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Abstract—The number of elderly people has increased due to 

the huge growth in human life expectancy over the past few 

decades. As a result, age-related illnesses and ailments have 

become more prevalent, including Alzheimer's Disease (AD). A 

notable deterioration in cognitive functions, particularly memory 

and thinking skills, characterizes Mild Cognitive Impairment 

(MCI), a condition that lies in the middle of normal aging and 

dementia. Therefore, MCI carries a noticeably higher chance of 

developing into AD and frequently serves as a prelude to 

dementia. However, using cutting-edge image processing and 

machine learning techniques, it is possible to examine and find 

underlying patterns in these complex diseases. By using these 

techniques, it is possible to separate groups, identify the causes of 

such separation, and create disease prediction models. Clinical 

trials, mostly using cross-sectional Magnetic Resonance Imaging 

(MRI) data, have extensively looked into the use of MRI for the 

early identification of AD and MCI. On the other hand, 

longitudinal studies follow the same subjects over an extended 

period, giving researchers the chance to investigate cross-

sectional trends as well as the development of the disease. Three 

different techniques are put forth in this study for the analysis 

and assessment of the structural data found in longitudinal MRI 

scans. Without considering any other diagnostic measures, this 

information is used to forecast the progression of those who have 

been diagnosed with MCI. These techniques utilize Hidden 

Markov Models (HMMs), which capitalize on the advantages of 

Support Vector Machine (SVM) classifiers. 

Keywords—Alzheimer's disease; image processing; Magnetic 

Resonance Imaging; Mild Cognitive Impairment; machine 
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I. INTRODUCTION 

The extraordinary organ known as the human brain is in 
charge of controlling every aspect of the body, including 
breathing, blood circulation, digestion, and digesting. 
Additionally, it acts as the control center for conscious 
functions including thinking, memory formation, thought 
retrieval, and decision-making while facilitating conscious 
behaviors like walking, talking, and visual perception. The 
brain is an equally fascinating phenomenon when seen from 
an anatomical standpoint. It is thought that it has about 100 
billion neurons and a mind-boggling 100 trillion synapses, 
which are the connections between neurons that allow for 
communication. The network of blood arteries in the brain is 
essential to maintaining its normal operation. Surprisingly, the 
brain controls an astounding 20% of the body's blood flow 
despite making up just around 2% of the total body weight. 

Around 400 billion capillaries make up this complex 
circulatory system, which works ceaselessly to deliver 
oxygen, glucose, and other nutrients necessary for the survival 
of brain cells. The brain's large number of neurons plays a 
crucial role in preserving optimal function. The long lifespan 
of neurons, which begins during fetal development and lasts 
for up to a century, makes them unique. In the extremely rare 
case that they perish, neurons can regenerate, highlighting the 
significance of routine maintenance and repair. Individual 
differences in these alterations' scope and timing can have a 
significant impact on their impact levels. A diminished ability 
to learn new information, problems recalling memories, and 
increased difficulty performing tasks that were once simple to 
complete are common signs of aging. Importantly, these 
talents are not completely restricted because cognitively 
healthy senior people can still carry out these tasks, albeit 
somewhat more slowly than their younger counterparts. With 
50–80% of dementia cases being caused by Alzheimer's 
Disease (AD), it becomes clear that AD is the most common 
type of dementia. The age of diagnosis or onset of the disease 
has a significant impact on the life expectancy of AD patients, 
which ranges from three to ten years. Although structural 
brain atrophy, pathological amyloid deposits, and metabolic 
alterations in the brain are thought to be related with Chronic 
Traumatic Encephalopathy (CTE), it is unclear whether these 
elements are the disease's causes or the results of its 
progression. Due to its effects on memory, Mild Cognitive 
Impairment (MCI), also known as amnestic MCI, is seen as an 
early stage of AD. Even though MCI is not considered a true 
disease, the early stages of AD are very similar to it. Although 
not severe enough to interfere with their daily lives, people 
who struggle with MCI experience memory, language, and 
judgment issues that are noticeable to others and distinct from 
usual aging symptoms. 

The increased risk of acquiring AD in the future that MCI 
patients face compared to people with cognitively normal 
brains emphasizes the importance of MCI. As a result, MCI is 
a topic that medical professionals are quite interested in. There 
are significant ambiguities in the distinctions between the 
three phases of cognitive health - Cognitively Normal (CN), 
Moderate Cognitive Impairment (MCI), and AD - and no 
clear-cut standards for determining an individual's stage are in 
place. Nevertheless, decades of study have produced a range 
of approaches intended to assess the condition of brain health 
such as [1]–[3]. Science and medicine have placed a lot of 
emphasis on the study of the brain and its anomalies [4]. 
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However, there has been a barrier to non-invasively studying 
it for a very long time. Even today, the only time an exact 
diagnosis for AD can be made is post-mortem, during the 
autopsy, when amyloid plaques produced in the brain and 
other indicators of brain degeneration can be studied by a 
doctor. Early identification and detection of AD and MCI are 
crucial because they can help patients and their families get 
ready for illness and start treatment as soon as feasible. In 
exchange, this can provide patients the chance to take part in 
clinical trials where the most recent medicines can be used, 
and they can generally manage the illness better [5]. Scientists 
can simultaneously study the early phases of AD and MCI to 
understand the disease's origin, which could result in better 
techniques of therapy or prevention. According to estimates, 
MCI patients get AD at a rate of 10–15% while cognitively 
healthy people develop dementia at a rate of 1%–2%. With the 
use of Magnetic Resonance Imaging (MRI), researchers may 
now conduct non-invasive in vivo examinations of the human 
body. This means that the brain can be monitored and 
evaluated to establish a baseline of what it should resemble at 
various stages of the disease's course or even in cognitively 
normal brains. It is now possible to study the brain and the 
changes that take place because of either the normal aging 
process or particular disorders thanks to the combination of 
computer science and machine learning. 

This study's goal is to examine and interpret the structural 
data obtained from longitudinal brain MRI images. To 
investigate the gradient of anatomical and morphological 
changes occurring in the brain as MCI progresses to AD. 
Despite the widespread use of MRI scans in this sector, the 
goal is to forecast the possible development of AD using only 
this information, without the addition of other biomarkers or 
clinical and cognitive assessments. We use a longitudinal 
series of MRI scans from different people who have been 
given different diagnoses (CN, MCI, AD) and who are 
transitioning to different diagnoses (CN, MCI, AD). The goal 
is to avoid the possibility for human judgment errors that can 
occur in complicated and time-consuming processes by just 
using the data derived from structural (volumetric) brain 
changes. Given that individuals often seek medical advice 
after the onset of symptoms and that the diagnostic process 
needs some time to complete, this technique enables a quicker 
forecast of the condition. This study also aims to evaluate and 
investigate the accuracy of longitudinal MRI scans in 
foretelling the transition from MCI to AD in this domain. The 
longitudinal MRI scans are viewed as a series of observations, 
after which Hidden Markov Models (HMMs) [6]–[10] are 
used for modeling. Then, either the HMMs alone or a Support 
Vector Machine (SVM) [11]–[13] classifier that has been 
trained using the data that the HMMs used to represent the 
data are used to make the predictions. It's crucial to understand 
that this study does not try to improve, extend, or implement 
any one predefined technique. This technique is unusual 
because it uses longitudinal MRI images that are obtained one 
year apart and uses only the structural data that was derived 
from those scans. As a result, a direct comparison between the 
performance and results of the trials carried out for this study 
and the most recent findings is not possible.  

