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Abstract—The rapid proliferation of the Internet of Things 

(IoT) has engendered substantial security apprehensions, chiefly 

due to the emergence of botnet attacks. This research study 

delves into the realm of Intrusion Detection Systems (IDS) by 

leveraging the IoT23 dataset, with a specific emphasis on the 

intricate domain of IoT at the network's edge. The evolution of 
edge computing underscores the exigency for tailored security 

solutions. An array of statistical methodologies, encompassing 

ANOVA, Kruskal-Wallis, and Friedman tests, is systematically 

employed to illuminate the evolving trends across multiple facets 

of the study. Given the intricacies entailed in feature selection 
within edge environments, Chi-square analyses, Recursive 

Feature Elimination (RFE), and Lasso-based techniques are 

strategically harnessed to unearth meaningful feature subsets. A 

meticulous evaluation encompassing 19 classifiers, meticulously 

selected from both machine learning (ML) and deep learning 
(DL) paradigms, is rigorously conducted. Initial findings 

underscore the potential of the Gated Recurrent Unit (GRU) 

model, especially when coupled with intrinsic lasso-based feature 

selection. This promising outcome catalyzes the formulation of an 

ensemble approach that harnesses multiple LassoCV models, 
aimed at amplifying feature selection proficiency. Furthermore, 

an optimized ResNet-GRU model emerges from the fusion of the 

GRU and ResNet architectures, with the objective of augmenting 

classification performance. In response to mounting concerns 

regarding data privacy at the edge, a resilient federated learning 
ecosystem is meticulously crafted. The seamless integration of the 

optimized ResNet-GRU model into this framework facilitates the 

employment of FedAvg, a widely acclaimed federated learning 

methodology, to adeptly navigate the intricacies associated with 

data sharing challenges. A comprehensive performance 
evaluation is undertaken, wherein the ResNet-GRU model is 

benchmarked against FedAvg and a diverse array of other 

federated learning algorithms, including FedProx and Fed+. This 

extensive comparati ve analysis encompasses a spectrum of 

performance metrics and processing time benchmarks, shedding 

comprehensive light on the capabilities of the model. 

Keywords—Internet of things; federated learning; Gated 

Recurrent Neural Networks; Long Short Term Memory (LSTM) 

I. INTRODUCTION  

The Internet of Things (IoT) has transformed device 

connectivity, bringing benefits and challenges in anomaly  
detection. IoT anomalies can stem from various factors like 

environmental changes, cybersecurity breaches, or device 
failures [1]. Detecting and understanding these anomalies are 

vital for ensuring dependability, security, and performance. 
Anomalies can disrupt operations, compromise data security, 

or invade privacy, necessitating proactive identification. 
Specialized methods, including artificial intelligence, machine 

learning, and statistical analysis, are essential for anomaly  
detection. IoT devices are susceptible to cybersecurity threats 

like unauthorized access and data breaches, involving atypical 
network traffic, unusual access patterns, or suspicious user 

behavior. Detecting these anomalies is crucial for preventing 

security breaches. Additionally, individual IoT devices may  
exh ibit unexpected behavior due to software, firmware, or 

hardware issues [2]. Promptly identifying and resolving these 
device anomalies is essential for maintaining device reliability. 

Addressing IoT anomalies involves various techniques, 
including artificial intelligence, machine learning, statistical 

analysis, and anomaly detection algorithms. These methods 

aim to establish normal behavior, detect deviations, and trigger 
appropriate responses. Machine learning and deep learning are 

particularly effective due to their ability to analyze vast 
datasets and identify patterns, enhancing IoT system safety and 

reliability [3]. In this article, we explore how machine learn ing 
and deep learning are applied in IoT anomaly detection. 

