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Abstract—Rapid advances in science and technology have 

significantly changed plant growth modeling. The main 

contribution to this transformation lies in using Machine 

Learning (ML) techniques. This study focuses on sorghum, an 

important agricultural crop with significant economic 

implications. Crop yield studies include temperature, humidity, 

climate, rainfall, and soil nutrition. This research has a novelty: 

the input factors for predicting sorghum plant growth, namely 

the treatment of applying organic fertilizer and dolomite lime to 

sorghum planting land. The three predicted sorghum plant 

growth factors, namely Height, Biomass, and Panicle weight, are 

the reasons for using the Multiple Adaptive Neural Fuzzy 

Inference System (MANFIS) model. This research investigates 

the impact of Membership Function and Degree on the MANFIS 

model. A comprehensive comparison of various membership 

functions, including Gaussian, Triangular, Bell, and Trapezoidal 

functions, along with various degrees of membership, has been 

carried out. The dataset used includes data related to sorghum 

growth obtained from field experiments. The main objective was 

to assess the effectiveness of membership and degree functions in 

accurately predicting sorghum growth parameters, consisting of 

height, biomass, and panicle weight. This assessment uses metrics 

such as MAPE (Mean Absolute Percentage Error), MAE (Mean 

Absolute Error), and RMSE (Root Mean Square Error) to 

evaluate the predictive performance of the MANFIS model when 

using four different types of membership functions and degrees. 

The results obtained the best level of accuracy in predicting 

panicle weight (ANFIS-3) with chicken manure treatment using 

the Trapezoidal membership function type and degree of 

membership function [3,3] with MAPE results of 5.77%, MAE of 

0.2994, and RMSE of 0.395. 

 Keywords—Prediction; MANFIS; membership function; 

organic fertilizer; sorghum  

I. INTRODUCTION  

Rice is the staple food of the Indonesian population; rice 
production in Indonesia in the last five years (2018-2022) has 
continued to decline, from 59.2 million tons in 2018 to 54.74 
million tons in 2022, as well as the harvested area which in 
2018 reached 11.37 million ha to 10.45 million ha in 2022[1]. 
Therefore, alternative food is needed to replace rice to ensure 
food security in Indonesia. Sorghum is an alternative crop 
suitable for planting in less fertile areas, such as tidal land. 
Suboptimal tidal swamp land has low fertility, an acidic pH, 

and low nutrients [2]. Sorghum plants can also be used for food 
diversification other than rice to maintain food security in 
Indonesia. Sorghum is more drought tolerant than similar crops 
such as corn and wheat [3]. Sorghum is suitable for cultivation 
in Indonesia because of its drought tolerance and adaptability 
to tropical areas [4].  

The main problems of plant growth in tidal land are the 
level of water saturation and anaerobic conditions in the 
rhizosphere, pyrite or sulfide materials found in the soil, 
toxicity of Al, Fe, and Mn; highly acidic soil reaction, and low 
content of N, P, K, Ca, and Mg [5] [6] [7] [8]. Enhancing soil 
fertility in tidal land areas can be achieved through the 
application of fertilizers [9]. In such regions, leveraging local 
resources for sustainable agricultural practices is essential. One 
viable option is the utilization of organic fertilizers, such as 
chicken manure, cow manure, and vermicompost [10]. These 
locally available resources provide essential nutrients to the 
soil and promote soil health and microbial activity. By 
adopting a strategy that combines the application of these 
organic fertilizers with tidal land management practices, 
farmers can effectively improve soil fertility while minimizing 
the environmental impact, contributing to both agricultural 
productivity and environmental sustainability [11].  

Many further research studies within the sorghum domain 
utilize machine learning techniques. These encompass efforts 
to predict sorghum biomass [12], detect and measure sorghum 
head counts [13], and make estimations of sorghum crop yields 
through machine learning algorithms [14] [15]. In combination, 
these investigations underscore the versatility and potential of 
machine learning in advancing various aspects of sorghum 
farming and administration, promoting more effective and 
sustainable agricultural practices. 