The paper is as follows: In Section II we will see the 
related works. In Section III, an empirical study has been 
presented consisting of dataset description and evaluation 
metrics. In Section IV, the proposed models have been 
discussed. In Section V, the experimental results and analysis 
have been done. In Section VI, the thought of the paper has 
been presented and we conclude the paper in Section VI with 
some conclusions and future works. 

II. RELATED WORKS 

A quick overview of current research on AD and 
longitudinal data in the domains of computer science and 
machine learning is provided in this section. 

A. Brain 

A substantial amount of research has been focused on 
identifying and extracting the elements from an MRI scan that 
are the best diagnostic predictors in order to facilitate 
additional diagnosis [14]–[16]. The features that are most 
frequently used involve the assessment of both grey and white 
matter volumes [17], either over the whole brain or in 
particular areas such the frontal, temporal, parietal, and 
hippocampal cortex [18]. Furthermore, cortical thickness is a 
common characteristic [16], as are CSF density maps [19], 
[20]. Manually extracting and choosing characteristics from 
MRI scans is a very difficult and time-consuming process. 
When some feature parameters change and the feature-
extraction process needs to be repeated, it often leads to the 
possibility of inaccurate data or complexity in re-extracting 
features. As a result, several tools have been created, such as 
FreeSurfer

1
, FSL

2
, and SPM

3
, which let scientists and medical 

experts handle and interpret MRI scans in different ways and 
accomplish accurate feature extraction. With little to no 
human oversight, these technologies can carry out extraction 
and selection tasks. 

B. Alzheimer Disease 

Considerable advancements have also been achieved in the 
effort to control and make use of these attributes. Using 
different classification techniques, it is possible to distinguish 
between a brain that is cognitively normal and one that is 
impaired, either by AD or MCI. MRIs and f-MRIs are 
commonly used in this type of research to get anatomical and 
physiological brain features, which are then used to determine 
any pathological or normal changes occurring in the brain. 
These include the assessment of cortical thickness and the 
density of cerebrospinal fluid, as previously indicated, as well 
as volumetric measures of several brain areas, such as the 
cingulate cortex, hippocampus, and parahippocampal gyrus. 
These assessments make it easier to identify anomalies in the 
brain and offer vital information about whether dementia of 
any kind is present. Biomarker characteristics taken from MRI 
and Positron Emission Tomography (PET) scans are used in a 
study focused on the classification of AD and MCI [37] to 
enable an SVM classifier to differentiate between CN and 
MCI or CN and AD patients. For MCI and AD classification, 
the systems achieve 76.4% and 93.2% accuracy, respectively. 

                                                           
1 https://surfer.nmr.mgh.harvard.edu/ 
2 https://http//fsl.fmrib.ox.ac.uk/ 
3 https://www.fil.ion.ucl.ac.uk/spm/ 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 12, 2023 

12 | P a g e  

www.ijacsa.thesai.org 

Brain biomarkers and Region-of-Interest (ROI)-based 
morphological parameters, such as cortical thickness values, 
volumes of the cerebral cortical grey matter, and cortical-
associated white matter, are employed in a related 
investigation [16]. To create characteristics and detect 
abnormality patterns, this study presents the idea of correlated 
abnormalities, which is achieved by associating different ROIs 
with one another. Additionally, CN and MCI, CN and AD, 
and MCI and AD are separated using an SVM classifier that 
has been trained; the corresponding classification accuracies 
are 83.75%, 92.35%, and 79.24%. An Orthogonal Projection 
to Latent Structures (OPLS) is another technique that has been 
developed [21]. This technique, which was initially created for 
the modeling of complicated data, combines the concepts of 
Orthogonal Signal Correction (OSC) [22], [23] with Partial 
Least Squares (PLS) regression. The methodology is 
predicated on the idea that the observations are produced by 
latent variables. Nevertheless, systematic differences in the 
independent variables unrelated to the class labels seem to 
have a negative impact on it. As a result, the OPLS approach 
was created to deal with this problem. When separating AD 
from CN individuals, the OPLS classifier achieves a 
sensitivity of 86.1% and a specificity of 90.5%. Though they 
produce less-than-ideal outcomes, less-common alternatives 
include decision trees, Artificial Neural Networks (ANN) 
[24], [25], and other techniques for regression or 
classification. These techniques use cross-sectional MRI 
images and focus exclusively on the brain structure 
information found in the present scan to identify or forecast 
the disease. 

C. Longitudinal Data 

Even while the analysis of merely cross-sectional MRI 
scans has shown encouraging and effective results, it is limited 
in its ability to provide information about a single point in a 
disease's progression or the overall health of the brain. It is 
unable to reveal information about changes that occur over 
time, recognize patterns, or create connections with various 
circumstances. The research community has been highly 
interested in longitudinal studies as a result, which involve a 
series of data, like brain MRI scans, that are taken at regular 
intervals (e.g., every six months or annually). Some studies 
that handle longitudinal data have been centered around f-MRI 
scans [26], [27], focusing on the responses that particular 
brain areas display. Regression techniques, namely linear and 
modified least squares models, were primarily employed in 
these investigations. It is important to remember, though, that 
these studies cannot be classified as using longitudinal MRI 
scans in the sense that this study intends, since f-MRI captures 
brain activity over seconds, while the longitudinal data we are 
attempting to use investigates changes in the brain occurring 
over much longer time frames. The use of HMMs was first 
implemented to try to identify mild Alzheimer's disease, or 
early dementia, in older people [18]. In this work, 
characteristics taken from a series of MRI scan slices are 
combined into a time series, which is subsequently, subjected 
to HMM analysis and classification. With accuracy reaching 
up to 97.8% in some tests, the suggested strategy shows great 
promise in the early identification of dementia. However, the 
main goal of this study is to identify AD based on a single 
brain snapshot; it does not attempt to anticipate or explore the 

disease's progression across a number of years, and the data is 
still not truly longitudinal. Similarly, HMMs are used to 
predict the age of people who do not have dementia in a 
different study [20], but longitudinal data is not used in this 
instance. Prediction inaccuracy on average is as low as 2.57 
years. The study in [28] introduces the use of longitudinal 
MRI scans to investigate changes and correlations between 
nine-year scans of cognitively normal and demented brains. 
By utilizing 9-year longitudinal MRI scans, scientists examine 
the data obtained from individual scans, opening a promising 
field with enormous potential for brain study. Even though we 
use different characteristics and datasets, this study is really 
important to our work since it shows how much information 
longitudinal MRI scans can provide. 