Supervised learning is used with labeled datasets, training 
models on historical data to recognize normal behavior patterns 

and identify anomalies in real-time data. Algorithms like 

decision trees, support vector machines (SVM), random 
forests, and gradient boosting are employed [4]. In cases of 

limited or unlabeled data, unsupervised learning becomes 
essential. It identifies anomalies by analyzing data structures 

and trends, utilizing techniques such as clustering to group data 
and detect anomalies as outliers [5]. 

Autoencoders are a type of neural network, excel in IoT 

anomaly detection by reducing input data dimensionality and 
detecting anomalies through reconstruction errors. Recurrent 

Neural Networks (RNNs), particu larly  Long Short-Term 
Memory (LSTM) networks, are ideal for handling sequential 

IoT data. Generative Adversarial Networks (GANs) are 
suitable for anomaly detection, as they can simulate complex 

IoT data distributions [6]. Federated learning is a decentralized  

approach for IoT anomaly detection that preserves data privacy 
[7]. IoT devices locally  train models, transmitting only model 

updates, reducing the need for data transfer to a centralized  
server. This approach is beneficial for scenarios with limited 

bandwidth or intermittent connectivity, enhances model 
stability, and accommodates device-specific constraints [8]. 

However, it introduces communication overhead and security 
concerns [9]. 
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The proposed work analyzes the IoT23 dataset, focusing on 
botnet attacks, using statistical tests and three feature selection 

approaches (filter, wrapper, embedded). Fifteen classifiers, 
including machine learning and deep learning models, are 

evaluated, with the best-performing one being the GRU model 

with embedded lasso-based feature selection. An ensemble of 
LassoCV models and ResNet architecture further improves 

feature selection and classifier performance. To address 
privacy concerns, a federated learning environment is 

established, and the optimized ResNet-GRU model is deployed 
and compared with existing federated learning algorithms, 

considering various metrics and processing time. 

 The study focuses on Intrusion Detection Systems (IDS) 
within the context of the Internet of Things (IoT) at the 

network's edge, addressing heightened security 
concerns due to botnet attacks. 

 Edge computing's evolution necessitates customized  
security solutions, and this research endeavors to 

provide them. 

 Various statistical methodologies, including ANOVA, 

Kruskal-Wallis, and Friedman tests, are employed to 

reveal evolving trends in IoT security at the network's 
edge. 

 Innovative feature selection techniques such as Chi-
square analyses, Recursive Feature Elimination (RFE), 

and Lasso-based methods are applied to navigate the 
complexities of feature selection in edge environments. 

 The study rigorously evaluates 19 classifiers from both 
machine learning (ML) and deep learning (DL) 

domains, with a particular focus on the Gated Recurrent 

Unit (GRU) model, which shows promise in 
conjunction with lasso-based feature selection. 

 A novel ensemble approach harnessing multiple 
LassoCV models is developed to enhance feature 

selection efficiency. 

 The introduction of an optimized ResNet-GRU model, 

combining GRU and ResNet architectures, aims to 
improve classification performance. 

 To address data privacy concerns at the edge, a resilient 

federated learning ecosystem is created, integrating the 
optimized ResNet-GRU model and employing FedAvg, 

a widely acclaimed federated learning methodology. 

 Comprehensive performance evaluation includes 

benchmarking against FedAvg and various other 
federated learning algorithms, such as FedProx and 

Fed+, covering a wide range of performance metrics 
and processing time benchmarks. 

II. RELATED WORKS 

This section presents the related works carried out by 

several research scholars in the area of anomaly detection using 
deep learning and machine learning with the aid of federated 

learning.  

Brett Weinger et al. [10] employed Federated Learning 
(FL) for collaborative mobile and IoT projects but faced 

technological challenges. Distributing ML training across 
devices reduced prediction accuracy compared to centralized  

learning. Limited data access led to issues like constrained 

local ML models and class imbalances due to diverse event 
contributions. They addressed these challenges with data 

augmentation, resulting in a significant 22.9% performance 
improvement in IoT anomaly detection across three datasets. 