Recent research on crop yield predictions utilizing machine 
learning techniques has emphasized the incorporation of 
several key input parameters. Rainfall has been identified as a 
significant factor in crop yield prediction, with multiple studies 
exploring its impact [16] [17] [18] [19], Temperature, 
humidity, and climate have also emerged as primary concerns, 
with some studies employing multiple linear regression to 
analyze weather forecasts by considering these parameters [16] 
[20] [18] [19] [21]. Moreover, soil pH and irrigation, as 
determinants of soil quality and optimal irrigation, are integral 
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components of crop yield prediction models [19] [22] [21]. 
Wind speed, an external factor affecting plant growth, is 
considered in several research endeavors [20] [21]. 
Additionally, the location of crops is recognized as a crucial 
parameter in crop yield prediction, with crop location data 
serving as a variable in predictive analyses [18] [23]. These 
recent studies combine machine learning technology with a 
deep understanding of these diverse factors to enhance the 
accuracy of crop yield predictions. In this research, we 
introduce novelty by utilizing input parameters that include 
doses of organic fertilizers (chicken manure, cow manure, and 
vermicompost) and dolomite. Interestingly, these parameters 
have not been explored in previous studies related to predicting 
plant growth using machine learning technology. 

Research conducted on predicting sorghum crop yields 
involve the use of various techniques, including the 
development of machine learning-based models. Several 
approaches have been employed, such as using TensorFlow 
with Convolutional Neural Networks (CNN) and Linear 
Regression to detect and estimate the weight of sorghum heads 
in images [24]. Additionally, a neuro-fuzzy model has been 
developed to predict the production rate of colorant extract 
from sorghum bicolor [25]. There has also been the 
development of image segmentation algorithms using deep 
learning CNN to detect and count sorghum heads[26]. 
Furthermore, frameworks and models have been created to 
detect leafhopper infestations in sorghum plants using deep 
learning technology and the YOLOv5m model [27]. Moreover, 
a performance evaluation of three deep learning methods, 
namely EfficientDet, SSD, and YOLOv4, has been conducted 
for the detection of sorghum heads in UAV RGB image [28]. 

In this research, a machine learning prediction model was 
developed using the Multiple Adaptive Fuzzy Inference 
System (MANFIS) model. ANFIS harnesses the strengths of 
neural networks and fuzzy logic, collectively enhancing its 
predictive capabilities [29]. This fusion of Neural Network and 
Fuzzy Logic equips ANFIS with a robust framework for 
precise predictions. Additionally, ANFIS possesses the unique 
capability to integrate both numerical and linguistic 
knowledge, making it adaptable and valuable across a broad 
spectrum of domains [30]. Its capacity to handle diverse types 
of information is a substantial asset, enabling it to efficiently 
address a multitude of real-world situations. However, 
integrating ANFIS models into soil remediation offers a 
promising avenue for restoring contaminated land to a fertile 
state, enabling sustainable agricultural practices. Many have 
widely implemented the ANFIS for prediction, classification, 
and clustering [31] [32] [33]. In this study, the input parameters 
and output parameters have more than one parameter. Hence, 
the prediction model in this study uses nine ANFIS models to 
predict three output parameters (height, biomass, and panicle 
weight) of sorghum plants with three different organic fertilizer 
treatment datasets. 

The connection between membership functions and the 
degree of membership in ANFIS is essential for fuzzy logic-
based inference. Here, the functions establish fuzzy sets, and 
the degree of membership measures how closely input values 
align with these sets. This association is vital for the fuzzy 
reasoning and decision-making procedures in the ANFIS 

framework. In the selection of membership functions and 
degrees of membership in the ANFIS model, research has 
highlighted the importance of choosing appropriate 
membership functions. Studies have explored various forms of 
membership functions, such as triangular, trapezoidal, shape-
bell, and Gaussian, as well as the selection of the correct 
number of membership functions [34]. The choice of 
appropriate membership functions can have a significant 
impact on the performance of the ANFIS model [35]. 
Experiments are often employed to determine the optimal 
membership functions, allowing precise adjustments to the 
system's performance [36]. Over time, research continues to 
develop best practices in the selection of membership functions 
and degrees of membership to enhance the performance of 
ANFIS-based systems. Therefore, in this study, to optimize the 
accuracy of prediction results using the MANFIS model, the 
selection of membership function types and degrees of 
membership is conducted on nine ANFIS models. Four 
membership functions and four combinations of degrees of 
membership will be evaluated for each input and output 
parameter of the MANFIS model designed to obtain the best 
prediction results for sorghum plant growth. 

This research advances the field of plant growth prediction 
through machine learning by introducing new input factors, 
such as organic fertilizer dosage and dolomite, which previous 
studies have not explored. In this study, we present novelty by 
including input variables such as the amount of organic 
fertilizer (chicken manure, cow manure, and vermicompost) 
and dolomite. Previous studies on predicting plant growth 
using machine learning technology did not investigate these 
variables. Additionally, it emphasizes the importance of 
carefully choosing appropriate membership functions for the 
ANFIS model and conducting experiments to improve its 
performance. These efforts contribute to developing best 
practices in this domain, enhancing the accuracy and 
effectiveness of predicting crop yields. 