III. EMPIRICAL STUDY 

A. Dataset  

The Alzheimer's Disease Neuroimaging Initiative (ADNI) 
provided the dataset utilized in this study. The National 
Institute on Aging (NIA), the National Institute of Biomedical 
Imaging and Bioengineering (NIBIB), the Food and Drug 
Administration (FDA), a few private pharmaceutical 
companies, non-profit organizations like the Alzheimer's 
Association (AA) and the Institute for the Study of Aging 
(ISA), and other organizations are among the sponsors of the 
ADNI research initiative, which was started in 2003. It 
functions in partnership with the National Institutes of Health 
(NIH) [29]. The main goal of ADNI is to collect and make use 
of longitudinal data from people who have been diagnosed 
with CN, MCI, or AD. Whether serial MRI scans, PET 
imaging, other biological markers, clinical and 
neuropsychological evaluations, and other data can be 
combined to track and characterize the development of MCI 
and early AD is the purpose of this study. Moreover, ADNI 
seeks to offer a freely available database of clinical and 
imaging information that clarifies changes over time in brain 
metabolism and structure, cognitive performance, and 
biomarkers in CN, MCI, and AD patients. More than 50 
research facilities in the United States and Canada provide 
ADNI with subjects. A longitudinal MRI scan dataset 
containing 631 individuals was made available for this study. 
After their initial MRI scans, 192 of these people were 
diagnosed with CN, 309 as MCI, and 130 as AD. 
Consequently, 189 were classified as CN, 202 as MCI, and 
240 as AD at the time of their most recent scans. Every person 
had one to three follow-up scans, spaced a year apart, with a 
variable number of follow-ups performed. A total of 1913 
MRI scans, including 1.5T sagittal 3D T1-weighted MPRAGE 
MRI scans, were included in the dataset. The Freesurfer 
pipeline, an open source set of tools for the thorough and 
automated examination of important aspects of the human 
brain, was used for the preparation of these MRI data. The 
analysis included mapping of cortical grey matter thickness, 
estimation of architectonic boundaries from in vivo data, 
segmentation of hippocampal subfields, volumetric 
segmentation of most macroscopically visible brain structures, 
and several other functions. It also included inter-subject 
alignment based on cortical folding patterns. Given that 
manual study of such a vast dataset would require a lot of 
labor and time, automation processing was essential. 
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Consequently, each MRI scan yielded 55 MRI-derived 
regional measures, comprising 21 subcortical volumes and 34 
cortical thickness values. 

B. Evaluation Metrics 

In this section, we employ a set of crucial metrics to 
meticulously evaluate the efficacy and precision of the 
classification and prediction techniques developed throughout 
this investigation. These metrics play a pivotal role in gauging 
the performance of the models, providing a comprehensive 
understanding of their capabilities. True Positives (TP) 
measure the subjects accurately identified as having AD, 
while True Negatives (TN) count those correctly classified as 
CN or having MCI. On the flip side, False Positives (FP) 
represents instances where subjects are incorrectly classified 
as having AD, and False Negatives (FN) denote subjects 
wrongly classified as CN or MCI when they indeed have AD. 
Sensitivity, or the True Positive Rate (TPR), showcases the 
proportion of TP samples (AD) correctly identified, expressed 
as                     . Specificity, or the True 
Negative Rate (TNR), quantifies the proportion of TN samples 
(CN/MCI) correctly classified, calculated as      
               . Precision                             
      signifies the accuracy of positive classifications (AD) 
among all positive predictions, defined by      
               . The F1 Score, also used combines 
precision and sensitivity through their harmonic mean, 
offering a balanced assessment of the model's performance: 
                                  . Notably, we 
calculate the harmonic mean of specificity (TNR) and 
sensitivity (TPR) for a comprehensive evaluation. The 
Receiver Operating Characteristic (ROC) Curve provides a 
graphical overview of the model's performance across varying 
parameters. It plots sensitivity against 1 - specificity, with a 
superior model closer to the upper-left corner. The Area Under 
the Curve (AUC) quantifies the overall model performance. 
The Diagnostic Odds Ratio (DOR), an essential metric in 
medical research, gauges the odds of a positive test result 
when the disease is present compared to when it's absent. 
Calculated as                                          
                                  , higher DOR values 
signify better discriminatory test performance, ranging from 0 
to infinity. Collectively, these metrics form a robust 
framework for the precise evaluation of the developed models, 
enabling a comprehensive assessment of their classification 
and prediction capabilities. 

IV. PROPOSED MODELS 

The techniques employed in this work are based on 
HMMs. The selection of HMMs was based on their innate 
capacity to efficiently interpret sequential data. Their 
architecture is a good representation of markov chains since it 
includes hidden states and their emissions, which maps to data 
that can be observed. Although HMMs are mainly used for 
markov chains, they are also widely used to capture sequential 
relationships in time-sequential data, like speech processing. 
They are a useful tool in our situation for processing the 
longitudinal MRI scans as observations and identifying the 
relationships between them, with an emphasis on the markov 
chain, a hidden structure. Three different techniques are 

presented in this study, each expanding on the preceding one. 
These techniques will be covered in detail and with thorough 
explanations in the sections that follow. To maintain clarity, 
we will now outline the data partitioning and utilization 
process that will be used in the upcoming sections. As was 
previously mentioned, the dataset consists of an assortment of 
MRI images from different people. A series of scans are 
available for each participant, including an initial cross-
sectional scan and one to three follow-up scans. There are two 
basic ways to partition the data. The initial technique focuses 
on the diagnosis made from the first cross-sectional scan, 
which is known as the "subject-initial-group". The participants 
are classified as having MCI, being CN, or having been 
diagnosed with AD. No follow-up diagnoses are considered in 
this category; only the baseline diagnosis is taken into 
account. The "subject-end-group", which is the last follow-up 
scan diagnostic, is used to categorize individuals in the second 
technique. Similar to the first technique, this grouping yields 
the same diagnoses/categories as the subject-initial-group 
(CN, MCI, & AD) and only considers the diagnosis obtained 
from the most recent follow-up scan. Reconfiguring this data 
separation makes more sense in the context of this study. 
Although their labels have changed, the subject-initial-group 
and subject-end-group remain the same. The CN and AD 
groups are joined in the subject-initial group to produce two 
alternative categories: CN/AD or MCI. This modification 
makes more sense because the main goal is to investigate the 
development of the MCI subject-initial group, which is a high-
risk group. Our goal is to ascertain whether MCI will progress 
to AD. As a result, the subject-end group falls into one of two 
categories: CN/MCI or AD. The training and testing sets for 
our models are defined by the subject-initial group; the 
training set is CN/AD, and the testing set is MCI. The 
particular interest in MCI patients and the investigation of 
their possible long-term progression are the driving forces 
behind this tactic. The wide range of cognitive impairments 
associated with MCI makes it a particularly important group 
in the field of medical research because it can progress into 
several disorders, including AD. The main goal is to assess 
how well our systems can anticipate outcomes for this 
population. The attempt to see how well an HMM can extract 
basic and generic structural changes that indicate progression 
toward AD or CN/MCI (conversion to CN or stability) is the 
rationale behind using non-MCI participants in the training 
set. Next, we evaluate the applicability of these derived 
features to the MCI group (a subset of the MCI group is used 
for training during experimentation to evaluate its effect on 
the overall performance of all techniques). 