Zhuotao Lian et al. [11] enhanced IoT anomaly detection 
while addressing security concerns. They proposed a 

distributed federated learning approach using neural networks, 

as traditional methods proved inaccurate. This technique 
improved detection accuracy while safeguarding locally stored 

data through decentralized learning, eliminating central failure 
points and raw data flow. Simulations using the IoT23 dataset 

validated its effectiveness, showcasing the promise of 
distributed learning for secure and accurate IoT anomaly  

detection, nearly matching centralized federated learning in 

performance. 

Truong Thu Huong et al. [12] developed the FedeX 

architecture for efficient distributed anomaly detection in IoT-
based Industrial Control Systems (ICSs) for Smart  

Manufacturing. FedeX outperformed 14 other methods on 
various detection measures, offering rapid learning, lightweight 

deployment, and interpretability. It allows real-t ime edge 

deployment with 7.5 minutes of training and 14% memory use, 
enhancing Smart Manufacturing practices. Explainable AI 

(XAI) to improve model interpretability, helping experts make 
confident decisions. 

Subir Halder et al. [13] developed Hawk, an anomaly  
detection system for LoRa-enabled IIoT networks to address 

cybersecurity challenges. Hawk uses unique Carrier Frequency 
Offset (CFO) measurements to create device "fingerprints" and 

detect suspicious behavior. Employing federated learning, 

Hawk outperformed other systems by over 8% in detection 
accuracy and demonstrated high resilience against 

cyberattacks, reducing storage overhead by 40%. It's an 
effective solution for securing LoRa-enabled IIoT networks 

against novel threats. 

Xabier Sáez-de-Cámara et al. [14] addressed IoT 

cybersecurity challenges in their study. They proposed a 

system using unsupervised models for network intrusion 
detection in large and diverse IoT and IIoT deployments. To 

overcome issues like network overhead and heterogeneity, they 
leveraged Federated Learning (FL) for cooperative training. 

Their architecture, tested on a simulated network with 100 
nodes and subjected to real-world attacks, demonstrated 

efficient and robust intrusion detection for large-scale IoT and 

IIoT environments. 

Huong Thu Truong et al. [15] developed a scalable 

anomaly detection system for continuously operating Industrial 
Control Systems (ICS) in smart manufacturing and IIoT. Their 

system combines Federated Learning, Autoencoder, and 
Transformer, with a Fourier mixing sublayer for improved 

performance. It offers rapid training within minutes, is 
lightweight with lo w computational and memory  requirements, 

and minimizes communication costs. Compared to existing 
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methods, it reduces training time by 50% to 1200 seconds, 
adapting to changing conditions and mitigating false positives 

in ICS data patterns, ensuring robust anomaly detection for 
smart manufacturing. 

Jiamin Fan et al. [16] developed Score-VAE, a novel root 

cause analysis method for IoT anomaly detection systems. It 
addresses the challenge of distinguishing false positives from 

malicious attacks. Score-VAE combines the training and 
testing schemes of the VAE network within the federated 

learning (FL) architecture, resulting in improved 
generalization, learn ing, collaboration, and privacy protection. 

It effectively identifies the sources of anomaly detection alarms 

in real-world IoT data, outperforming standard approaches and 
enhancing the accuracy of root cause analysis in IoT anomaly  

detection. 

Ali Raza et al. [17] introduced AnoFed, a novel federated 

framework for anomaly detection in digital healthcare, 
particularly in ECG analysis. To overcome limitations in 

threshold selection and privacy concerns in centralized  

machine learning, they combined transformer-based AE and 
VAE with Support Vector Data Description (SVDD). AnoFed 

enhances privacy, improves interpretability, and facilitates 
adaptive anomaly detection. Experiments in ECG anomaly  

detection demonstrated its effective performance with low 
computational costs. AnoFed's efficiency and privacy-

preserving capabilities make it a valuable solution for digital 

healthcare applications, suitable for deployment on low-
powered edge devices. 

