a multifactor 
interaction cost function, and the introduction of batch update 
techniques. These advantages enable BSOS to more effectively 
optimize the placement of quantum bits in large-scale quantum 
circuits. Specifically, the intelligent SWAP gate selection and 
comprehensive consideration of multiple factors enhance the 
overall mapping performance, while the batch update 
technique reduces mapping costs. These optimization effects 
are particularly pronounced in the case of 22 qubits. 

The BSOS algorithm not only demonstrates outstanding 
performance in the 22-qubit scenario but also holds broad 
potential applications and future research directions. The 
application areas of BSOS include the compilation and 
execution of large-scale quantum circuits, especially well-
suited for highly optimized quantum tasks. Future research 
directions may encompass optimizing nested quantum 
algorithms, adapting the BSOS algorithm to dynamic scenarios, 
deeper integration of quantum hardware characteristics, and 
incorporating BSOS into comprehensive quantum compilation 
automation tools, providing support for the further 
development of quantum computing technology. 
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Fig. 8. (a) The number of SWAP gates under different cost functions, (b) The number of CNOT gates under different cost functions. 
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V. CONCLUSION 

In the NISQ era, there is still a significant gap between 
quantum software and imperfect NISQ hardware. This research 
introduces a Bulk SWAP Optimization Strategy (BSOS) 
specifically designed for addressing the 2-local qubit 
Hamiltonian simulation problem. Focusing on the adaptable 
operators within Hamiltonian quantities, the primary 
optimization targets the initial qubit mapping of qubits. A 
comprehensive evaluation reveals that the BSOS strategy 
significantly mitigates compilation overhead on the IBM 
quantum computer, demonstrating superior performance 
compared to the other two general-purpose compilers. 

The optimal SWAP gate selection algorithm optimizes 
circuit locality by selecting SWAP gates that generate a larger 
number of newly added NN gates, while the SWAP updating 
strategy reduces the frequency of mapping by batch updating 
and optimizing the timing, which improves the overall 
efficiency of quantum circuit mapping. On the other hand, the 
introduction of qubit interaction time and the error rate of gate 
operation in the cost function helps to improve the efficiency 
and reliability of quantum computation, which makes up for 
the lack of comprehensiveness and accuracy of previous 
methods. This makes the proposed method more applicable to 
NISQ computers with different characteristics and optimization 
goals, and provides a useful improvement direction for the 
efficient execution of mesoscale quantum computation. 
Looking ahead, more optimization work is planned and other 
possible research directions are explored. By applying error 
mitigation techniques, it is expected that the error rate can be 
further reduced, thus further improving the performance and 
reliability of quantum computation. 
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