A. Technique 1: HMM Classification 

In the first technique, HMMs are only used to evaluate 
how well they can extract and represent temporal structural 
changes in the brain throughout normal aging or as it moves 
closer to AD. The next step is to find out if these alterations 
are like those shown by a brain that has been diagnosed with 
motor cortex injury. HMMs are trained to maximize the 
probability       , where                    denotes a 
series of observations, and   denotes the HMM model. An 
observation series, represented by the letter O in our dataset, is 
equivalent to a subject's longitudinal MRI scan sequence. The 
volumetric data retrieved from each scan, represented by the 
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vector   , has a size of [1 × 55] for each observation [2, 4]. 
First, the [1 × 55] sized vectors are aggregated to create 
observation sequences for each subject              
       . Subsequently, the non-MCI subject-initial-group data 
are employed to train     and        , two HMMs. Only the 

observations from individuals in the AD and CN/MCI subject-
end groups are considered for each HMM. Following the 
effective training of these two HMMs, testing is conducted on 
the MCI subject-initial-group. Two probabilities, 
                                   , are calculated for 

every observation sequence using the forward algorithm. 
These probabilities show how likely it is that the matching 
HMM might produce each sequence. The sequences are 
predicted based on this probability. 

   {
                     

   

       

   

  

                                         
  (1) 

It is crucial to stress that we do not assign any semantics to 
the states in the HMMs. When using an HMM conventionally, 
the number of states is usually selected so that each state, or 
combination of states, corresponds to a unique "logical state" 
of the underlying process. Nevertheless, modeling the 
sequences in this way is not practical in our scenario because 
of the sparse nature of the scans. From here on, we think of 
the states as an independent variable in the system that we can 
work with and examine to see how it affects the system's 
overall performance. 

B. Technique 2: HMM Modelling SVM Classification 

There is a premise that there is room for improvement 
even when the initial technique has produced good results. 
The data has shown that it contains useful information, and the 
HMM's ability to extract and represent this information has 
been validated. The investigation of whether this data may be 
organized in a way that makes it compatible with alternative 
models and techniques is therefore of particular interest. There 
is also some interest in the possibility of improving 
performance by adding a strong classifier. Although the 
HMM's states were not given explicit meanings in the 
previous discussion, it is agreed that the transition matrix 
shows that the HMM may implicitly assign certain meanings 
to its states after training. HMMs regard their states as markov 
chains by definition. As a result, the data structure for the 
observation variable (time) is examined during the training 
phase. Patterns or anomalies that appear repeatedly in the 
observation sequences are identified, and the start, transition, 
and emission probabilities are set up to correspond with these 
patterns. To shed further light on the reasoning behind this 
approach, look at the following example: Let's say the goal is 
to create a model of adults' everyday activities using 
observations made at predetermined times of the day. These 
findings differentiate between those who are employed and 
those who are not. Because of this, these two groups' 
observation sequences are different from one another, 
reflecting their different lifestyles. After being trained in this 
scenario, an HMM adjusts its probability to construct state 
markov chains that produce observation sequences that match 
each adult's lifestyle. The transition matrix might have been 
initialized to direct the HMM in giving the states particular 

meanings to predefine state transitions. State definitions for 
"working", "commuting to/from work", "sleeping", and 
"resting" may have been applied in the preceding case. The 
HMM would organize the state markov chains in a way that is 
easier to understand by initializing higher probabilities for 
state transitions like "commuting to/from work to working", 
"working to commuting to/from work", and "commuting 
to/from work to eating", and lower probabilities for transitions 
like "working to sleeping" and "sleeping to working". It is 
important to remember that while this alignment of states to 
actions could make sense more naturally to humans, the HMM 
itself may not necessarily gain from it. The HMM may 
nevertheless arrange the markov chains in a way that makes 
sense for the data's behavior even in situations where states 
and actions aren't directly connected. This is true even when 
it's not immediately obvious to human observers. The same 
action may even be assigned to several states by the HMM. 
Either way, the general organization of the states and how 
they behave is tailored to the features of the training set. The 
states of our HMMs may theoretically represent the three 
cognitive states of the participants (CN, MCI, and AD), much 
like the example given. It could have been possible to 
initialize the HMMs in a way that directed them to ascribe 
states based on the predetermined cognitive conditions right 
from the start. Nevertheless, we have chosen not to initialize 
the HMMs because of the characteristics of the data and the 
inherent unpredictability of these circumstances. Rather, we 
let them independently determine the state structure without 
any prior knowledge. The phrase "nature of data" refers to a 
range of characteristics that are taken out of every MRI scan, 
including the corresponding diagnosis, which is prone to 
inaccuracy. The three cognitive states are also rather inclusive. 
In particular, the MCI condition has a broad range of severity 
fluctuations, as was explained in previous sections; this 
feature also applies to the AD condition. As a result, it makes 
sense to believe that there are intermediate states between the 
states that exactly match the predetermined conditions. 
Because of this, we do not initialize the HMM's matrices; 
instead, we allow the training process to define the 
probabilities related to the state and emission structures. We 
specifically want to use this characteristic of HMM modeling 
in this technique. We hypothesize that important information 
contained in the state sequences corresponding to our 
observation sequences can be used as features for an 
alternative model or classifier. Our goal is to produce state 
sequences, or features, by extending the logic and foundation 
set by the prior technique. These features will then be used to 
train an SVM classifier. As previously mentioned, the 
procedure creates observation sequences 
(                     for each subject. Then, using the 
CN/AD subject-initial-group, an HMM is trained. Unlike the 
prior technique, which trained multiple HMMs depending on 
the subject-end-group for each observation, this technique 
simply trains one HMM. Our goal in making this decision is to 
investigate the inherent capacity of the HMM to define and 
model discriminative information on its own, as well as to 
extract more generic characteristics from the data. Following 
training, all observation sequences (including the subject-
initial-groups CN/AD and MCI) have state sequences 
produced by the HMM  . These state sequences function as 
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characteristics for the technique's next step. An SVM classifier 
is trained using feature sequences from the CN/AD subject-
initial-group. After being trained for binary classification, the 
SVM divides the data into two categories: AD and CN/MCI, 
depending on which subject-end group belongs to which 
sequence. After training, the efficacy of the SVM is 
determined by analyzing its ability to categorize the MCI 
subject-initial-group sequences into the two designated classes 
(AD or CN/MCI). 

C. Technique 3: HMM Modelling SVM Classification 2 

Due to the intrinsic properties of the data, the state 
sequences produced by the HMM show a significant amount 
of volatility and fluctuation, especially when the number of 
states rises. Additionally, the original state sequences are 
features, but they invariably have varying durations based on 
how long the observation sequence was. This unpredictability 
makes the final prediction more difficult to make and adds 
instability to the classification process. After producing state 
sequences for different state counts, it is clear that, in the 
CN/AD and MCI datasets, the state sequences for the CN/MCI 
subject-end-group exhibit a more consistent pattern than those 
from the AD subject-end-group. There are few state 
transitions in the case of CN/MCI participants. This difference 
between the more stable conduct of CN/MCI subjects and the 
more erratic behavior of AD subjects may be due to structural 
similarities in the brain throughout normal and pathological 
aging. The brain regions under study typically undergo 
constant changes during the ordinary aging process, frequently 
at a slow and steady rate (e.g., a specific brain area steadily 
decreases in volume over the years). But because aberrant 
aging is characterized by unpredictable aging, these changes 
become more sudden and difficult to monitor precisely. There 
is clearly a substantial correlation even though it is still 
unknown if the irregular changes are the result of atypical 
aging or the cause of it. It may even be a combination of the 
two. We are mostly interested in transitions that either keep 
the present state or change it in the analysis of state 
transitions: 