II. RELATED WORKS  

The choice of membership function significantly influences 
the prediction model's accuracy when using ANFIS. One study 
compared eight different ANFIS membership functions to 
optimize ERP satisfaction values, ultimately revealing that the 
triangular membership function yielded the best prediction 
results [37]. To guarantee reliable and accurate predictions, the 
research prioritized two crucial factors: the number of inputs 
within the training dataset and the selection of the membership 
function within the ANFIS model. This optimization procedure 
included comparing outcomes with techniques like Particle 
Swarm Optimization and Genetic Algorithms [36]. 
Furthermore, researchers conducted performance evaluations 
to assess how effectively the ANFIS model addressed various 
classification problems by investigating four popular forms of 
membership functions: triangular, bell-shaped, trapezoidal, and 
Gaussian [35]. Another study delved into the impact of 
different membership function types, specifically triangular, 
trapezoidal, and Gaussian, on the performance of a fuzzy logic 
controller [38]. In a different context, researchers employed 
two approaches to generate Gaussian and triangular fuzzy 
membership functions using fuzzy c-means for predicting 
sunspots [39]. These various investigations collectively 
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contribute to our understanding of the significance of 
membership functions and their impact on ANFIS model 
performance in different applications. In this research, a 
comparison was carried out among four types of membership 
functions and four combinations of membership degree 
functions across nine ANFIS models employed in a machine 
learning framework for predicting the growth of sorghum. This 
comparison aims to determine the most accurate prediction 
results within the constructed model. 

The ANFIS model utilizes the Takagi-Sugeno rule set for 
its fuzzy inference system. Eq. (1) and Eq. (2) present a 
standard rule set for the commonly used first-order Takagi-
Sugeno fuzzy model, which includes two fuzzy if-then rules 
[40]. 

Rule 1: If (x is A1) and (y is B1), then: Z1 = p1x + q1y + r1    (1)  

Rule 2: If (x is A2) and (y is B2), then: Z2 = p2x + q2y+ r2     (2) 

where, p1, p2, q1, q2, r1, and r2 are linear, and A1, A2, B1, and 
B2 are non-linear parameters.  

In Fig. 1 shows the structure of ANFIS, which consists of 
five layers [41]. The framework of the ANFIS method has 5 
(five) layers, namely the fuzzification layer, the rule layer, the 
normalization layer, the defuzzification layer, and a single 
neuro result [42] [43].  

 Layer 1: This layer serves as the fuzzification layer, 
where each neuron's output corresponds to the degree of 
membership determined by the input membership 
function. The fundamental categories of membership 
functions include four types: triangular, trapezoidal, 
bell-shaped, and Gaussian [35]. 

Layer 1

A1

A2

A3

B1

B2

B3

Organic Fertilizer 
Doses (X)

Dolomite Lime 
Doses (Y)

P

P

N f1

N f1

S
Prediction of 

Sorghum

Layer 2 Layer 3 Layer 4 Layer 5

W1 W1

W1 W1

 

Fig. 1. A schematic of an ANFIS structure. 

The triangular membership function (Trimf) stands out as 
the most straightforward among the various membership 
functions. It requires three parameters to define the three 
points, as illustrated in Eq. (3). 
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where the value a < b < c which represents the coordinates 
of the Trimf on the x-axis.  

Eq. (4) illustrates how four scalar parameters define the 
curve of the trapezoidal membership function (Trapmf). 
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where the value a < b < c < d which represents the 
coordinates of the Trapmf on the x-axis 

The general bell-shaped membership function (Gbellmf) 
features a symmetric shape resembling a bell, as illustrated in 
Eq. (5). 
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where, c is the center of the curve in the universe of speech, 
a determines the width of the bell-shaped curve, and b is a 
positive integer. 

The Gaussian membership function (Gaussmf) relies on 

two parameters: c to locate the center and  to specify the 
curve's width, as shown in Eq. (6).  
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where, c is the center of the cluster and width value  are 
used to describe the Gaussmf. 

 Layer 2: This layer comprises a constant neuron 
(represented by the symbol Π), which computes the 
product of all input values, as indicated in Eq. (7). 

𝒘𝒌 = 𝝁𝑨𝒌 . 𝝁𝑩𝒌   (7) 

Typically, practitioners use the AND operator and refer to 
the result of this computation as the firing strength of a rule. 
Each neuron corresponds to a specific rule indexed ask. 

 Layer 3: Each neuron in this layer is a constant neuron, 
represented by the N. The calculation takes the k firing 
strength (wk) ratio to the total sum of firing strengths in 
the second layer, as shown in Eq. (8). 

