
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

298 | P a g e

www.ijacsa.thesai.org

A Novel Paradigm for IoT Security: ResNet-GRU

Model Revolutionizes Botnet Attack Detection

Jyotsna A1, Mary Anita E.A2

Dept. of Computer Science and Engineering, Christ (Deemed to be University), Bangalore, India 1

Dept. of Computer Science and Engineering, RSET, Kochi, India1

Dept. of Computer Science and Engineering, Christ (Deemed to be University), Bangalore, India 2

Abstract—The rapid proliferation of the Internet of Things

(IoT) has engendered substantial security apprehensions, chiefly

due to the emergence of botnet attacks. This research study

delves into the realm of Intrusion Detection Systems (IDS) by

leveraging the IoT23 dataset, with a specific emphasis on the

intricate domain of IoT at the network's edge. The evolution of
edge computing underscores the exigency for tailored security

solutions. An array of statistical methodologies, encompassing

ANOVA, Kruskal-Wallis, and Friedman tests, is systematically

employed to illuminate the evolving trends across multiple facets

of the study. Given the intricacies entailed in feature selection
within edge environments, Chi-square analyses, Recursive

Feature Elimination (RFE), and Lasso-based techniques are

strategically harnessed to unearth meaningful feature subsets. A

meticulous evaluation encompassing 19 classifiers, meticulously

selected from both machine learning (ML) and deep learning
(DL) paradigms, is rigorously conducted. Initial findings

underscore the potential of the Gated Recurrent Unit (GRU)

model, especially when coupled with intrinsic lasso-based feature

selection. This promising outcome catalyzes the formulation of an

ensemble approach that harnesses multiple LassoCV models,
aimed at amplifying feature selection proficiency. Furthermore,

an optimized ResNet-GRU model emerges from the fusion of the

GRU and ResNet architectures, with the objective of augmenting

classification performance. In response to mounting concerns

regarding data privacy at the edge, a resilient federated learning
ecosystem is meticulously crafted. The seamless integration of the

optimized ResNet-GRU model into this framework facilitates the

employment of FedAvg, a widely acclaimed federated learning

methodology, to adeptly navigate the intricacies associated with

data sharing challenges. A comprehensive performance
evaluation is undertaken, wherein the ResNet-GRU model is

benchmarked against FedAvg and a diverse array of other

federated learning algorithms, including FedProx and Fed+. This

extensive comparati ve analysis encompasses a spectrum of

performance metrics and processing time benchmarks, shedding

comprehensive light on the capabilities of the model.

Keywords—Internet of things; federated learning; Gated

Recurrent Neural Networks; Long Short Term Memory (LSTM)

I. INTRODUCTION

The Internet of Things (IoT) has transformed device

connectivity, bringing benefits and challenges in anomaly
detection. IoT anomalies can stem from various factors like

environmental changes, cybersecurity breaches, or device
failures [1]. Detecting and understanding these anomalies are

vital for ensuring dependability, security, and performance.
Anomalies can disrupt operations, compromise data security,

or invade privacy, necessitating proactive identification.
Specialized methods, including artificial intelligence, machine

learning, and statistical analysis, are essential for anomaly
detection. IoT devices are susceptible to cybersecurity threats

like unauthorized access and data breaches, involving atypical
network traffic, unusual access patterns, or suspicious user

behavior. Detecting these anomalies is crucial for preventing

security breaches. Additionally, individual IoT devices may
exh ibit unexpected behavior due to software, firmware, or

hardware issues [2]. Promptly identifying and resolving these
device anomalies is essential for maintaining device reliability.

Addressing IoT anomalies involves various techniques,
including artificial intelligence, machine learning, statistical

analysis, and anomaly detection algorithms. These methods

aim to establish normal behavior, detect deviations, and trigger
appropriate responses. Machine learning and deep learning are

particularly effective due to their ability to analyze vast
datasets and identify patterns, enhancing IoT system safety and

reliability [3]. In this article, we explore how machine learn ing
and deep learning are applied in IoT anomaly detection.

Supervised learning is used with labeled datasets, training
models on historical data to recognize normal behavior patterns

and identify anomalies in real-time data. Algorithms like

decision trees, support vector machines (SVM), random
forests, and gradient boosting are employed [4]. In cases of

limited or unlabeled data, unsupervised learning becomes
essential. It identifies anomalies by analyzing data structures

and trends, utilizing techniques such as clustering to group data
and detect anomalies as outliers [5].

Autoencoders are a type of neural network, excel in IoT

anomaly detection by reducing input data dimensionality and
detecting anomalies through reconstruction errors. Recurrent

Neural Networks (RNNs), particu larly Long Short-Term
Memory (LSTM) networks, are ideal for handling sequential

IoT data. Generative Adversarial Networks (GANs) are
suitable for anomaly detection, as they can simulate complex

IoT data distributions [6]. Federated learning is a decentralized

approach for IoT anomaly detection that preserves data privacy
[7]. IoT devices locally train models, transmitting only model

updates, reducing the need for data transfer to a centralized
server. This approach is beneficial for scenarios with limited

bandwidth or intermittent connectivity, enhances model
stability, and accommodates device-specific constraints [8].

However, it introduces communication overhead and security
concerns [9].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

299 | P a g e

www.ijacsa.thesai.org

The proposed work analyzes the IoT23 dataset, focusing on
botnet attacks, using statistical tests and three feature selection

approaches (filter, wrapper, embedded). Fifteen classifiers,
including machine learning and deep learning models, are

evaluated, with the best-performing one being the GRU model

with embedded lasso-based feature selection. An ensemble of
LassoCV models and ResNet architecture further improves

feature selection and classifier performance. To address
privacy concerns, a federated learning environment is

established, and the optimized ResNet-GRU model is deployed
and compared with existing federated learning algorithms,

considering various metrics and processing time.

 The study focuses on Intrusion Detection Systems (IDS)
within the context of the Internet of Things (IoT) at the

network's edge, addressing heightened security
concerns due to botnet attacks.

 Edge computing's evolution necessitates customized
security solutions, and this research endeavors to

provide them.

 Various statistical methodologies, including ANOVA,

Kruskal-Wallis, and Friedman tests, are employed to

reveal evolving trends in IoT security at the network's
edge.

 Innovative feature selection techniques such as Chi-
square analyses, Recursive Feature Elimination (RFE),

and Lasso-based methods are applied to navigate the
complexities of feature selection in edge environments.

 The study rigorously evaluates 19 classifiers from both
machine learning (ML) and deep learning (DL)

domains, with a particular focus on the Gated Recurrent

Unit (GRU) model, which shows promise in
conjunction with lasso-based feature selection.

 A novel ensemble approach harnessing multiple
LassoCV models is developed to enhance feature

selection efficiency.

 The introduction of an optimized ResNet-GRU model,

combining GRU and ResNet architectures, aims to
improve classification performance.

 To address data privacy concerns at the edge, a resilient

federated learning ecosystem is created, integrating the
optimized ResNet-GRU model and employing FedAvg,

a widely acclaimed federated learning methodology.