        {
                                 
                                 

      (2) 

As such, we track and log the total number of transitions as 
well as the intra-state (same-state) and inter-state transitions 
that occur inside each group and end-group. The above Eq. (2) 
is used to determine the percentages of same-state and inter-
state transitions that take place inside the AD subject-end-
group of the CN/AD individuals. While 75% of the transitions 
are inter-state, 25% are same-state transitions. Similar 
computations can be made for every group and end-group to 
find interesting and possibly useful differences that the HMMs 
have brought to light. Using HMMs with different numbers of 
states, Fig. 1 and Fig. 2 show the counts of same-state and 
inter-state transitions for various groups. As a reference frame, 
the overall transition counts for the relevant groups are also 
displayed. Because they are correlated with sequence 
lengths—that is, the number of follow-ups scans the 
participants receive—rather than the structural analysis of the 
HMMs, these total transitions stay constant across the graphs. 
Interestingly, the numbers show that in the CN/MCI subject-

end-groups, whether they are the CN/AD or MCI initial-
groups, the number of same-state transitions is much larger 
(about three to four times) than the number of inter-state 
transitions. The AD subject-end-groups, on the other hand, 
show a less noticeable difference (about 1.5 to 2 times). Figs, 
which show the percentages of same-state and inter-state 
transitions compared to all transitions, support this conclusion. 
The Figures also compute these percentages' mean and 
variation across a growing number of HMM states. The 
information in the table highlights the fact that roughly 22% of 
CN/MCI end-group transitions are inter-state and 78% of them 
are same-state. As opposed to the CN/MCI groups, the AD 
end-group generates sequences where roughly 63-64% of the 
transitions are same-state, supporting our initial claim that the 
AD end-group's sequences follow a more regular pattern. 

 
Fig. 1. Number of state transitions that the CN/AD group of HMMs trained 

with a growing number of states experienced. 

 

Fig. 2. Number of state transitions that the MCI group of HMMs trained 

with a growing number of states experienced. 

 

Now, we want to take use of this property and remove the 
variability caused by the length of the generated features. As 
shown in Fig. 3, we create transition frequency maps to 
accomplish this. These maps are represented as         
matrices, where N is the total number of HMM states. As a 
counter, each element in the matrix,    , counts the number of 

transitions from state i to state j. Interestingly, the elements of 
the matrix diagonal represent inter-state transitions, whereas 
the components of the same-state diagonal correspond to 
same-state transitions. Reiterating that we treat the number of 
HMM states as a variable that can be adjusted to investigate 
its effect on system performance is crucial. Consequently, Fig. 
3—13 states are just meant to serve as an illustration. These 
matrices are used as feature vectors for the subjects after being 
serialized in a row-wise manner. This technique avoids 
practical issues by releasing our features from the temporal 
element, which is intrinsic to their structure but has no bearing 
on their length. It is clear from the initial matrices that the 
feature vectors are extremely sparse, with few non-zero 
elements that frequently take values in the range of     
        . The feature vectors are primarily composed of zeros. 
As such, the non-zero components' placements are more 
significant than their exact values. This greatly reduces the 
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work for an SVM classifier in comparison to the previous 
technique's separation of state sequences. In particular, this 
issue is made simpler by the fact that it may be handled by an 
SVM as a spatial separation problem for 2D data. The 
procedural stages in this technique are like those in the prior 
way. First, the data is prepared, and for each subject, 
observation sequences                       are created. 
Once more, using the CN/AD subject-initial-group, another 
HMM is trained. Then, as previously said, state sequences are 
generated for each observation series, which are then utilized 
to make transition maps and, ultimately, converted into feature 
vectors. The SVM classifier is then trained using these feature 
vectors, with an emphasis on the CN/AD training set. Based 
on the end-groups of the patients, the classifier is trained to 
classify data into AD and CN/MCI. Ultimately, the MCI 
testing set is used to assess the classifier's performance. The 
main difference between Techniques 2 and 3 is the type of 
characteristics that are sent into the SVM classifier.  

 

Fig. 3. Mapping transition frequencies using a 13-State HMM. 

V. EXPERIMENTAL ANALYSIS 

This section presents the results and evaluation of the 
experiments with comparison, contrast, and discussion of the 
different techniques. 

A. Experimental Setup 

Python, the hmmlearn toolbox, scikit-learn, and a number 
of machine learning techniques are used in the research. The 
construction of HMMs and SVM classifiers for the purpose of 
classifying subjects into various groups is the main goal of 
these investigations. Those without CN, those suffering from 
AD, and those with MCI are among these subjects. HMM 
models are made with the help of the hmmlearn toolkit. Since 
these models are fully coupled upon startup, it is possible to 
move between any states. Based on Gaussian emission 
distributions, the emission probabilities have a "spherical" 
covariance, which means that a single covariance value is 
applicable to every feature. The implementation and test run 
can affect how many states the HMMs have. We decided to 
configure the hyperparameters in advance and maintain 
consistency across numerous techniques and approaches for 
the SVM classifier. The kind of kernel, the kernel coefficient 
( ), the penalty parameter (C), and the independent term for 
polynomial kernels are the hyperparameters that are being 
examined. These parameters include a polynomial kernel of 
degree 3, a penalty parameter C of 63.26, a   value of 0.001, 
and an independent term of the polynomial function of 3.  

The way the training data is handled in the experiments is 
one intriguing feature. The MCI subject group is first left out 
of the training process for the HMM and the SVM classifier 
by us. This technique is predicated on the idea that a greater 

variety and quantity of training data improve model 
performance and lower the likelihood of overfitting. However, 
choose to carry out more research to see if adding any MCI 
data to the training set can enhance the system's functionality. 
We use a technique often used in machine learning, called k-
fold cross-validation, to assess the models' performance. To 
evaluate how well the models generalize their behavior to new 
data using this technique. There are k subsets of the data; k - 1 
subsets are utilized for training, and the remaining subset is 
used for testing. The ultimate performance measure is 
calculated by averaging the evaluation metrics or errors 
generated in each run of this process, which is performed k 
times. We use a variant of cross-validation to incorporate MCI 
data into the training procedure. CN/AD and MCI participants 
are first given different training and testing sets. The MCI 
group is then divided into k = 3 folds, of which 2 are chosen as 
testing sets and 1 is combined with the training set. To 
significantly influence the process, this method yields about 
25% of the training set as MCI individuals. Importantly, this 
modified cross-validation strategy is considered "semi-blind", 
whereas tests that are carried out without using MCI data in 
the training set are referred to as "blind". The SVM training 
procedures in Techniques 2 and 3 employ a conventional 
cross-validation procedure. The training data is split into k 
folds (with k values of 5, 7, or 10), either as CN/AD solely or 
as CN/AD plus one-third of MCI data. F1-scores are 
computed after training and testing several SVM classifiers. 
The testing set, which consists of MCI data, is classified by 
the SVM classifier with the greatest F1-score in preparation 
for the assessment.  

B. Result 

The following graphics contain the metrics of the various 
procedures under test. These metrics are assessed with and 
without the use of 5, 7, and 10-fold cross-validation on the 
SVM training, as well as with and without cross-validation on 
the training data. Furthermore, metrics are generated and 
provided for the participants who have undergone the 
maximum number of follow-up scans, which are three follow-
ups. 