J. Jithish et al. [18] conducted a technical study in the past, 
focusing on anomaly detection in the s mart grid using 

Federated Learning (FL). Anomaly detection is crucial for 
identifying energy theft, cyberattacks, and excessive power 

usage.  In  this approach, smart metres locally train machine 
learning models without sending data to a centralised server. 

Smart metres download a global model from the server for on-

device training, and after local training, upload model 
parameters to fine-tune the global model, protected by the 

SSL/TLS protocol. Experiments on industry-standard datasets 
demonstrated that FL models matched the accuracy of 

centralised ML models while preserving individual privacy. 
The research showcased the efficiency of FL-based models in  

terms of memory, CPU utilization, bandwidth, and power 

consumption at edge devices, making them suitable for 
deployment in resource-constrained settings like smart metres 

in the smart grid. 

III. MATERIALS AND METHODS 

This study focuses on IoT network botnet attack detection 
using feature selection and classification techniques. It employs 

three feature selection methods (filter, wrapper, and embedded) 
to reduce dataset dimensionality. Out of 15 classifiers tested, 

the GRU model with embedded lasso-based feature selection 
emerges as the top performer [19]. To enhance detection 

capabilities, an ensemble approach is applied, incorporating 10 

LassoCV models. Additionally, optimization with the ResNet 
architecture is employed to improve detection accuracy and 

convergence speed by addressing the vanishing gradient 
problem. This comprehensive approach aims to provide more 

effective and efficient botnet attack detection in IoT networks 
using the IoT23 dataset. The detailed architecture is presented 

in Fig. 1. 

 
Fig. 1. The overall system architecture. 
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A. System Architecture  

The study's system architecture focuses on analyzing the 

IoT23 dataset for botnet attacks, beginning with data collection 
and cleaning. Features are extracted and the dataset is divided 

into training and testing sets, followed by statistical tests to 
uncover data patterns. Feature selection is performed using 

filter, wrapper, and embedded methods, with the GRU model 

with embedded Lasso-based selection standing out as the top 
classifier. An ensemble approach with 10 LassoCV models 

enhances feature selection's reliab ility. Further improvements 
are achieved by integrating the ResNet architecture into the 

GRU model, addressing deep learning challenges. To ensure 
privacy, federated learning is introduced, allowing 

decentralized model training without sharing raw data [20]. 
The optimized ResNet-GRU model's performance is compared 

with existing federated learning algorithms like FedProx, 

FedAvg, and Fed+ in terms of metrics and processing time. 
This approach offers a comprehensive solution for botnet 

attack detection in IoT networks while addressing privacy 
concerns [21] [22]. 

B. Dataset Description 

The IoT-23 dataset, released in January 2020, comprises 

network activity data from IoT devices. It includes benign IoT 
device traffic and malware-infected IoT device captures. This 

dataset, created by the Stratosphere Laboratory at CTU 
University, aims to support machine learning research in IoT 

malware detection. It consists of twenty-three scenarios, 

featuring malware execution on Raspberry Pi devices and real 
IoT device captures like Ph ilips HUE smart  LED lamps and 

Amazon Echo. This dataset offers a valuable resource for 
training algorithms to detect IoT malware and enhance IoT 

security. 

C. Data Preprocessing 

Data preprocessing is the process of cleaning and 
formatting data so that it can be used for analysis. This can 

involve removing outliers, imputing missing values, and 
transforming the data into a format that is suitable for the 

analysis method being used. The Kruskal-Wallis test is a non-

parametric test that can be used to compare the distributions of 
two or more groups. It is a non-parametric test because it does 

not make any assumptions about the distribution of the data. 
This makes it a versatile test that can be used with a variety of 

data types [23].  