 Comprehensive performance evaluation includes

benchmarking against FedAvg and various other
federated learning algorithms, such as FedProx and

Fed+, covering a wide range of performance metrics
and processing time benchmarks.

II. RELATED WORKS

This section presents the related works carried out by

several research scholars in the area of anomaly detection using
deep learning and machine learning with the aid of federated

learning.

Brett Weinger et al. [10] employed Federated Learning
(FL) for collaborative mobile and IoT projects but faced

technological challenges. Distributing ML training across
devices reduced prediction accuracy compared to centralized

learning. Limited data access led to issues like constrained

local ML models and class imbalances due to diverse event
contributions. They addressed these challenges with data

augmentation, resulting in a significant 22.9% performance
improvement in IoT anomaly detection across three datasets.

Zhuotao Lian et al. [11] enhanced IoT anomaly detection
while addressing security concerns. They proposed a

distributed federated learning approach using neural networks,

as traditional methods proved inaccurate. This technique
improved detection accuracy while safeguarding locally stored

data through decentralized learning, eliminating central failure
points and raw data flow. Simulations using the IoT23 dataset

validated its effectiveness, showcasing the promise of
distributed learning for secure and accurate IoT anomaly

detection, nearly matching centralized federated learning in

performance.

Truong Thu Huong et al. [12] developed the FedeX

architecture for efficient distributed anomaly detection in IoT-
based Industrial Control Systems (ICSs) for Smart

Manufacturing. FedeX outperformed 14 other methods on
various detection measures, offering rapid learning, lightweight

deployment, and interpretability. It allows real-t ime edge

deployment with 7.5 minutes of training and 14% memory use,
enhancing Smart Manufacturing practices. Explainable AI

(XAI) to improve model interpretability, helping experts make
confident decisions.

Subir Halder et al. [13] developed Hawk, an anomaly
detection system for LoRa-enabled IIoT networks to address

cybersecurity challenges. Hawk uses unique Carrier Frequency
Offset (CFO) measurements to create device "fingerprints" and

detect suspicious behavior. Employing federated learning,

Hawk outperformed other systems by over 8% in detection
accuracy and demonstrated high resilience against

cyberattacks, reducing storage overhead by 40%. It's an
effective solution for securing LoRa-enabled IIoT networks

against novel threats.

Xabier Sáez-de-Cámara et al. [14] addressed IoT

cybersecurity challenges in their study. They proposed a

system using unsupervised models for network intrusion
detection in large and diverse IoT and IIoT deployments. To

overcome issues like network overhead and heterogeneity, they
leveraged Federated Learning (FL) for cooperative training.

Their architecture, tested on a simulated network with 100
nodes and subjected to real-world attacks, demonstrated

efficient and robust intrusion detection for large-scale IoT and

IIoT environments.

Huong Thu Truong et al. [15] developed a scalable

anomaly detection system for continuously operating Industrial
Control Systems (ICS) in smart manufacturing and IIoT. Their

system combines Federated Learning, Autoencoder, and
Transformer, with a Fourier mixing sublayer for improved

performance. It offers rapid training within minutes, is
lightweight with lo w computational and memory requirements,

and minimizes communication costs. Compared to existing

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

300 | P a g e

www.ijacsa.thesai.org

methods, it reduces training time by 50% to 1200 seconds,
adapting to changing conditions and mitigating false positives

in ICS data patterns, ensuring robust anomaly detection for
smart manufacturing.

Jiamin Fan et al. [16] developed Score-VAE, a novel root

cause analysis method for IoT anomaly detection systems. It
addresses the challenge of distinguishing false positives from

malicious attacks. Score-VAE combines the training and
testing schemes of the VAE network within the federated

learning (FL) architecture, resulting in improved
generalization, learn ing, collaboration, and privacy protection.

It effectively identifies the sources of anomaly detection alarms

in real-world IoT data, outperforming standard approaches and
enhancing the accuracy of root cause analysis in IoT anomaly

detection.

Ali Raza et al. [17] introduced AnoFed, a novel federated

framework for anomaly detection in digital healthcare,
particularly in ECG analysis. To overcome limitations in

threshold selection and privacy concerns in centralized

machine learning, they combined transformer-based AE and
VAE with Support Vector Data Description (SVDD). AnoFed

enhances privacy, improves interpretability, and facilitates
adaptive anomaly detection. Experiments in ECG anomaly

detection demonstrated its effective performance with low
computational costs. AnoFed's efficiency and privacy-

preserving capabilities make it a valuable solution for digital

healthcare applications, suitable for deployment on low-
powered edge devices.

J. Jithish et al. [18] conducted a technical study in the past,
focusing on anomaly detection in the s mart grid using

Federated Learning (FL). Anomaly detection is crucial for
identifying energy theft, cyberattacks, and excessive power

usage. In this approach, smart metres locally train machine
learning models without sending data to a centralised server.

Smart metres download a global model from the server for on-

device training, and after local training, upload model
parameters to fine-tune the global model, protected by the

SSL/TLS protocol. Experiments on industry-standard datasets
demonstrated that FL models matched the accuracy of

centralised ML models while preserving individual privacy.
The research showcased the efficiency of FL-based models in

terms of memory, CPU utilization, bandwidth, and power

consumption at edge devices, making them suitable for
deployment in resource-constrained settings like smart metres

in the smart grid.

III. MATERIALS AND METHODS

This study focuses on IoT network botnet attack detection
using feature selection and classification techniques. It employs

three feature selection methods (filter, wrapper, and embedded)
to reduce dataset dimensionality. Out of 15 classifiers tested,

the GRU model with embedded lasso-based feature selection
emerges as the top performer [19]. To enhance detection

capabilities, an ensemble approach is applied, incorporating 10

LassoCV models. Additionally, optimization with the ResNet
architecture is employed to improve detection accuracy and

convergence speed by addressing the vanishing gradient
problem. This comprehensive approach aims to provide more

effective and efficient botnet attack detection in IoT networks
using the IoT23 dataset. The detailed architecture is presented

in Fig. 1.

Fig. 1. The overall system architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

301 | P a g e

www.ijacsa.thesai.org

A. System Architecture

The study's system architecture focuses on analyzing the

IoT23 dataset for botnet attacks, beginning with data collection
and cleaning. Features are extracted and the dataset is divided

into training and testing sets, followed by statistical tests to
uncover data patterns. Feature selection is performed using

filter, wrapper, and embedded methods, with the GRU model

with embedded Lasso-based selection standing out as the top
classifier. An ensemble approach with 10 LassoCV models

enhances feature selection's reliab ility. Further improvements
are achieved by integrating the ResNet architecture into the

GRU model, addressing deep learning challenges. To ensure
privacy, federated learning is introduced, allowing

decentralized model training without sharing raw data [20].
The optimized ResNet-GRU model's performance is compared

with existing federated learning algorithms like FedProx,

FedAvg, and Fed+ in terms of metrics and processing time.
This approach offers a comprehensive solution for botnet

attack detection in IoT networks while addressing privacy
concerns [21] [22].