1) Random classifier: Since the technique used in this 

study does not build upon an earlier approach, there are no 

state-of-the-art outcomes to compare with. As a result, the 

outcomes will be contrasted with a random classifier, whose 

performance threshold is set at the lowest possible value. 

Based on the values shown in Section III (A), the prior 

probabilities for the two classes (CN/MCI and AD) in the 

dataset can be defined as: 

        
                                           

                      
 

   

   
             (3) 

    
                                   

                      
 

   

   
         (4) 

Any data point is given a class using a random classifier based 

on a predetermined probability: 

        {
                      

  

   
    

 

 
                                            

        (5) 
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In the first case, the classifier classifies each data point 
with a probability equal to the priors of the two classes, 
achieving the highest possible classification accuracy overall. 
In the second scenario, the minor class—in our case, AD—is 
marginally favored by the classifier. By increasing the 
system's sensitivity, this technique seeks to maximize the 
detection of AD at the cost of poor specificity, which 
increases the number of AD cases detected but also raises the 
possibility of FP results. In all scenarios, the recall, which 
gauges the proportion of accurately categorized data points in 
a particular class, stays random. According to our 
experimental findings, specificity is correlated with the 
memory of the CN/MCI class and sensitivity with the recall of 
the AD class. Thus, we would get the following results from 
the first random classifier: 
                                               , 
while we would gain the following results from the second 
classifier:                               . The DOR 
for both iterations of the random classifier is 1. Currently, we 
have chosen the maximum values for sensitivity and 
specificity as our lower bounds to maximize performance 
optimization. As so, the following cutoff points are 
determined: 
                             
                               . 

2) Technique 1: HMM Classification: Fig. 4, 5, 6, and 7 

show the harmonic mean of the two (F1-score) and the 

sensitivity and specificity measures for increasing numbers of 

states. These graphs show that the number of states does not 

rise along with the performance of the system. The Fig. 4 and 

6 show that, although the effect is not significant, there is a 

tendency for sensitivity to rise and specificity to fall while the 

F1-score remains stable. Striking for near and high values for 

both sensitivity and specificity is generally accepted as the 

standard technique. While reaching the highest possible level 

for both is desirable, these two metrics frequently show an 

adverse connection, even in the case of an absolute classifier. 

Positive and negative data points are accurately classified by a 

highly effective classifier with little to no FP and FN. Reduced 

specificity and sensitivity are the results of these FP and FN. 

A classifier's sensitivity will be almost perfect, but its 

specificity will be quite poor if it overclassifies one class, for 

example, classifying all data points as positive. In order to 

obtain a higher performance overall, it is wise to establish a 

balance between these criteria. It is clear from the blind 

experiment (see Fig. 4) that the sensitivity is higher than the 

allowable limit and the specificity first reaches the limit before 

declining as more states are used. Subjects with three follow-

ups show a similar tendency (see Fig. 6), but the metrics are 

improved, leading to improved specificity performance and a 

delayed divergence between the two metrics. Both times, the 

F1-score greatly exceeds the upper bound. On the other hand, 

noticeably more stable metric graphs are produced by the 

semi-blind experiment (see Fig. 5). With very few exceptions, 

specificity usually reaches or exceeds the 0.62 threshold while 

sensitivity stays high. The stability of the graphs includes both 

the proximity of the two measures when compared and 

fluctuations in each metric separately. Similar behavior is 

shown in participants who have had three follow-ups, with 

higher metrics and a particularly noticeable improvement in 

specificity (see Fig. 7).  The evolution of the DOR for the 

blind and semi-blind tests, with the full MCI group or just 

participants who had three follow-ups, is shown in Fig. 8. 

With all ratios remaining well over 2 (with 1 as the limit) and 

exhibiting little volatility, excellent results are seen in this 

case. When subjects receive three follow-ups, the blind 

experiment performs best in terms of DOR. 

 
Fig. 4. Technique 1 with blind experiments: sensitivity and specificity for 

increasing number of HMM states (F1 score on average is 0.64). 

 

Fig. 5. Technique 1 with semi-blind experiments: sensitivity and specificity 

for increasing number of HMM states (F1 score on average is 0.63). 

 
Fig. 6. Technique 1 with 3 blind experiments: sensitivity and specificity for 

increasing number of HMM states (F1 score on average is 0.67). 
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Fig. 7. Technique 1 with 3 semi-blind experiments: sensitivity and 

specificity for increasing number of HMM states (F1 score on average is 
0.64). 

 

Fig. 8. DOR for the different approaches of technique 1. 

3) Technique 2: HMM Modelling SVM Classification: 

The graphs take on greater interest when the second technique 

is examined in Fig. 9 to Fig. 20. This technique shows the F1 

scores, sensitivity, and specificity for every experiment 

variant—Blind/Semi-Blind, all/only three follow-up scans, 

and each unique number of SVM folds (5, 7, & 10). Fig. 9, 10, 

and 11 show that the graphs for the various folds within the 

same type of trial are nearly identical, suggesting that SVM 

cross-validation has no discernible impact on system 

performance. Notably, the second technique shows extremely 

low sensitivity and very high specificity (approaching 1 for 

participants with three follow-up scans), which results in a low 

F1 score. The preceding section covered the phenomena of 

inverse behavior between sensitivity and specificity. After 

doing a thorough study of the data and examining the 

confusion matrices generated (see Fig. 24), it is apparent that 

the classifier primarily classifies most of the data as CN/MCI, 

which accounts for the remarkably high specificity and low 

sensitivity. The significant variety of the state sequences 

produced by the HMMs and utilized as feature vectors for the 

SVM makes them non-separable data, as was previously 

discussed. As a result, the SVM finds it difficult to identify an 

appropriate separating hyperplane. Upon reviewing the DORs 

see Fig. 21, 22, and 23) for this technique, it is evident that the 

system's behavior has not been affected by cross-validation for 

SVM, since all DOR graphs remain almost the same for 

varying numbers of folds. The DOR values are extremely 

low—much lower than those obtained using technique I. 

DORs in the blind tests may fall to levels less than 1. With this 

technique, adding MCI cases to the training set results in a 

marginal improvement in performance, which is mainly 

manifested in a smaller sensitivity/specificity divergence. 

Even yet, the overall outcomes are still unimpressive. Fig. 24 

show two examples of confusion matrices for several 

experiment runs that show how many data points were 

categorized into each class. The confusion matrix's decimal 

numbers can be explained by the fact that all trials, as 

mentioned in Section III (A), are run ten times in order to 

reduce the impact of outliers. The average number of data 

points classified in each class over ten experiments with the 

same settings is effectively represented by these decimal 

figures. The creation of Technique 3 was spurred by the 

significant differences in sensitivity and specificity found in 

this technique. 

 
Fig. 9. Technique 2 with blind experiments: sensitivity and specificity for 

increasing number of HMM states with 5 SVM folds (F1 score on average is 
0.29). 

 
Fig. 10. Technique 2 with blind experiments: sensitivity and specificity for 

increasing number of HMM states with 7 SVM folds (F1 score on average is 

0.29). 
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Fig. 11. Technique 2 with blind experiments: sensitivity and specificity for 

increasing number of HMM states with 10 SVM folds (F1 score on average is 
0.30). 