                               (8) 

The result obtained from this calculation is termed the 
normalized firing strength. 

 Layer 4: This layer consists of neurons that adapt to an 
output, as shown in Eq. (9). 

         〈                  〉 (9) 

where,    is the normalized firing strength in the third 
layer and qk, rk, and sk are the parameters of the neuron. These 
parameters are commonly called consequent parameters. 

 Layer 5: This layer comprises a solitary neuron 
(represented by a symbol) that results from summating 
all outputs from the fourth layer, as depicted in Eq. 
(10). 

∑   ̅̅     
∑       

∑    
   (10) 

A. Proposed Method 

The research methodology aims to predict Sorghum growth 
using MANFIS (Multiple Adaptive Neuro-Fuzzy Inference 
System) models, emphasizing optimizing the selection of 
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membership functions and membership degrees to achieve the 
highest accuracy, as depicted in Fig. 2. Data collection 
involved conducting experiments that utilized three types of 
organic fertilizers: chicken manure, cow manure, and 
vermicompost, in combination with dolomite lime on tidal soil. 
The experimental design employed a two-factor factorial 
design. The data obtained from these experiments served as the 
MANFIS model's dataset to predict three sorghum growth 
parameters: height, biomass weight, and  panicle weight. The 
dosage of organic fertilizers and dolomite lime forms the basis 
for these predictions. 

Start

Data Preprocessing

Testing Process

Accuracy (MAPE, MAE, RMSE)

All Types of Membership 
Functions Selected?

Sorghum Prediction Results

The test result with the smallest error 
rate is selected

Training Process

YA

TIDAK

Defining Membership 

Functions

Data Aquisition

Data Split
70% Training data and 30% Testing Data

Training Data Testing Data

Model 
MANFIS

End
 

Fig. 2. Research methodology. 

The initial phase of our research began with problem 
identification, focusing on utilizing organic fertilizer 
comprising chicken manure, cow manure, and vermicompost, 
which was applied to tidal lands to nurture sorghum plants. 
Subsequently, we collected data, drawing information from the 
growth records of sorghum plants cultivated on tidal lands 
subjected to three different organic fertilizer treatments or 
doses.  

1) Vermicompost fertilizer: The treatment parameter for 

vermicompost fertilizer used four doses, namely: 0, 2.5, 5, and 

7.5 tons/ha, combined with two doses of dolomite lime (0 and 

0.404 tons/ha) and repeated three times. 

2) Chicken manure: The treatment parameters of chicken 

manure used four doses, namely: 0, 5, 6.5, and 8.5 tons/ha, 

combined with two doses of dolomite lime (0 and 0.404 

tons/ha), and repeated three times.  

3) Cow manure: The treatment parameter for cow manure 

used four doses, namely: 0, 5, 10, and 15 tons/ha, combined 

with two doses of dolomite lime (0 and 1.84 tons/ha), and 

repeated three times.  

The researchers obtained the dataset by conducting 
experimental sorghum cultivation in a greenhouse. We applied 
organic fertilizer to the cultivated land two weeks before 
planting sorghum. After 105 days, we harvested the sorghum 
plants and measured three growth parameters: height, biomass, 
and panicle weight. 

In the subsequent phase, we conducted data training using 
four different membership functions, namely triangular, 
trapezoidal, bell-shaped, and gaussian, to achieve the highest 
level of accuracy. We utilized 70% of the entire dataset in the 
training phase and executed the training process on nine 
ANFIS models. Fig. 3 illustrates the configuration of the 
MANFIS model designed for chicken manure fertilizer 
treatment. This model comprises three ANFIS components, 
denoted ANFIS-1, ANFIS-2, and ANFIS-3. The input 
variables for their membership functions are characterized by 
degrees of membership, specifically (4, 2). In particular, the 
dosage of chicken manure fertilizer has four membership 
degrees, while dolomite lime has two membership degrees. 

In this process, the training data, randomly selected from a 
dataset, is employed to train individual ANFIS models using 
distinct types and degrees of membership functions. There are 
four distinct types of membership functions and four 
combinations of membership function degrees applied during 
this training phase. The ANFIS model training utilizes these 
combinations of membership function types and degrees, 
including Triangular, Trapezoidal, Generalized bell-shaped, 
and Gaussian functions, along with four degrees of 
membership functions: {3,2}, {3,3}, {2,2}, and {4,2}. 