B. Dataset Description

The IoT-23 dataset, released in January 2020, comprises

network activity data from IoT devices. It includes benign IoT
device traffic and malware-infected IoT device captures. This

dataset, created by the Stratosphere Laboratory at CTU
University, aims to support machine learning research in IoT

malware detection. It consists of twenty-three scenarios,

featuring malware execution on Raspberry Pi devices and real
IoT device captures like Ph ilips HUE smart LED lamps and

Amazon Echo. This dataset offers a valuable resource for
training algorithms to detect IoT malware and enhance IoT

security.

C. Data Preprocessing

Data preprocessing is the process of cleaning and
formatting data so that it can be used for analysis. This can

involve removing outliers, imputing missing values, and
transforming the data into a format that is suitable for the

analysis method being used. The Kruskal-Wallis test is a non-

parametric test that can be used to compare the distributions of
two or more groups. It is a non-parametric test because it does

not make any assumptions about the distribution of the data.
This makes it a versatile test that can be used with a variety of

data types [23].

To perform a Kruskal-Wallis test on the IoT-23 dataset,

you would first need to preprocess the data. This would involve

removing any outliers, imputing any missing values, and
transforming the data into a format that is suitable for the

Kruskal-Wallis test. Once the data has been preprocessed, you
can perform the Kruskal-Wallis test. The Kruskal-Wallis test

will output a p-value. If the p-value is less than a significance
level (typically 0.05), then you can conclude that there is a

significant difference between the distributions of the two or

more groups. The proposed work focuses mainly on the attacks
namely Torri, Okiru , Mirai and also normal labels - benign as

class labels out of 13 labels present in the IoT-23 dataset.

D. Kruskal – Wallis Test

The Kruskal-Wallis test is utilized to compare the medians

of three or more d istinct groups. Unlike parametric tests such
as ANOVA, which rely on assumptions of normal distribution

and equal variances, this non-parametric test is employed when
these assumptions are not met. The Kruskal-Wallis test

involves the following aspects:

Hypotheses: The null hypothesis (H0) assumes that all
group medians are equal, while the alternative hypothesis (HA)

posits that at least one median differs from the others. The
hypothesis is presented in Eq. (1).

𝐻 =
12

𝑛 (𝑛+1)
∑

𝑅𝑗
2

𝑛𝑗
− 3(𝑛 + 1) (1)

where, H is the Kruskal-Wallis test statistic, n is the total

number of observations across all groups, Rj is the sum of
ranks for group j, 𝑛𝑗 is the number of observations in group j.

The test statistic H follows a chi-square distribution with
degrees of freedom equal to the number of groups minus 1(df =

k-1), where k is the number of groups being compared. The
significance of the test can be determined by comparing the

obtained test statistic with the crit ical value from the chi-square
distribution with the appropriate degrees of freedom [24].

H statistic 345.78

Degrees of Freedom 4

p-value < 0.001

Null Hypothesis: There are no significant differences
among the groups.

Alternate Hypothesis: There are significant differences
among the groups.

Conclusion: The p-value (< 0.001) is smaller than the
significance level (usually 0.05), so we reject the null

hypothesis. This indicates significant differences among the

groups.

IV. PROPOSED METHODOLOGY

In this study, we comprehensively investigate cyber-attack

detection in IoT environments using the IoT23 dataset. We

compare the performance of different classifiers, including
LSTM, GRU, CNN, and traditional classifiers, to identify the

most effective one for detecting malicious activities in IoT
networks.

The CNN module described in the article consists of four
stages, each comprising multiple convolution blocks with

different sizes of convolution kernels. The convolutional layer
performs operations on input images, such as feature

extraction, feature mapping, weight sharing, and local

connection. The convolution operation reduces image size and
computational cost for subsequent operations.

The formula for the convolution operation is given as:

𝑣(𝑖, 𝑗) = (𝑋 ∗ 𝑤)(𝑖, 𝑗) + 𝑏 = ∑ 𝑛(𝑘 = 1) (𝑋𝑘 ∗ 𝑤𝑘)(𝑖 , 𝑗) + 𝑏

(2)

Here, 'n' represents the number of input matrices, Xk

denotes the kth input matrix, and ωk represents the kth sub

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

302 | P a g e

www.ijacsa.thesai.org

convolution kernel matrix of the convolution kernel. The
activation layer applies a non-linear mapping, specifically the

Rectified Linear Unit (ReLU) activation function, to the output
of the convolution layer. The ReLU function is defined as:

𝑅𝑒𝐿𝑈 (𝑥) = {
𝑥, 𝑖𝑓 𝑥 > 0

0, 𝑖𝑓 𝑥 ≤ 0
 (3)

A Simple Recurrent Unit (SRU) serves as the foundation
for Recurrent Neural Networks (RNNs), but RNNs can be

challenging to train due to gradient issues. Variations like GRU
and LSTM were introduced to address these problems. LSTM,

for example, includes memory cells and gates to capture

temporal sequences and improve recognition accuracy.
However, LSTM's complexity can be an issue, so a simplified

gating unit was introduced to streamline calculations. LSTM
and GRU differ in how they update the next hidden state and

handle content exposure. LSTM uses summat ion for updates,
while GRU considers the time needed to save information in

memory. Recent comparisons have shown that GRU often

performs slightly better than LSTM in various machine
learning applications.

In the structure of a Bi-GRU, both reset and update gates
are present. These gates allow GRU to pass information across

multiple t ime windows for better classification or prediction.
Specifically, weights and data are stored in memory to be used

with a given state for updating future values. In the update

gate, GRU computes zt at a given time t to solve the vanishing
gradient problem using the following formula:

𝑧𝑡 = 𝜎 (𝑊𝑧[ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑧). (4)

whereas, in the reset gate, GRU calculates zt at a given time

t to illustrate how much past information to forget. The gate
executes the following calculation:

𝑟𝑡 = 𝜎(𝑊𝑟[ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑟) . (5)

The current storage content stage is calculated according to
the following formula:

ℎ~ = 𝑡𝑎𝑛ℎ(𝑊 [𝑟𝑡ℎ𝑡 − 1, 𝑥𝑡]) (6)

Finally, ht is calculated in the final memory of the current

time step to store the current unit information for calculat ing

the output vector ot, as follows:

ℎ𝑡 = (1 − 𝑧𝑡) ℎ𝑡 − 1 + 𝑧𝑡ℎ~𝑡 (7)

For many sequence modeling tasks, accessing future and
past contexts is beneficial. However, the standard GRU

network processes the sequence in chronological order,
disregarding the future context. Bi-GRU networks extend the

unidirectional GRU network by introducing a second layer in

which the hidden connections flow in reverse chronological
order.

A. Long Short Term Memory (LSTM)

The LSTM network is a specialized type of deep neural

network that excels at capturing long-term dependencies in
time-series data. It achieves this by incorporating memory cells

and gating operations. The memory cells are updated through
gating operations that determine what information to remember

and what to forget in the temporal sequence. This makes

LSTM highly suitable for modelling temporal dynamics
effectively.