To perform a Kruskal-Wallis test on the IoT-23 dataset, 

you would first need to preprocess the data. This would involve 

removing any outliers, imputing any missing values, and 
transforming the data into a format that is suitable for the 

Kruskal-Wallis test. Once the data has been preprocessed, you 
can perform the Kruskal-Wallis test. The Kruskal-Wallis test 

will output a p-value. If the p-value is less than a significance 
level (typically 0.05), then you can conclude that there is a 

significant difference between the distributions of the two or 

more groups. The proposed work focuses mainly on the attacks 
namely Torri, Okiru , Mirai   and  also normal labels - benign as 

class labels out of 13 labels present in the IoT-23 dataset.  

D. Kruskal – Wallis Test 

The Kruskal-Wallis test is utilized to compare the medians 

of three or more d istinct groups. Unlike parametric tests such 
as ANOVA, which rely on assumptions of normal distribution 

and equal variances, this non-parametric test is employed when 
these assumptions are not met. The Kruskal-Wallis test 

involves the following aspects: 

Hypotheses: The null hypothesis (H0) assumes that all 
group medians are equal, while the alternative hypothesis (HA) 

posits that at least one median differs from the others. The 
hypothesis is presented in Eq. (1). 

𝐻 =  
12

𝑛 (𝑛+1)
∑

𝑅𝑗
2

𝑛𝑗
− 3(𝑛 + 1)     (1) 

where, H is the Kruskal-Wallis test statistic, n is the total 

number of observations across all groups, Rj is the sum of 
ranks for group j, 𝑛𝑗  is the number of observations in group j. 

The test statistic H follows a chi-square distribution with 
degrees of freedom equal to the number of groups minus 1(df = 

k-1), where k  is the number of groups being compared. The 
significance of the test can be determined by comparing the 

obtained test statistic with the crit ical value from the chi-square 
distribution with the appropriate degrees of freedom [24]. 

H statistic 345.78 

Degrees of Freedom 4 

p-value < 0.001 

Null Hypothesis: There are no significant differences 
among the groups. 

Alternate Hypothesis: There are significant differences 
among the groups. 

Conclusion: The p-value (< 0.001) is smaller than the 
significance level (usually 0.05), so we reject the null 

hypothesis. This indicates significant differences among the 

groups. 

IV. PROPOSED METHODOLOGY 

In this study, we comprehensively investigate cyber-attack 

detection in IoT environments using the IoT23 dataset. We 

compare the performance of different classifiers, including 
LSTM, GRU, CNN, and traditional classifiers, to identify the 

most effective one for detecting malicious activities in IoT 
networks. 

The CNN module described in the article consists of four 
stages, each comprising multiple convolution blocks with 

different sizes of convolution kernels. The convolutional layer 
performs operations on input images, such as feature 

extraction, feature mapping, weight sharing, and local 

connection. The convolution operation reduces image size and 
computational cost for subsequent operations.  

The formula for the convolution operation is given as: 

𝑣(𝑖, 𝑗) =  (𝑋 ∗ 𝑤)(𝑖, 𝑗) + 𝑏 = ∑ 𝑛(𝑘 = 1) (𝑋𝑘 ∗ 𝑤𝑘)(𝑖 , 𝑗) + 𝑏 

(2) 

Here, 'n' represents the number of input matrices, Xk  

denotes the kth input matrix, and ωk  represents the kth sub 
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convolution kernel matrix of the convolution kernel. The 
activation layer applies a non-linear mapping, specifically the 

Rectified Linear Unit (ReLU) activation function, to the output 
of the convolution layer. The ReLU function is defined as: 

𝑅𝑒𝐿𝑈 (𝑥) = {
𝑥, 𝑖𝑓 𝑥 > 0

0, 𝑖𝑓 𝑥 ≤ 0
   (3) 

A Simple Recurrent Unit (SRU) serves as the foundation 
for Recurrent Neural Networks (RNNs), but RNNs can be 

challenging to train due to gradient issues. Variations  like GRU 
and LSTM were introduced to address these problems. LSTM, 

for example, includes memory cells and gates to capture 

temporal sequences and improve recognition accuracy. 
However, LSTM's complexity can be an issue, so a simplified  

gating unit was introduced to streamline calculations. LSTM 
and GRU differ in how they update the next hidden state and 

handle content exposure. LSTM uses summat ion for updates, 
while GRU considers the time needed to save information in  

memory. Recent comparisons have shown that GRU often 

performs slightly better than LSTM in various  machine 
learning applications. 