Input Input mf Rule Output mf Output

Chicken Manure 
Fertilizer Doses

Dolomite Lime 
Doses

Prediction of 
Sorghum Height

Prediction of 
Sorghum Biomass

Prediction of 
Sorghum Panicle 

Weight

Logical Operator AND

ANFIS-1

ANFIS-2

ANFIS-3

 

Fig. 3. Model structure for chicken manure treatment. 
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Using these diverse combinations of membership function 
types and degrees, we assess the accuracy of the prediction 
outcomes for each ANFIS model using three accuracy 
measurement indicators: Mean Absolute Percentage Error 
(MAPE), Mean Absolute Error (MAE), and Root Mean Square 
Error (RMSE). We derive the formulas for calculating the 
accuracy of prediction results from Eq. (11), (12), and (13) as 
detailed in reference [44]. 

      
 

 
 ∑ *
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           (11) 

     
 

 
∑ [      ]

 
      (12) 

      √
 

 
∑        

  
     (13) 

where, At represents the target value, Pt refers to the 
prediction value (the model's output), and n is the number of 
data points. 

III. RESULT AND ANALYSIS 

The results of the ANFIS model's accuracy evaluation, 
including three prediction accuracy metrics (MAPE, MAE, and 
RMSE), along with the utilization of four types of membership 
functions and four degrees of membership functions for each 
treatment related to the application of organic fertilizer and 
dolomite lime, have been recorded in Tables I, II, and III. 
These results specifically relate to three observed output 
variables: the sorghum plant's height, biomass weight, and 
panicle weight. 

Table I presents the accuracy assessment results for 
MANFIS models (ANFIS-1, ANFIS-2, and ANFIS-3) using 
the metrics MAPE, MAE, and RMSE. These results stem from 
the training and testing processes conducted on data from the 
chicken manure treatment dataset. To streamline the process of 
identifying the membership function types and degrees that 
produce the most accurate results, we visually represent the 
accuracy measurements in Table I through Fig. 4, Fig. 5, and 
Fig. 6. 

Fig. 4 visually depicts the accuracy outcomes in the context 
of chicken manure treatment, explicitly focusing on sorghum 
height (ANFIS-1) as the output parameter. It is evident from 
Fig. 4 that the highest accuracy values, as measured by the 
three accuracy assessment tools, are achieved when using the 
trapezoidal membership function type and membership 
function degrees {2, 2}. The corresponding accuracy values are 
MAPE of 13.23%, MAE of 11.1969, and RMSE of 14.7685. 

Fig. 5 provides a visual representation of the accuracy 
results in the context of chicken manure treatment, explicitly 
highlighting the Biomass weight (ANFIS-2) of sorghum as the 
output parameter. The figure demonstrates that the highest 
accuracy values, as assessed by the three accuracy 
measurement tools, are attained when employing the Bell-
shaped membership function type with membership function 
degrees {4, 2}. The corresponding accuracy values are MAPE 
of 20.89%, MAE of 2.5163, and RMSE of 3.2552. 

TABLE I. ACCURACY MEASUREMENT RESULTS OF ANFIS FOR CHICKEN MANURE TREATMENT 

Membership Function Output Parameters 

Type Degree 
Sorghum Height (ANFIS-1) Sorghum Biomass Weight (ANFIS-2) Sorghum Panicle Weight (ANFIS-3) 

MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE 

Triangular 

[3 3] 7.57 7.6624 9.6971 24.77 3.8184 4.7042 7.07 0.3216 0.4717 

[3 2] 7.11 7.0251 9.5958 27.68 4.0041 4.8796 6.59 0.3109 0.4947 

[2 2] 8.05 8.0693 10.3974 26.63 3.7491 4.9433 6.31 0.2929 0.4766 

[4 2] 7.44 7.33 9.9284 21.68 3.6174 5.1553 6.8 0.3148 0.4809 

Trapezoidal 

[3 3] 7.34 7.3734 9.4516 25.43 3.64 4.8043 7.25 0.3321 0.4718 

[3 2] 7.64 7.6231 9.6295 25.12 3.7713 4.6919 6.61 0.3146 0.4957 

[2 2] 7.29 7.2511 9.5181 21.62 3.6038 5.0974 6.49 0.3076 0.4847 

[4 2] 7.32 7.3311 9.5143 22 3.6717 5.2302 7.45 0.3784 0.6374 

Bell-shaped 

[3 3] 8.25 8.9019 13.2622 30.17 4.2531 5.4302 15.93 0.6813 0.8268 

[3 2] 7.38 7.1854 10.9684 26.87 3.9804 5.0931 13.7 0.5578 0.6737 

[2 2] 8.16 8.2203 10.2186 28.69 4.1439 5.2805 13.42 0.5579 0.6636 

[4 2] 7.14 6.9103 9.9857 27.93 4.2529 5.4921 14.06 0.5899 0.6771 

Gaussian 

[3 3] 7.22 7.0862 9.8436 35.13 5.34 6.9752 6.34 0.2997 0.4798 

[3 2] 7.55 7.5134 9.5617 25.51 3.7674 4.785 6.66 0.3145 0.4511 

[2 2] 7.8 7.8058 9.933 35.28 5.5481 7.1964 6.55 0.3087 0.4533 

[4 2] 7.37 7.3733 10.1953 27.44 4.0184 4.8416 14.11 0.5176 0.7754 
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TABLE II. ACCURACY MEASUREMENT RESULTS OF ANFIS FOR COW MANURE TREATMENT 

Membership Function Output Parameters 

Type Degree 
Sorghum Height (ANFIS-4) Sorghum Biomass Weight (ANFIS-5) Sorghum Panicle Weight (ANFIS-6) 

MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE 

Triangular 

[3 3] 7.57 7.6624 9.6971 24.77 3.8184 4.7042 7.07 0.3216 0.4717 

[3 2] 7.11 7.0251 9.5958 27.68 4.0041 4.8796 6.59 0.3109 0.4947 

[2 2] 8.05 8.0693 10.3974 26.63 3.7491 4.9433 6.31 0.2929 0.4766 

[4 2] 7.44 7.33 9.9284 21.68 3.6174 5.1553 6.8 0.3148 0.4809 

Trapezoidal 

[3 3] 7.34 7.3734 9.4516 25.43 3.64 4.8043 7.25 0.3321 0.4718 

[3 2] 7.64 7.6231 9.6295 25.12 3.7713 4.6919 6.61 0.3146 0.4957 

[2 2] 7.29 7.2511 9.5181 21.62 3.6038 5.0974 6.49 0.3076 0.4847 

[4 2] 7.32 7.3311 9.5143 22 3.6717 5.2302 7.45 0.3784 0.6374 

Bell-shaped 

[3 3] 8.25 8.9019 13.2622 30.17 4.2531 5.4302 15.93 0.6813 0.8268 

[3 2] 7.38 7.1854 10.9684 26.87 3.9804 5.0931 13.7 0.5578 0.6737 

[2 2] 8.16 8.2203 10.2186 28.69 4.1439 5.2805 13.42 0.5579 0.6636 

[4 2] 7.14 6.9103 9.9857 27.93 4.2529 5.4921 14.06 0.5899 0.6771 

Gaussian 

[3 3] 7.22 7.0862 9.8436 35.13 5.34 6.9752 6.34 0.2997 0.4798 

[3 2] 7.55 7.5134 9.5617 25.51 3.7674 4.785 6.66 0.3145 0.4511 

[2 2] 7.8 7.8058 9.933 35.28 5.5481 7.1964 6.55 0.3087 0.4533 

[4 2] 7.37 7.3733 10.1953 27.44 4.0184 4.8416 14.11 0.5176 0.7754 

TABLE III. ACCURACY MEASUREMENT RESULTS OF ANFIS FOR VERMICOMPOST TREATMENT 

Membership Function Output Parameters 

Type Degree 
Sorghum Height (ANFIS-7) Sorghum Biomass Weight (ANFIS-8) Sorghum Panicle Weight (ANFIS-9) 

MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE 

Triangular 

[3 3] 6.05 5.8729 8.2177 21.72 4.9165 10.9312 7.49 0.4447 0.5465 

[3 2] 6.43 6.2208 8.1537 34.84 5.7267 9.8537 7.7 0.4538 0.5528 

[2 2] 6.48 6.4189 8.6914 23.26 4.8663 10.7253 8.09 0.4715 0.5574 

[4 2] 6.49 6.5281 8.6078 30.95 5.4974 9.5147 8.9 0.5109 0.6914 

Trapezoidal 

[3 3] 6.72 6.372 9.0279 25.45 5.1818 11.3331 7.46 0.4481 0.5494 

[3 2] 6.26 6.0985 7.8162 34.35 5.7109 9.8386 8.08 0.4779 0.5521 

[2 2] 6.35 6.3306 8.5164 34.48 5.7302 9.8525 7.75 0.4592 0.617 

[4 2] 6.15 5.9474 7.9856 50.26 6.9171 15.6322 7.25 0.4357 0.6138 

Bell-shaped 

[3 3] 6.34 6.3658 9.3784 36.13 6.5497 10.5085 7.79 0.4646 0.6032 

[3 2] 6.42 6.2479 7.9644 31.06 5.936 10.1495 7.74 0.4584 0.5958 

[2 2] 6.97 6.6223 8.85 23.91 4.9333 10.683 7.5 0.4429 0.6034 

[4 2] 6.44 6.2097 8.1773 22.62 4.8991 10.8324 7.97 0.47 0.6102 

Gaussian 

[3 3] 6.28 6.0763 7.8944 22.94 4.9947 11.3718 7.98 0.4676 0.5786 

[3 2] 6.18 5.9994 7.8711 32.32 5.6328 9.6765 7.73 0.4588 0.5605 

[2 2] 6.08 5.9147 7.7382 22.06 4.9958 11.3755 7.89 0.4641 0.5479 

[4 2] 6.43 6.2469 8.039 32.95 5.6962 9.6584 7.5 0.4522 0.5749 
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Fig. 4. The prediction accuracy level of sorghum height in chicken manure 

treatment. 

 

Fig. 5. The prediction accuracy level of sorghum biomass in chicken manure 

treatment. 

Fig. 6 visually represents the accuracy outcomes in the 
context of chicken manure treatment, explicitly focusing on 
sorghum's Panicle weight (ANFIS-3) as the output parameter. 
Fig. 6 shows that the highest accuracy values, as measured by 
the three accuracy assessment tools, are achieved when using 
the Trapezoidal membership function type and membership 
function degrees {3, 3}. The corresponding accuracy values are 
MAPE of 5.77%, MAE of 0.2994, and RMSE of 0.395. 

 

Fig. 6. The prediction accuracy level of sorghum panicle weight in chicken 

manure treatment. 

To identify the membership function types and degrees that 
offer the highest accuracy in treatments involving cow manure 
and vermicompost, a similar methodology was applied to that 
used in the chicken manure treatment. By assessing the 
accuracy using MAPE, MAE, and RMSE for three distinct 
organic fertilizer dosages in a tidal swamp area for sorghum 
growth, the specific membership function types, and degrees 

for the MANFIS model predicting sorghum growth are 
determined and outlined in Table IV. 

TABLE IV. RESULTS OF MEMBERSHIP FUNCTION TYPE AND DEGREE 

SELECTION  

MANFIS 
Type Membership 

Function 
Degree Membership 

Function 

ANFIS-1 Trapezoidal {2,2} 

ANFIS-2 Bell-Shaped {4,2} 

ANFIS-3 Trapezoidal {3,3} 

ANFIS-4 Triangular {3,2} 

ANFIS-5 Trapezoidal {2,2} 

ANFIS-6 Triangular {2,2} 

ANFIS-7 Triangular {3,3} 

ANFIS-8 Triangular {3,3} 

ANFIS-9 Trapezoidal {4,2} 

Based on the accuracy testing results achieved through the 
utilization of four types of membership functions and four 
degrees of membership functions in the MANFIS model, as 
outlined in Table IV, we depict the schematic of the MANFIS 
model designed for predicting three sorghum plant growth 
parameters in tidal swamp land in Fig. 7. 

Subsequently, the predefined MANFIS model, with the 
chosen membership function type and degree, is subjected to 
simulation using the Simulink tool. This simulation aims to 
predict sorghum plant growth based on input parameters 
related to organic fertilizer dosage and dolomite lime 
application. The MANFIS model is simulated in this study 
using the Matlab/Simulink tool, as shown in Fig. 8. The ANFIS 
simulation model loads the fuzzy inference system (fis) files, 
which are the result of the data training process on the ANFIS 
model. These files are the result of the data training process of 
the ANFIS model, according to the input parameters of organic 
fertilizer and the predicted output parameters. During this 
simulation, nine ANFIS models predict three output 
parameters, with three organic fertilizer treatments as inputs. 

Chicken Manure 
Fertilizer Dosage

Dolomite Lime 
Dosage

ANFIS-1

Prediction of 
Sorghum 

Height
ANFIS-4

Prediction of 
Biomass 
Weight

ANFIS-7

Prediction of 
seed weight 
per panicle

ANFIS-2

ANFIS-5

ANFIS-8

ANFIS-3

ANFIS-6

ANFIS-9

Vermicompost 
Fertilizer Dosage

Cow Manure 
Fertilizer Dosage

Trapezoidal 
{2,2}

Triangular 
{3,2}

Bell-Shaped 
{4,2}

Triangular 
{3,3}

Triangular 
{3,3}

Trapezoidal 
{2,2}

Trapezoidal
{3,3}

Triangular 
{2,2}

Trapezoidal 
{4,2}

 

Fig. 7. MANFIS prediction model with selected membership function. 
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Fig. 8. Simulation of MANFIS prediction model. 