There are three types of gating operations in LSTM: the
input gate (it), the output gate (ot), and the forget gate (ft). The

expressions that form the foundation of LSTM are as follows:

Input Gate:

𝑖𝑡 = 𝜎𝑡
(𝑊𝑖

[ℎ𝑡 − 1, 𝑥1
] + 𝑏𝑖

) (8)

Forget Gate:

𝑓𝑡 = 𝜎𝑓(𝑊𝑓
[ℎ𝑡 − 1, 𝑥1

] + 𝑏𝑓) (9)

Cell State Update

𝑐𝑡 = 𝑓𝑡 . 𝑐𝑡−1 + 𝑖𝑡 .𝜎𝑐
(𝑊𝑐

[ℎ𝑡 −1, 𝑥𝑡
] + 𝑏𝑐

) (10)

Output Gate

𝑜𝑡 = 𝜎0
(𝑊0

[ℎ𝑡 −1,𝑥𝑡
] + 𝑏0

) (11)

Hidden State Update

 ℎ𝑡 = 𝑜𝑡 . 𝜎ℎ
(𝑐𝑡

) (12)

where:

 𝑥𝑡 is the input data sequence.

 𝑖𝑡 ,𝑓𝑡 and 𝑜𝑡 represent the input, forget and output gates

respectively.

 𝑐𝑡 and ℎ𝑡 correspond to the cell and hidden states
respectively.

 𝑏𝑖 , 𝑏𝑓, 𝑏𝑐 𝑎𝑛𝑑 𝑏𝑜 are biases related to the input gate,

forget gate, cell state and output gate respectively.

 𝑊𝑖 , 𝑊𝑓 , 𝑊𝑐 𝑎𝑛𝑑 𝑊𝑜 are the weight matrices of the input

gate, forget gate, cell state and output gate respectively.

 𝜎𝑡 , 𝜎𝑓, 𝜎𝑐 ,𝜎𝑜 𝑎𝑛𝑑 𝜎ℎ are the activation functions of the

input gate, forget gate, cell state, output gate and hidden

state respectively.

In this study, we employed three distinct variations of
LSTM, namely the single cell, stacked, and bidirectional

LSTM models. These different LSTM variants were chosen to
examine and compare their benchmark scores. By

incorporating these diverse LSTM architectures, we aimed to
exp lore the performance differences and identify the most

suitable model for the given task.

1) Single Cell LSTM: Single-cell LSTM (Long Short-Term

Memory) is a variation of the traditional LSTM neural

network architecture that is designed to process individual

data points or sequences one at a time. It is particularly useful

in tasks where the input data has a temporal or sequential

nature, such as natural language processing, speech

recognition, and time series analysis. LSTMs are a type of

recurrent neural network (RNN) that is capable of capturing

long-term dependencies and addressing the vanishing gradient

problem, which is a common issue in training RNNs. The

single-cell LSTM arch itecture extends the basic LSTM by

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

303 | P a g e

www.ijacsa.thesai.org

removing the concept of cell state, resulting in a simpler and

more efficient model.

2) Stacked LSTM: Stacked LSTM (Long Short-Term

Memory) is an extension of the traditional LSTM architecture

that involves stacking multiple LSTM layers on top of each

other. This allows the model to learn more complex and

abstract representations of sequential data by capturing

hierarchical dependencies. Each LSTM layer in a stacked

LSTM consists of mult iple LSTM cells, and the output of one

layer serves as the input to the next layer. Th is stacking of

LSTM layers enables the network to learn h igher-level

features and representations by building upon the

representations learned in the preceding layers.

3) Bidirectional LSTM: Bidirectional LSTM (Long Short-

Term Memory) is an extension of the traditional LSTM

architecture that processes the input sequence in both forward

and backward\\directions. This allows the model to capture

dependencies from both past and future context, enabling

better understanding of the input sequence. In a b idirectional

LSTM, the input sequence is processed by two separate LSTM

layers: one layer processes the sequence in the forward

direction, and the other layer processes it in the backward

direction. The outputs of these two layers are then combined

to produce the final output.

4) Forward LSTM: A Forward LSTM (Long Short-Term

Memory) is a type of recurrent neural network (RNN)

architecture used in machine learning and deep learning for

sequential data processing tasks. LSTM networks are

particularly effective in handling sequences of data because

they can capture long-range dependencies and mit igate the

vanishing gradient problem, which is common in tradit ional

RNNs. In a Forward LSTM, the input sequence is processed

from the beginning to the end, one-time step at a time, without

considering future time steps during the computation at each

step. By processing the input sequence in both directions, the

bidirectional LSTM can capture both past and future context,

which can be beneficial in tasks such as natural language

processing, sentiment analysis, and speech recognition. It

allows the model to make more informed predictions by

considering the complete context of the sequence.

B. Federated Learning

Federated learning is a machine learn ing approach that

allows training of deep learn ing models across a network of
decentralized devices while preserving data privacy. It enables

the aggregation of local model updates from multip le devices
without the need to transfer raw data to a central server. In this

proposed work, a detailed introduction to popular federated

learning algorithms: FedAvg, FedProx, Fed+ (FedPlus) has
been discussed.

1) FedAvg (Federated Averaging): FedAvg is a

fundamental federated learning algorithm that utilizes the idea

of model averaging. It follows a simple iterative process

where each device trains a local model using its local data and

shares only the model's updates with the central server. The

central server aggregates the updates from all devices by

taking the average and updates the global model accord ingly.

The algorithm can be summarized as follows:

Initialization: Initialize the global model parameters, θ.

Iteration: Randomly select a subset of devices for

participation.

For each selected device i:

Step 1: Send the current global model parameters to device

i.

Step 2: Device i trains the local model on its local data,

optimizing for a specific loss function, and obtains updated
local model parameters, 𝜃𝑖 .

Step 3: Device i calculates the update difference: ∆𝜃𝑖 = 𝜃𝑖 -

θ.

Step 4: Device i sends the update difference back to the
central server.

The central server aggregates the update differences from
all devices and calculates the average update:

 ∆𝜃𝑎𝑣𝑔=
1

𝑁
∗ ∑ ∆𝜃𝑖 (13)

The central server updates the global model:

 𝜃 = 𝜃 + ∆𝜃𝑎𝑣𝑔 (14)

2) FedProx (Federated Proximal): FedProx extends

FedAvg by introducing a proximal term to regularize the

updates sent by each device. This regularization term helps in

controlling the magnitude of the updates, preventing devices

from deviating too far from the global model. The objective

function of FedProx can be defined as:

𝐿(𝜃) = (
1

𝑁
) ∗ ∑(1(𝜃 , 𝐷𝑖

)) + 𝜆
2⁄ ∗ ‖𝜃 − 𝜃𝑜𝑙𝑑

‖2 (15)

where, 1(𝜃 , 𝐷𝑖
) represents the loss function on device i's

local data 𝐷𝑖 , λ is a hyperparameter controlling the proximal

term, and 𝜃𝑜𝑙𝑑 is the model parameters from the previous
round. FedProx can be seen as minimizing a weighted sum.