 
Fig. 12. Technique 2 with semi-blind experiments: sensitivity and specificity 

for increasing number of HMM states with 5 SVM folds (F1 score on average 

is 0.34). 

 

Fig. 13. Technique 2 with semi-blind experiments: sensitivity and specificity 

for increasing number of HMM states with 7 SVM folds (F1 score on average 
is 0.33). 

 

Fig. 14. Technique 2 with semi-blind experiments: sensitivity and specificity 

for increasing number of HMM states with 10 SVM folds (F1 score on 
average is 0.32). 

 
Fig. 15. Technique 2 with 3 blind experiments: sensitivity and specificity for 

increasing number of HMM states with five SVM folds (F1 score on average 

is 0.09). 

 

Fig. 16. Technique 2 with 3 blind experiments: sensitivity and specificity for 

increasing number of HMM states with 7 SVM folds (F1 score on average is 
0.09). 
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Fig. 17. Technique 2 with 3 blind experiments: sensitivity and specificity for 

increasing number of HMM states with 10 SVM folds (F1 score on average is 
0.15). 

 

Fig. 18. Technique 2 with 3 semi-blind experiments: sensitivity and 

specificity for increasing number of HMM states with 5 SVM folds (F1 score 

on average is 0.39). 

 

Fig. 19. Technique 2 with 3 semi-blind experiments: sensitivity and 

specificity for increasing number of HMM states with 7 SVM folds (F1 score 

on average is 0.36). 

 

Fig. 20. Technique 2 with 3 semi-blind experiments: sensitivity and 

specificity for increasing number of HMM states with 10 SVM folds (F1 

score on average is 0.35). 

 

Fig. 21. DOR for the different approaches of Technique 2 with 5 folds. 

 

Fig. 22. DOR for the different approaches of Technique 2 with 7 folds. 

 

Fig. 23. DOR for the different approaches of Technique 2 with 10 folds. 

 

Fig. 24. Confusion matrix for Technique 2. 
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4) Technique 3: HMM Modelling SVM Classification 2: 

In the context of the third technique, the sensitivity, 

specificity, and F1 score graphs for the different tests and 

varying numbers of SVM folds are displayed once more (see 

Fig. 25- Fig. 36). SVM cross-validation is often found to have 

minimal impact on system performance when the number of 

folds is changed. It is important to note that the semi-blind 

trials are greatly impacted by the participation of MCI 

participants. As demonstrated in Technique 1, the disparity 

between sensitivity and specificity is reduced (see Fig.  28, 29, 

30, 34, 35 and 36). Not only is there no divergence here, but 

convergence is observed. Both metrics cross over in each of 

the Figures and then stay rather close after that. Fig. 31– Fig. 

33 show how, during the experiment, sensitivity and 

specificity closely coincide with one another. 

Sensitivity/specificity graphs and DOR graphs are provided, 

much like in the previous two techniques. Specificity faces 

difficulties in the blind trial, falling to and remaining at the 

lowest threshold. But there is a noticeable improvement when 

compared to the second technique, suggesting that using 

frequency maps instead of the real state sequences makes the 

data easier to separate and preserves important details about 

the evolution of the condition. The semi-blind studies do, in 

fact, help to lessen the sensitivity/specificity gap, although the 

F1 score, and both measures show a modest reduction (see 

Fig. 28–30). With values far above 3.0, the DOR graphs in 

Fig. 37– Fig. 39 show a discernible improvement over the 

previous technique. When MCI participants are included in 

the training process, these data show a reduction that is 

comparable to that seen in the sensitivity/specificity graphs. 

 
Fig. 25. Technique 3 with blind experiments: sensitivity and specificity for 

increasing number of HMM states with 5 SVM folds (F1 score on average is 

0.62). 

 
Fig. 26. Technique 3 with blind experiments: sensitivity and specificity for 

increasing number of HMM states with 7 SVM folds (F1 score on average is 

0.62). 

 
Fig. 27. Technique 3 with blind experiments: sensitivity and specificity for 

increasing number of HMM states with 10 SVM folds (F1 score on average is 
0.62). 

 

Fig. 28. Technique 3 with semi-blind experiments: sensitivity and specificity 

for increasing number of HMM states with 5 SVM folds (F1 score on average 
is 0.66). 

 

Fig. 29. Technique 3 with semi-blind experiments: sensitivity and specificity 

for increasing number of HMM states with 7 SVM folds (F1 score on average 

is 0.66). 

 

Fig. 30. Technique 3 with semi-blind experiments: sensitivity and specificity 

for increasing number of HMM states with 10 SVM folds (F1 score on 

average is 0.66). 
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Fig. 31. Technique 3 with 3 blind experiments: sensitivity and specificity for 

increasing number of HMM states with 5 SVM folds (F1 score on average is 

0.68). 

 

Fig. 32. Technique 3 with 3 blind experiments: sensitivity and specificity for 

increasing number of HMM states with 7 SVM folds (F1 score on average is 

0.68). 

 

Fig. 33. Technique 3 with 3 blind experiments: sensitivity and specificity for 

increasing number of HMM states with 10 SVM folds (F1 score on average is 

0.68). 

 

Fig. 34. Technique 3 with 3 semi-blind experiments: sensitivity and 

specificity for increasing number of HMM states with 5 SVM folds (F1 score 

on average is 0.68). 

 

Fig. 35. Technique 3 with 3 semi-blind experiments: sensitivity and 

specificity for increasing number of HMM states with 7 SVM folds (F1 score 
on average is 0.68). 

 

Fig. 36. Technique 3 with 3 semi-blind experiments: sensitivity and 

specificity for increasing number of HMM states with 10 SVM folds (F1 

score on average is 0.68). 

 

Fig. 37. DOR for the different approaches of Technique 3 with 5 folds. 

 

Fig. 38. DOR for the different approaches of Technique 3 with 7 folds. 
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Fig. 39. DOR for the different approaches of Technique 3 with 10 folds. 

VI. DISCUSSION 

Thus far, the analyses and findings have primarily 
operated at a theoretical level, focusing on the techniques from 
a broader scientific perspective and integrating sensitivity, 
specificity, and DOR graphs generated across multiple states. 
On the other hand, specific instances of the trained and 
evaluated classifiers would be of interest to us if these 
techniques were to be applied in real life. Put another way, we 
want to assess the best "runs" of each technique rather than 
comparing results for the HMMs across various numbers of 
states (the major variable). To do this, we created Fig. 40 and 
Fig. 41, which show a ROC space filled with data points that 
indicate the greatest examples of each technique. For every 
technique, these data points represent the ideal run's TPR and 
1−TNR. The various techniques are denoted by the letter M in 
the legend of these figures. Furthermore, we present the 
Euclidean distance (ED) of every point as measured from the 
upper-left corner; smaller EDs denote better performance. 
Tables I and II also provide a summary of these numerical 
values. The various methodologies and techniques can be 
more easily compared and contrasted thanks to this tabulation 
and visualization, which presents the performances visually. 
These Figures clearly show that adding MCI participants to 
the training set improves all tested techniques' peak points, 
with technique 2 showing the greatest improvement. Although 
Technique 2's initial performance was lower than that of a 
random classifier, it eventually obtains performance 
comparable to the other two (see Fig. 40). Furthermore, 
Technique 1 and 3 yield almost identical results, with 
Technique 3 slightly outperforming, especially for participants 
who receive three follow-up scans. An additional important 
inference from these Figures, which is further supported by 