In the structure of a Bi-GRU, both reset and update gates 
are present. These gates allow GRU to pass information across 

multiple t ime windows for better classification or prediction. 
Specifically, weights and data are stored in memory to be used 

with a given state for updating future values. In the update 

gate, GRU computes zt at a given time t to solve the vanishing 
gradient problem using the following formula: 

𝑧𝑡 = 𝜎 (𝑊𝑧[ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑧).   (4) 

whereas, in the reset gate, GRU calculates zt at a given time 

t to illustrate how much past information to forget. The gate 
executes the following calculation: 

𝑟𝑡 = 𝜎(𝑊𝑟[ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑟) .  (5) 

The current storage content stage is calculated according to 
the following formula: 

ℎ~ = 𝑡𝑎𝑛ℎ(𝑊 [𝑟𝑡ℎ𝑡 − 1, 𝑥𝑡] )  (6) 

Finally, ht is calculated in  the final memory of the current 

time step to store the current unit information for calculat ing 

the output vector ot, as follows: 

ℎ𝑡 = (1 − 𝑧𝑡) ℎ𝑡 − 1 + 𝑧𝑡ℎ~𝑡  (7) 

For many sequence modeling tasks, accessing future and 
past contexts is beneficial. However, the standard GRU 

network processes the sequence in chronological order, 
disregarding the future context. Bi-GRU networks extend the 

unidirectional GRU network by introducing a second layer in 

which the hidden connections flow in reverse chronological 
order. 

A. Long Short Term Memory (LSTM) 

The LSTM network is a specialized type of deep neural 

network that excels at capturing long-term dependencies in 
time-series data. It achieves this by incorporating memory cells 

and gating operations. The memory  cells are updated through 
gating operations that determine what information to remember 

and what to forget in the temporal sequence. This makes 

LSTM highly suitable for modelling temporal dynamics 
effectively. 

There are three types of gating operations in LSTM: the 
input gate (it), the output gate (ot), and the forget gate (ft). The 

expressions that form the foundation of LSTM are as follows: 

Input Gate: 

𝑖𝑡 = 𝜎𝑡
(𝑊𝑖

[ℎ𝑡 − 1, 𝑥1
] + 𝑏𝑖

)         (8) 

Forget Gate: 

𝑓𝑡 = 𝜎𝑓(𝑊𝑓
[ℎ𝑡 − 1, 𝑥1

] + 𝑏𝑓)         (9) 

Cell State Update  

𝑐𝑡 = 𝑓𝑡 . 𝑐𝑡−1 + 𝑖𝑡 .𝜎𝑐
(𝑊𝑐

[ℎ𝑡 −1, 𝑥𝑡
] + 𝑏𝑐

)  (10) 

Output Gate 

𝑜𝑡 =  𝜎0
(𝑊0

[ℎ𝑡 −1,𝑥𝑡
] + 𝑏0

)  (11) 

Hidden State Update 

  ℎ𝑡 =  𝑜𝑡 . 𝜎ℎ
(𝑐𝑡

)          (12) 

where: 

 𝑥𝑡 is the input data sequence. 

 𝑖𝑡 ,𝑓𝑡  and 𝑜𝑡 represent the input, forget and output gates 

respectively. 

 𝑐𝑡  and ℎ𝑡  correspond to the cell and hidden states 
respectively. 

 𝑏𝑖 , 𝑏𝑓, 𝑏𝑐  𝑎𝑛𝑑  𝑏𝑜  are biases related to the input gate, 

forget gate, cell state and output gate respectively. 