3) Fed+ (FedPlus): Fed+ is an extension of FedAvg that

addresses the issue of device heterogeneity by assigning

different weights to each device during aggregation. The

weights reflect the devices' relative contributions to the global

model. Th is approach helps to mit igate the impact of devices

with varying computation capabilit ies or imbalanced datasets.

The Fed+ algorithm can be summarized as follows:

Initialization: Initialize the global model parameters, θ.

Assign an initial weight for each device i, 𝑤𝑖 .

Iteration:

Step 1: Randomly select a subset of devices for

participation.

Step 2: For each selected device i:

Step 3: Send the current global model parameters to device
i.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

304 | P a g e

www.ijacsa.thesai.org

Step 4: Device i trains the local model on its local data,
optimizing for a specific loss function, and obtains updated

local model parameters, 𝜃𝑖 .

Step 5: Device i calculates the update difference:

 ∆𝜃𝑖 = 𝜃𝑖 - θ. (16)

Step 6: Device i sends the update difference back to the

central server.

The central server aggregates the update differences from

all devices by weighted averaging:

∆𝜃𝑎𝑣𝑔 =
∑(𝑤𝑖 ∗∆𝜃𝑖)

∑ 𝑤𝑖
 (17)

The central server updates the global model:

θ = θ +∆𝜃𝑎𝑣𝑔 . (18)

Adjust the weights of devices based on their contribution to
the global model.

These algorithms represent different approaches to
addressing the challenges of federated learning, such as

heterogeneity, privacy preservation, and data distribution

variations. The equations and explanations provided offer a
high-level understanding of the algorithms, but specific

implementation details may vary depending on the framework
or research work.

C. ResNet-GRU Combined Architecture

Federated Learning is a groundbreaking approach that

enables model train ing across distributed devices while
protecting data privacy. The ResNet-GRU model, combin ing

Residual Networks (ResNets) and Gated Recurrent Units
(GRUs), excels at capturing spatial and temporal patterns,

especially in scenarios with data distributed across mult iple

devices. ResNets, introduced in 2016, revolutionized deep
learning, addressing the vanishing gradient problem in deep

neural networks. They use "residual blocks" with skip
connections, allowing gradients to flow more effectively

through many layers. A residual block comprises stacked
convolutional layers, batch normalization, and activation

functions, with shortcut connections enabling input to bypass

some convolutional layers. This design allows for train ing
extremely deep networks more efficiently.

The central idea behind residual learning is to model the
residual function ΔF(x) = F(x) - x, where F(x) represents the

mapping learned by the convolutional layers, and x denotes the
input to the residual block. Instead of attempting to learn the

complete mapping F(x), the network focuses on learning the

difference or residual ΔF(x), which is subsequently added back
to the input x to obtain the output of the block. This element-

wise addition operation facilitates the preservation of prior
knowledge, simplifying the learning process for deep networks.

Federated Learning is revolutionizing machine learn ing by
training models on distributed devices while protecting data

privacy. In anomaly detection, the ResNet-GRU model stands
out for capturing both spatial and temporal features. It

combines Residual Networks (ResNets) and Gated Recurrent

Units (GRUs), making it ideal for federated learning scenarios
with diverse data. Federated Learning decentralizes data to

protect user privacy and data security. The ResNet-GRU model
excels by blending ResNets' spatial prowess and GRUs'

sequential data modeling capabilities. Residual blocks, key to
the ResNet-GRU model, enable training deep networks by

allowing information to bypass certain layers. Federated

training is collaborative, with clients training local ResNet-
GRU models on their data subsets. Models iteratively update,

and global models are aggregated while preserving data
privacy. Evaluation metrics like precision, recall, and ROC-

AUC assess the model's anomaly detection performance. The
ResNet-GRU model, adept at capturing spatial and temporal

nuances, is a powerful tool for real-time anomaly detection

while respecting federated learning principles.

Algorithm: ResNet-GRU Model in Federated Learning

for Anomaly Detection

Input: Federated dataset (split into mult iple clients),

hyperparameters

Output: Trained ResNet-GRU model for anomaly

detection

Step 1: Initialize the ResNet-GRU model

- Define the architecture of the ResNet-GRU model.

- Set hyperparameters such as the number of ResNet
blocks, GRU units, learning rate, batch size, and number of

training rounds.

Step 2: Federated Learning Setup

- Sp lit the federated dataset into multiple clients or devices,

each having its own subset of data.

- Distribute the ResNet-GRU model to all clients.

Step 3: Federated Training

- For each train ing round (t = 1 to number of training

rounds):

- For each client i in the federated dataset:

- Load the ResNet-GRU model parameters from the global
model.

- Train the ResNet-GRU model on client i using its local

subset of data:

- For each mini-batch in client i's data:

- Perform forward pass through the ResNet to extract
spatial features.

- Convert the spatial features into temporal sequences (if
needed).

- Pass the temporal sequences through the GRU to capture

temporal patterns.

- Calculate the loss using an appropriate anomaly detection

loss function.

- Perform backward pass and update the model's parameters

using an optimization algorithm (e.g., stochastic gradient
descent).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

305 | P a g e

www.ijacsa.thesai.org

- After training, send the updated model parameters back to
the server.

Step 4: Model Aggregation

- Aggregate the model parameters from all clients to create

a global ResNet-GRU model:

- For each layer and parameter in the ResNet-GRU model:

- Calculate the weighted average of the parameters from all

clients.

- Update the global model's parameters with the weighted

averages .

Step 5: Evaluation

- After each training round, evaluate the global ResNet-

GRU model on a separate test set (not used for training) to
monitor its performance.

- Measure metrics such as precision, recall, F1-score, ROC-
AUC, or mean average precision for anomaly detection.

Step 6: Repeat Training and Aggregation

- Repeat Steps 3 to 5 for the desired number of training

rounds or until the global model achieves satisfactory

performance.

Step 7: Deployment

- Once the global ResNet-GRU model achieves satisfactory
performance, deploy it to the production environment for

anomaly detection on new data.

V. RESULTS AND DISCUSSIONS

The following section discusses the results obtained from
the various experiments done on the IoT-23 dataset.