the results of the separate technique, is the importance of 
prolonged MRI sequences. We regularly see that participants 
with three follow-up scans had better results than the overall 
results in all the presented Figures. This implies that there may 
be a greater likelihood of detecting AD progression, MCI 
progression, or perhaps conversion to CN in these individuals. 
It emphasizes how important it is for each person to get as 
many follow-up scans as possible to provide more precise 
projections. Moreover, selecting a different number of folds 
for SVM training has little effect on performance, consistent 
with other findings. One noteworthy observation from the data 
shown in Tables I and II is that although the metrics for 
sensitivity and specificity increase for participants who 
receive three follow-ups, the relative importance of the 
measures is inverted. When classifying all individuals, our 
technique shows higher sensitivity; but, when applied to 
participants with longer MRI sequences, it shows higher 
specificity. The unequal distribution of diagnosis across 
various numbers of follow-up scans can be used to justify this. 

 

Fig. 40. Best performance of all techniques. 

 

Fig. 41. Best performance of all techniques with 3 follow-ups. 

TABLE I. AN OVERVIEW OF EACH METHOD'S BEST OUTCOMES IN RELATION TO THE POINT ON THE ROC SPACE THAT IS CLOSEST TO THE UPPER LEFT 

CORNER 

Technique Type 
Specificity 

5, 7, 10 Folds 

Sensitivity 

5, 7, 10 Folds 

Distance 

5, 7, 10 Folds 

Avg. F1 

5, 7, 10 Folds 

Avg. DOR 

5, 7, 10 Folds 

1 Blind 0.646 0.665 0.486 0.643 3.381 

1 Semi-Blind 0.689 0.655 0.463 0.633 2.998 

2 Blind 0.434, 0.434, 0.425 0.504, 0.504, 0.505 0.752, 0.752, 0.757 0.293, 0.293, 0.31 0.794, 0.809, 0.797 

2 Semi-Blind 0.596, 0.597, 0.597 0.655, 0.654, 0.654 0.530, 0.530, 0.530 0.35, 0.333, 0.329 2.135, 2.123, 2.066 

3 Blind 0.626, 0.622, 0.622 0.672, 0.685, 0.686 0.496, 0.491, 0.490 0.622, 0.629, 0.628 3.054, 3.172, 3.173 

3 Semi-Blind 0.641, 0.67, 0.659 0.776, 0.715, 0.728 0.422, 0.535, 0.66 0.662, 0.661, 0.66 4.018, 4.04, 4.015 

Note: The point's corresponding specificity and sensitivity are displayed in the table along with its Euclidean distance from the upper left corner. The type of column is in line with the kind of experiment that was 

conducted using the training data. We also provide the average DOR and F1 Scores for each approach as a point of comparison. 
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TABLE II. AN OVERVIEW OF EACH METHOD'S BEST OUTCOMES IN RELATION TO THE POINT ON THE ROC SPACE THAT IS CLOSEST TO THE UPPER LEFT 

CORNER WITH THREE FOLLOWS UPS 

Technique Type 
Specificity 

5, 7, 10 Folds 

Sensitivity 

5, 7, 10 Folds 

Distance 

5, 7, 10 Folds 

Avg. F1 

5, 7, 10 Folds 

Avg. DOR 

5, 7, 10 Folds 

1 Blind 0.719 0.671 0.431 0.672 4.289 

1 Semi-Blind 0.753 0.642 0.434 0.649 3.495 

2 Blind 0.521, 0.521, 0.522 0.5, 0.5, 0.5 0.691, 0.691, 0.691 0.095, 0.096, 0.108 1.939, 1.998, 2.089 

2 Semi-Blind 0.72, 0.72, 0.72 0.595, 0.595, 0.595 0.491, 0.491, 0.491 0.391, 0.369, 0.356 2.347, 2.326, 2.357 

3 Blind 0.769, 0.742, 0.764 0.677, 0.675, 0.688 0.395, 0.414, 0.39 0.684, 0.688, 0.688 4.855, 5.045, 5.043 

3 Semi-Blind 0.74, 0.84, 0.84 0.682, 0.645, 0.645 0.410, 0.388, 0.388 0.685, 0.687, 0.687 5.01, 5.177, 5.171 

VII. CONCLUSION AND FUTURE WORKS 

To sum up, the main goal of this study was to create a 
model that could be used to predict how patients with MCI 
would progress based only on the examination of their 
longitudinal MRI scans. Another goal of this study was to use 
MRI data to derive useful diagnostic information without the 
need for further diagnostic instruments like cognitive tests. 
Predicting whether patients with MCI would develop AD was 
the third goal. Three different techniques based on HMMs 
were developed, one building on the other. It is clear from 
looking at the experimental findings that Techniques 1 and 3 
have generated models that work well. These techniques have 
produced results that are both much higher than the preset 
criteria for sensitivity and higher than even the harsher 
predefined threshold for specificity. Particularly, technique 3 
performs the best, closely followed by Technique 1. 
Technique 3, the best classifier, can identify 77.6% of 
participants who advance to AD and 64.1% of people who 
remain stable with MCI or return to normal cognitive status. It 
uses a semi-blind method with 5-fold SVM training. 
Furthermore, the findings highlight the structural information 
contained in the MRI images, which provides important 
information on how a patient's cognitive state is developing. 
Notably, the first technique relies on HMMs as the primary 
classifier without the requirement for a secondary classifier, 
using only the structural and temporal information from the 
scans for categorization. The findings further highlight the 
importance of the longitudinal MRI sequences' duration. 
Longer sequences consistently result in greater system 
performance, especially those with three follow-up scans. This 
emphasizes how crucial it is to get more follow-up scans for 
every person to improve prediction accuracy. The dataset's 
limitations present difficulties for future investigation. A 
primary concern pertains to the size of the dataset, which is 
determined by the expense and duration of MRI scans as well 
as the preprocessing done with Freesurfer. One can focus on 
decreasing processing time, increasing the dataset with longer 
sequences, and optimizing preprocessing efficiency through 
parallelization. A flag to denote confirmed diagnoses might 
also be introduced to alleviate the uncertainty around 
diagnoses. This would enable weighting of subjects with 
certain diagnoses and enable semi-supervised learning. 
Additional preprocessing procedures, like clustering or 
dimensionality reduction, to simplify and improve the feature 
vectors might be added in the future. It may also be 
worthwhile to investigate more sophisticated machine learning 
methods, such as Convolutional Neural Networks (ConvNets), 

Deep Neural Networks (DeepNets), and Recurrent Neural 
Networks (RNNs). Without a set input length, RNNs excel at 
modeling sequential and temporal data. Conversely, DeepNets 
and ConvNets provide high precision modeling of complicated 
data, which may minimize the need for intensive 
preprocessing. ConvNets may be able to operate directly with 
raw MRI scans, omitting the feature extraction stage, albeit 
their use may necessitate much bigger datasets. Although these 
methods offer fascinating directions for future study, their 
applicability in medicine will depend on the availability of 
data and developments in neural network technology. 
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