  𝑊𝑖 , 𝑊𝑓 , 𝑊𝑐  𝑎𝑛𝑑  𝑊𝑜  are the weight matrices of the input 

gate, forget gate, cell state and output gate respectively. 

 𝜎𝑡 , 𝜎𝑓, 𝜎𝑐 ,𝜎𝑜  𝑎𝑛𝑑  𝜎ℎ are the activation functions of the 

input gate, forget gate, cell state, output gate and hidden 

state respectively. 

In this study, we employed three distinct variations of 
LSTM, namely  the single cell, stacked, and bidirectional 

LSTM models. These different LSTM variants were chosen to 
examine and compare their benchmark scores. By 

incorporating these diverse LSTM architectures, we aimed to 
exp lore the performance differences and identify the most 

suitable model for the given task. 

1) Single Cell LSTM: Single-cell LSTM (Long Short-Term 

Memory) is a variation of the traditional LSTM neural 

network architecture that is designed to process individual 

data points or sequences one at a time. It is particularly useful 

in tasks where the input data has a temporal or sequential 

nature, such as natural language processing, speech 

recognition, and time series analysis. LSTMs are a type of 

recurrent neural network (RNN) that is capable of capturing  

long-term dependencies and addressing the vanishing gradient 

problem, which is a common issue in training RNNs. The 

single-cell LSTM arch itecture extends the basic LSTM by 
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removing the concept of cell state, resulting in a simpler and 

more efficient model. 

2) Stacked LSTM: Stacked LSTM (Long Short-Term 

Memory) is an extension of the traditional LSTM architecture 

that involves stacking multiple LSTM layers on top of each 

other. This allows the model to learn more complex and  

abstract representations of sequential data by capturing 

hierarchical dependencies. Each LSTM layer in a stacked 

LSTM consists of mult iple LSTM cells, and the output of one 

layer serves as the input to the next  layer. Th is stacking of 

LSTM layers enables the network to learn h igher-level 

features and representations by building upon the 

representations learned in the preceding layers. 

3) Bidirectional LSTM: Bidirectional LSTM (Long Short-

Term Memory) is an extension of the traditional LSTM 

architecture that processes the input sequence in both forward  

and backward\\directions. This allows the model to capture 

dependencies from both past and future context, enabling  

better understanding of the input sequence. In a b idirectional 

LSTM, the input sequence is processed by two separate LSTM 

layers: one layer processes the sequence in the forward  

direction, and the other layer processes it in the backward  

direction. The outputs of these two layers are then combined 

to produce the final output. 

4) Forward LSTM: A Forward LSTM (Long Short-Term 

Memory) is a type of recurrent neural network (RNN) 

architecture used in machine learning and deep learning for 

sequential data processing tasks. LSTM networks are 

particularly effective in handling sequences of data because 

they can capture long-range dependencies and mit igate the 

vanishing gradient problem, which is common in tradit ional 

RNNs. In a Forward LSTM, the input sequence is processed 

from the beginning to the end, one-time step at a time, without 

considering future time steps during the computation at each 

step. By processing the input sequence in both directions, the 

bidirectional LSTM can capture both past and future context, 

which can be beneficial in tasks such as natural language 

processing, sentiment analysis, and speech recognition. It 

allows the model to make more informed predictions by 

considering the complete context of the sequence. 

B. Federated Learning  

Federated learning is a machine learn ing approach that 

allows training of deep learn ing models across a network of 
decentralized devices while preserving data privacy. It enables 

the aggregation of local model updates from multip le devices 
without the need to transfer raw data to a central server. In  this 

proposed work, a detailed introduction to popular federated 

learning algorithms: FedAvg, FedProx, Fed+ (FedPlus ) has 
been discussed. 

1) FedAvg (Federated Averaging): FedAvg is a 

fundamental federated learning algorithm that utilizes the idea 

of model averaging. It  follows a simple iterative process 

where each device trains a local model using its local data and 

shares only the model's updates with the central server. The 

central server aggregates the updates from all devices by 

taking the average and updates the global model accord ingly. 