TABLE. I PERFORMANCE EVALUATION WITHOUT FEATURE SELECTION

SL
No

Classif iers
Accur

acy
Precis

ion
Rec
all

F1
score

Time

Taken

(Sec)

1
Support Vector

Machine
 0.62 0.62 0.64 0.63 289.325

2 K-Nearest Neighbor 0.66 0.66 0.67 0.66 256

3
Linear Discriminant

Analysis
 0.71 0.75 0.71 0.73 290

4 Logistic Regression 0.65 0.65 0.63 0.64 300.25

5
Multi-Layer
Perceptron

 0.7 0.7 0.69 0.69 300.24

6 Random Forest 0.64 0.64 0.63 0.63 483.987

7 Decision Tree 0.69 0.69 0.68 0.69 356.355

8 Naïve Bayes 0.63 0.62 0.63 0.63 478.9

9 AdaBoost 0.68 0.68 0.68 0.68 225.36

10 XGBoost 0.62 0.63 0.61 0.62 290.93

11 CatBoost 0.67 0.68 0.67 0.68 600.32

12 LightGBM 0.61 0.61 0.6 0.61 542.03

13
Convolutional Neural

Network
 0.66 0.656 0.65 0.65 320

14 Single Cell LSTM 0.61 0.702 0.7 0.69 430

15 Stacked LSTM 0.66 0.748 0.75 0.73 345

16 Bidirectional LSTM 0.61 0.794 0.8 0.77 389

17 Forward LSTM 0.66 0.84 0.85 0.81 225

18
Long Short Term

Memory
 0.6 0.6 0.61 0.6 245.36

19
Gated Recurrent
Neural Network

 0.75 0.75 0.74 0.75 158.96

Table I shows classifier performance without feature
selection on the dataset, evaluated by accuracy, precision,

recall, F1 score, and processing time. Results vary
significantly: Support Vector Machine achieves 62% accuracy,

K-Nearest Neighbor 66%, and Linear Discriminant Analysis

71%. Gated Recurrent Neural Network performs well with
75% accuracy, precision, recall, and F1 score. Processing time

varies, from 158.96 seconds for the Gated Recurrent Neural
Network to 600.32 seconds for CatBoost, indicating different

computational demands. Visualization plots are in Fig. 2 and
Fig. 3.

Fig. 2. Performance evaluation without feature selection.

Fig. 3. Time taken without feature selection.

The Table II compares classifier performance using the
Filter Approach for feature selection on the dataset.

Performance metrics include accuracy, precision, recall, F1

score, and processing time. Results vary: Support Vector
Machine achieves 82% accuracy, K-Nearest Neighbor 87%,

and Linear Discriminant Analysis 88%. Long Short Term
Memory performs at 74%. Gated Recurrent Neural Network

excels with 90% precision, 92% recall, and 91% F1 score.
Processing time ranges from 215.32 seconds (GRU) to 720.36

seconds (LSTM), indicating varying computational

requirements.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

306 | P a g e

www.ijacsa.thesai.org

TABLE. III PERFORMANCE COMPARISON WITH FILTER APPROACH

SL
No

Classifiers
Accur

acy
Precis

ion
Rec
all

F1
score

Time Taken
(Sec)

1
Support Vector

Machine
0.82 0.82 0.82 0.82 300.25

2 K-Nearest Neighbor 0.87 0.87 0.86 0.87 354

3
Linear Discriminant

Analysis
0.88 0.89 0.88 0.9 347

4 Logistic Regression 0.87 0.87 0.86 0.87 333

5 Multi-Layer Perceptron 0.81 0.83 0.82 0.83 365.5

6 Random Forest 0.75 0.8 0.75 0.77 500.24

7 Decision Tree 0.8 0.83 0.8 0.81 256.96

8 Naïve Bayes 0.74 0.78 0.74 0.76 583.13

9 AdaBoost 0.66 0.71 0.66 0.68 300.24

10 XGBoost 0.76 0.81 0.76 0.78 300.25

11 CatBoost 0.81 0.83 0.81 0.82 555.56

12 LightGBM 0.8 0.83 0.8 0.81 657.36

13
Convolutional Neural

Network
0.85 0.89 0.85 0.87 330

14 Single Cell LSTM 0.61 0.702 0.7 0.69 678.36

15 Stacked LSTM 0.66 0.748 0.75 0.73 351

16 Bidirectional LSTM 0.61 0.794 0.8 0.77 699.36

17 Forward LSTM 0.66 0.84 0.85 0.81 372

14
Long Short Term

Memory
0.74 0.78 0.74 0.76 720.36

15
Gated Recurrent Neural

Network
0.9 0.92 0.89 0.91 215.32

The visualization p lot for the Table II is presented in Fig. 4
and time taken is presented in Fig. 5.

Fig. 4. Performance evaluation with filter approach.

Fig. 5. Time taken for filter approach.

Table III compares classifier performance with the
Wrapper Approach for feature selection on the dataset,

considering accuracy, precision, recall, F1 score, and
processing time. Support Vector Machine achieves the highest

accuracy at 89%, while K-Nearest Neighbor reaches 84%, and
Linear Discriminant Analysis achieves 80% accuracy.

Precision, recall, and F1 score vary across classifiers, with

Convolutional Neural Network excelling at 94%, 88%, and
91%, respectively. Processing time ranges from 900 seconds

(GRU) to 32,546 seconds (Linear Discriminant Analysis),
indicating distinct computational requirements. Visualizat ion

plots are available in Fig. 6, and processing time is shown in
Fig. 7.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

307 | P a g e

www.ijacsa.thesai.org

TABLE. IV PERFORMANCE COMPARISON WITH WRAPPER APPROACH

SL

No
Classif iers

Accur

acy

Precis

ion

Rec

all

F1

score

Time Taken

(Sec)

1
Support Vector

Machine
0.89 0.92 0.89 0.91 4456

2 K-Nearest Neighbor 0.84 0.83 0.84 0.84 5478

3
Linear Discriminant

Analysis
0.8 0.83 0.8 0.81 32546

4 Logistic Regression 0.75 0.8 0.75 0.77 6589

5
Multi-Layer
Perceptron

0.8 0.83 0.8 0.81 9053

6 Random Forest 0.86 0.91 0.86 0.88 4568

7 Decision Tree 0.91 0.92 0.91 0.93 8865

8 Naïve Bayes 0.83 0.82 0.83 0.83 6545

9 AdaBoost 0.85 0.81 0.85 0.86 1866

10 XGBoost 0.82 0.81 0.82 0.82 2000

11 CatBoost 0.8 0.83 0.8 0.81 1500

12 LightGBM 0.78 0.79 0.78 0.78 3456

14 Single Cell LSTM 0.71 0.74 0.71 0.72 1521

15 Stacked LSTM 0.69 0.7 0.69 0.69 3477

16 Bidirectional LSTM 0.62 0.65 0.62 0.63 1542

17 Forward LSTM 0.6 0.61 0.6 0.6 3498

13
Convolutional Neural

Network
0.88 0.94 0.88 0.91 1563

14
Long Short Term

Memory
0.89 0.92 0.89 0.91 980

15
Gated Recurrent
Neural Network

0.93 0.94 0.95 0.96 900

Fig. 6. Performance evaluation with wrapper approach.

Fig. 7. Performance evaluation with wrapper approach.

Table IV compares classifier performance with the
Embedded Approach for feature selection on the dataset,

considering accuracy, precision, recall, F1 score, and

processing time. Support Vector Machine achieves 82%
accuracy, K-Nearest Neighbor reaches 86%, and Linear

Discriminant Analysis attains 81% accuracy. Convolutional
Neural Network excels with 98% precision, 91% recall, and

94% F1 score, ranking among the top performers. Processing
time varies, from 1,200.35 seconds (GRU) to 32,658 seconds

(K-Nearest Neighbor), indicating significant computational

differences across models. Visualization plots are available in
Fig. 8, and processing time is shown in Fig. 9.