In Fig. 8, for chicken manure fertilizer with a dose of 8 
tons/ha and dolomite lime with a dose of 0.2 tons/ha, the 
predicted results are as follows: sorghum height (ANFIS-1) = 
113.2 cm, sorghum biomass weight (ANFIS-2) = 21.14 
tons/ha, and sorghum panicle weight (ANFIS-3) = 5.189 
tons/ha. For cow manure fertilizer with a dose of 14 tons/ha 
and dolomite lime with a dose of 2 tons/ha, the predicted 
results are sorghum height (ANFIS-4) = 110.8 cm, sorghum 
biomass weight (ANFIS-5) = 12.5 tons/ha, and sorghum 
panicle weight (ANFIS-6) = 4.67 tons/ha. Similarly, for 
vermicompost fertilizer with a dose of 3 tons/ha and dolomite 
lime with a dose of 0.6 tons/ha, the predicted results are 
sorghum height (ANFIS-7) = 93.29 cm, sorghum biomass 
weight (ANFIS-8) = 37.86 tons/ha, and Sorghum panicle 
weight (ANFIS-9) = 5.759 tons/ha. 

Table V presents the simulation results of predictions 
(height, biomass, and sorghum panicle weight) for various 
treatments with different doses of organic fertilizer and 
dolomite lime. In this Table V, each organic fertilizer is 
subjected to three combinations of organic fertilizer and 

dolomite lime doses, resulting in three predicted outcome 
parameters through the conducted simulations. This MANFIS 
model simulation (see Fig. 8) provides insights into the 
predicted outcomes obtained from applying various doses of 
organic fertilizer and dolomite lime on tidal land soil for 
sorghum plant growth prediction. 

TABLE V. RESULTS OF MANFIS MODEL SIMULATION PREDICTION 

Fertilizer Dosage 
(ton/ha) 

Dolomite 
Lime Dosage 

(ton/ha) 

Prediction Results 

Height 
(cm) 

Biomass 
(ton/ha) 

Panicle 
weight 
(ton/ha) 

Chicken Manure 

5 0.404 109.6 22.76 6.3 

2 0.6 98.34 19.58 6.331 

8 0.2 113.2 21.14 5.189 

Cow Manure 

5 1.5 104.5 21 3.782 

8 1 108.2 18.86 4.493 

14 2 110.8 12.5 4.67 

Vermicompost 

5 0.404 101.1 17.4 5.595 

8 0.1 50.23 10.11 3.1 

3 0.6 93.29 37.86 5.759 

IV. CONCLUSION 

The type of membership function used in this prediction 
model has a different type of membership function for each 
treatment of organic fertilizer on tidal soil for sorghum. The 
MANFIS model, using a dataset derived from observational 
data on sorghum plant height, biomass, and panicle weight 
with treatments of organic fertilizers (chicken manure, cow 
manure, vermicompost) in tidal soil, can be implemented to 
predict sorghum plant growth, including three predicted 
parameters: plant height, biomass, and panicle weight. The 
structure of the MANFIS model designed in this study consists 
of nine ANFIS models. The comparison of prediction accuracy 
results, utilizing three measurement tools - MAPE, MAE, and 
RMSE, demonstrates that the choice of membership function 
types and degrees influences the accuracy of prediction 
outcomes for each input data originating from the organic 
fertilizer treatment in tidal swamp land. This research achieved 
the highest prediction accuracy with the ANFIS-5 model for 
predicting the panicle weight of sorghum using Trapezoidal 
membership type and membership function parameters [3,3]. 
The model assessed the accuracy levels with a Mean Absolute 
Percentage Error (MAPE) of 5.77%, Mean Absolute Error 
(MAE) of 0.2994, and Root Mean Square Error (RMSE) of 
0.395. 

In conclusion, this research has successfully outlined a 
robust approach for predicting three sorghum plant growth 
parameters with high accuracy using the MANFIS model and 
optimal membership function selection. These findings hold 
significant potential for advancing agriculture and aiding 
stakeholders in making informed decisions in sorghum 
cultivation. Furthermore, this study also contributes to 
developing ANFIS modelling techniques in the agricultural 
context. The optimal membership function selection applied in 
this research can serve as a guideline for future similar studies 
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in predicting sorghum plant growth and other agricultural 
research endeavours. In future research, researchers can 
incorporate additional environmental factors like climate and 
rainfall for predicting plant growth. Additionally, they can 
explore other machine learning models to compare their 
prediction accuracy. 
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