TABLE. V PERFORMANCE EVALUATION USING EMBEDDED APPROACH

SL

No
Classifiers

Accur

acy

Preci

sion

Rec

all

F1

score

Time

Taken
(Sec)

1
Support Vector

Machine
0.82 0.81 0.8 0.82 12056

2 K-Nearest Neighbor 0.86 0.91 0.9 0.88 32658

3
Linear Discriminant

Analysis
0.81 0.798 0.8 0.8 8986

4 Logistic Regression 0.86 0.91 0.9 0.88 7893

5
Multi-Layer
Perceptron

0.85 0.87 0.9 0.86 4769

6 Random Forest 0.84 0.83 0.8 0.84 4869

7 Decision Tree 0.89 0.92 0.9 0.91 5478

8 Naïve Bayes 0.83 0.82 0.8 0.83 9866

9 AdaBoost 0.8 0.83 0.8 0.81 8255

10 XGBoost 0.78 0.79 0.8 0.78 11290

11 CatBoost 0.87 0.94 0.9 0.9 8600

12 LightGBM 0.88 0.92 0.9 0.9 6542.03

13
Convolutional

Neural Network
0.91 0.98 0.9 0.94 3220

14 Single Cell LSTM 0.79 0.83 0.8 0.81 2320.03

15 Stacked LSTM 0.82 0.89 0.8 0.85 2798

16 Bidirectional LSTM 0.7 0.74 0.7 0.72 1898.03

17 Forward LSTM 0.73 0.8 0.7 0.76 2376

18
Long Short Term

Memory
0.9 0.93 0.9 0.91 1295.96

19
Gated Recurrent

Neural Network
0.95 0.94 1 0.96 1200.35

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

308 | P a g e

www.ijacsa.thesai.org

Fig. 8. Performance evaluation with embedded approach.

Fig. 9. Performance evaluation with embedded approach.

Table V displays ensemble-based embedded feature
selection with bagging results for various classifiers, featuring

accuracy, precision, recall, F1 score, and processing time.
Evaluated classifiers include Convolutional Neural Network,

Long Short Term Memory, Gated Recurrent Neural Network,
Single Cell LSTM, Stacked LSTM, Bidirectional LSTM, and

Forward LSTM. The Gated Recurrent Neural Network

achieved the highest performance, with accuracy, precision,
recall, and F1 score around 0.96 and a processing time of 1887

seconds. In contrast, the Forward LSTM exhibited lower
performance, with scores around 0.72 and a processing time of

2160 seconds.

TABLE. VI ENSEMBLE-BASED EMBEDDED FEATURE SELECTION

SL

No
Classif iers

Accur

acy

Precis

ion

Rec

all

F1

score

Time Taken

(Sec)

1
Convolutional Neural

Network
0.94 0.93 0.94 0.94 2896

2
Long Short Term

Memory
0.89 0.83 0.88 0.91 2005

3
Gated Recurrent
Neural Network

0.96 0.95 0.94 0.96 1887

4 Single Cell LSTM 0.9 0.89 0.88 0.9 1954

5 Stacked LSTM 0.84 0.83 0.82 0.84 1889

6 Bidirectional LSTM 0.78 0.77 0.76 0.78 2525

7 Forward LSTM 0.72 0.71 0.7 0.72 2160

8 FedProx 0.89 0.88
0.08

7
0.89 1900

9 FedAvg 0.9 0.89 0.88 0.9 1950

10 Fed+ 0.88 0.87 0.87 0.88 2367

The visualization plots for the Table V is presented in Fig.
10 and time taken is presented in Fig. 11.

Fig. 10. Evaluation with ensemble-based embedded feature selection with

bagging.

Fig. 11. Time taken with ensemble-based embedded feature selection with

bagging.

This Table VI compares the performance of six classifiers
in solving the task, considering accuracy, precision, recall, and

F1 score. The classifiers are Gated Recurrent Neural Network,
ResNet-GRU, Single Cell LSTM, Stacked LSTM,

Bid irectional LSTM, and Forward LSTM. ResNet-GRU stands
out as the top performer, excelling in all metrics. However, it's

important to consider the computational cost, as processing

time varies among models. The choice of the best classifier
depends on specific application requirements and available

computational resources.

TABLE. VII FEDERATED LEARNING PERFORMANCE METRIC.

SL
No

Classif iers
Accur

acy
Precis

ion
Rec
all

F1
score

Time Taken
(Sec)

1
Gated Recurrent

Neural Network
0.96 0.95 0.94 0.96 1887

2 ResNet-GRU 0.97 0.96 0.95 0.97 1550

3 Single Cell LSTM 0.94 0.93 0.92 0.94 1899

4 Stacked LSTM 0.95 0.94 0.93 0.95 1562

5 Bidirectional LSTM 0.92 0.91 0.9 0.92 1911

6 Forward LSTM 0.93 0.92 0.91 0.93 1574

7 FedProx 0.86 0.86 0.85 0.86 1880

8 FedAvg 0.89 0.88 0.89 0.88 1750

9 Fed+ 0.9 0.89 0.88 0.88 1987

The visualization p lots for the Table VI is presented in Fig.
12 and time taken is presented in Fig. 13.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

309 | P a g e

www.ijacsa.thesai.org

Fig. 12. Performance metric with federated learning.

Fig. 13. Time taken with federated learning.

In federated learning, the loss function curve is essential for

tracking the model's progress in a privacy-preserving setting. It
enables multiple devices or clients to train a global model

collaboratively without sharing raw data centrally. Each client

trains its model locally, and the loss function measures the
model's prediction accuracy compared to actual labels. The loss

function curve depicts how this accuracy evolves over
federated learning rounds. Initially, it may fluctuate as models

adapt to individual data. Over rounds, it generally decreases,
indicating improved performance. However, federated

learning's unique challenge arises from diverse data

distributions across clients, leading to varying loss function
curves and potentially non-smooth trajectories due to

aggregation of local models. The loss function curve obtained
from our setting is shown in Fig. 14.

Fig. 14. Loss-Function curve.

VI. CONCLUSION AND FUTURE ENHANCEMENT

In this study, we analyzed the IoT23 dataset, focusing on

botnet attacks, and used statistical tests to uncover patterns. We

employed various feature selection methods and tested 19
classifiers, with the GRU model and embedded lasso-based

feature selection performing the best. An ensemble of LassoCV
models improved feature selection, and integrating the ResNet

architecture further boosted the GRU model's performance. We
addressed privacy concerns using federated learning, and the

optimized ResNet-GRU model outperformed existing

algorithms. Future work should include robustness testing,
hyperparameter tuning, and exploring larger datasets.

Investigating different federated learning approaches and
assessing real-world deployment challenges are also promising

directions for further research.

REFERENCES

[1] Herabad, Mohammadsadeq Garshasbi. "Communication-efficient semi-
synchronous hierarchical federated learning with balanced training in
heterogeneous IoT edge environments." Internet of Things 21 (2023):
100642.

[2] Ahanger, Tariq Ahamed, Abdulaziz Aldaej, Mohammed Atiquzzaman,
Imdad Ullah, and Muhammad Yousufudin. "Federated learning-inspired
technique for attack classification in IoT networks." Mathematics 10, no.
12 (2022): 2141.

[3] Ahanger, Tariq Ahamed, Abdulaziz Aldaej, Mohammed Atiquzzaman,
Imdad Ullah, and Muhammad Yousufudin. "Federated learning-inspired
technique for attack classification in IoT networks." Mathematics 10, no.
12 (2022): 2141.

[4] Wang, Weili, Omid Abbasi, Halim Yanikomeroglu, Chengchao Liang,
Lun Tang, and Qianbin Chen. "A VHetNet -Enabled Asynchronous
Federated Learning-Based Anomaly Detection Framework for
Ubiquitous IoT ." arXiv preprint arXiv:2303.02948 (2023).

[5] Sánchez, Pedro Miguel Sánchez, Alberto Huertas Celdrán, Timo
Schenk, Adrian Lars Benjamin Iten, Gérôme Bovet, Gregorio Martínez
Pérez, and Burkhard Stiller. "Studying the robustness of anti-adversarial
federated learning models detecting cyberattacks in iot spectrum
sensors." IEEE Transactions on Dependable and Secure Computing
(2022).

[6] Gkillas, Alexandros, and Aris Lalos. "Resource Efficient Federated
Learning for Deep Anomaly Detection in Industrial IoT applications." In
2023 24th International Conference on Digital Signal Processing (DSP),
pp. 1-5. IEEE, 2023.

[7] Gkillas, Alexandros, and Aris Lalos. "Resource Efficient Federated
Learning for Deep Anomaly Detection in Industrial IoT applications." In
2023 24th International Conference on Digital Signal Processing (DSP),
pp. 1-5. IEEE, 2023.

[8] Gkillas, Alexandros, and Aris Lalos. "Resource Efficient Federated
Learning for Deep Anomaly Detection in Industrial IoT applications." In
2023 24th International Conference on Digital Signal Processing (DSP),
pp. 1-5. IEEE, 2023.

[9] Rey, Valerian, Pedro Miguel Sánchez Sánchez, Alberto Huertas
Celdrán, and Gérôme Bovet. "Federated learning for malware detection
in IoT devices." Computer Networks 204 (2022): 108693.

[10] Weinger, Brett , Jinoh Kim, Alex Sim, Makiya Nakashima, Nour
Moustafa, and K. John Wu. "Enhancing IoT anomaly detection
performance for federated learning." Digital Communications and
Networks 8, no. 3 (2022): 314-323.

[11] Lian, Zhuotao, and Chunhua Su. "Decentralized federated learning for
Internet of Things anomaly detection." In Proceedings of the 2022 ACM
on Asia Conference on Computer and Communications Security, pp.
1249-1251. 2022.

[12] Huong, Truong Thu, Ta Phuong Bac, Kieu Ngan Ha, Nguyen Viet
Hoang, Nguyen Xuan Hoang, Nguyen Tai Hung, and Kim Phuc Tran.
"Federated learning-based explainable anomaly detection for industrial
control systems." IEEE Access 10 (2022): 53854-53872.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

310 | P a g e

www.ijacsa.thesai.org

[13] Halder, Subir, and Thomas Newe. "Radio fingerprinting for anomaly
detection using federated learning in LoRa-enabled Industrial Internet of
Things." Future Generation Computer Systems 143 (2023): 322-336.

[14] Sáez-de-Cámara, Xabier, Jose Luis Flores, Cristóbal Arellano, Aitor
Urbieta, and Urko Zurutuza. "Clustered federated learning architecture
for network anomaly detection in large scale heterogeneous IoT
networks." Computers & Security 131 (2023): 103299.

[15] Truong, Huong Thu, Bac Phuong Ta, Quang Anh Le, Dan Minh
Nguyen, Cong Thanh Le, Hoang Xuan Nguyen, Ha Thu Do, Hung Tai
Nguyen, and Kim Phuc Tran. "Light -weight federated learning-based
anomaly detection for time-series data in industrial control systems."
Computers in Industry 140 (2022): 103692.

[16] Fan, Jiamin, Guoming Tang, Kui Wu, Zhengan Zhao, Yang Zhou, and
Shengqiang Huang. "Score-VAE: Root Cause Analysis for Federated
Learning-based IoT Anomaly Detection." IEEE Internet of Things
Journal (2023).

[17] Raza, Ali, Kim Phuc Tran, Ludovic Koehl, and Shujun Li. "AnoFed:
Adaptive anomaly detection for digital health using transformer-based
federated learning and support vector data description." Engineering
Applications of Artificial Intelligence 121 (2023): 106051.

[18] Jithish, J., Bithin Alangot, Nagarajan Mahalingam, and Kiat Seng Yeo.
"Distributed Anomaly Detection in Smart Grids: A Federated Learning-
Based Approach." IEEE Access 11 (2023): 7157-7179.

[19] Wang, Xiaofeng, Yonghong Wang, Zahra Javaheri, Laila Almutairi,
Navid Moghadamnejad, and Osama S. Younes. "Federated deep
learning for anomaly detection in the internet of things." Computers and
Electrical Engineering 108 (2023): 108651.

[20] Wang, Xiaoding, Wenxin Liu, Hui Lin, Jia Hu, Kuljeet Kaur, and M.
Shamim Hossain. "AI-empowered trajectory anomaly detection for
intelligent transportation systems: A hierarchical federated learning
approach." IEEE Transactions on Intelligent Transportation Systems 24,
no. 4 (2022): 4631-4640.

[21] Shubyn, Bohdan, Dariusz Mrozek, Taras Maksymyuk, Vaidy Sunderam,
Daniel Kostrzewa, Piotr Grzesik, and Paweł Benecki. "Federated
learning for anomaly detection in industrial IoT-enabled production
environment supported by autonomous guided vehicles." In
International Conference on Computational Science, pp. 409-421.
Cham: Springer International Publishing, 2022.

[22] Toldinas, Jevgenijus, Algimantas Venčkauskas, Agnius Liutkevičius,
and Nerijus Morkevičius. "Framing Network Flow for Anomaly
Detection Using Image Recognition and Federated Learning."
Electronics 11, no. 19 (2022): 3138.

[23] Wu, Dongmin, Yi Deng, and Mingyong Li. "FL-MGVN: Federated
learning for anomaly detection using mixed gaussian variational self-
encoding network." Information processing & management 59, no. 2
(2022): 102839.

[24] Fedorchenko, Elena, Evgenia Novikova, and Anton Shulepov.
"Comparative review of the intrusion detection systems based on
federated learning: Advantages and open challenges." Algorithms 15,
no. 7 (2022): 247.