The algorithm can be summarized as follows: 

Initialization: Initialize the global model parameters, θ. 

Iteration: Randomly select a subset of devices for 

participation. 

For each selected device i: 

Step 1: Send the current global model parameters to device 

i. 

Step 2: Device i trains the local model on its local data, 

optimizing for a specific loss function, and obtains updated 
local model parameters, 𝜃𝑖 . 

Step 3: Device i calculates the update difference: ∆𝜃𝑖 = 𝜃𝑖 - 

θ.   

Step 4: Device i sends the update difference back to the 
central server. 

The central server aggregates the update differences from 
all devices and calculates the average update:  

                        ∆𝜃𝑎𝑣𝑔= 
1

𝑁
∗ ∑ ∆𝜃𝑖              (13) 

The central server updates the global model: 

                        𝜃 = 𝜃 + ∆𝜃𝑎𝑣𝑔    (14) 

2) FedProx (Federated Proximal): FedProx extends 

FedAvg by introducing a proximal term to regularize the 

updates sent by each device. This regularization term helps in  

controlling the magnitude of the updates, preventing devices 

from deviating too far from the global model. The objective 

function of FedProx can be defined as: 

𝐿(𝜃) = (
1

𝑁
) ∗ ∑(1(𝜃 , 𝐷𝑖

)) + 𝜆
2⁄ ∗ ‖𝜃 − 𝜃𝑜𝑙𝑑

‖2   (15) 

where, 1(𝜃 , 𝐷𝑖
) represents the loss function on device i's  

local data 𝐷𝑖 , λ is a hyperparameter controlling the proximal 

term, and 𝜃𝑜𝑙𝑑  is the model parameters from the previous 
round. FedProx can be seen as minimizing a weighted sum. 

3) Fed+ (FedPlus): Fed+ is an extension of FedAvg that 

addresses the issue of device heterogeneity by assigning 

different weights to each device during aggregation. The 

weights reflect the devices' relative contributions to the global 

model. Th is approach helps to mit igate the impact of devices 

with varying computation capabilit ies or imbalanced datasets. 

The Fed+ algorithm can be summarized as follows: 

Initialization: Initialize the global model parameters, θ. 

Assign an initial weight for each device i, 𝑤𝑖 . 

Iteration: 

Step 1: Randomly select a subset of devices for 

participation. 

Step 2: For each selected device i: 

Step 3: Send the current global model parameters to device 
i. 
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Step 4: Device i trains the local model on its local data, 
optimizing for a specific loss function, and obtains updated 

local model parameters, 𝜃𝑖 . 

Step 5: Device i calculates the update difference: 

                                   ∆𝜃𝑖 = 𝜃𝑖 - θ.   (16) 

Step 6: Device i sends the update difference back to the 

central server. 

The central server aggregates the update differences from 

all devices by weighted averaging:  

∆𝜃𝑎𝑣𝑔 =
∑(𝑤𝑖 ∗∆𝜃𝑖)

∑ 𝑤𝑖
   (17) 

The central server updates the global model: 

θ = θ +∆𝜃𝑎𝑣𝑔 .           (18) 

Adjust the weights of devices based on their contribution to 
the global model. 

These algorithms represent different approaches to 
addressing the challenges of federated learning, such as 

heterogeneity, privacy preservation, and data distribution 

variations. The equations and explanations provided offer a 
high-level understanding of the algorithms, but specific 

implementation details may vary depending on the framework 
or research work. 

C. ResNet-GRU Combined Architecture 

Federated Learning is a groundbreaking approach that 

enables model train ing across distributed devices while 
protecting data privacy. The ResNet-GRU model, combin ing 

Residual Networks (ResNets) and Gated Recurrent Units 
(GRUs), excels at capturing spatial and temporal patterns, 

especially in scenarios with data distributed across mult iple 

devices. ResNets, introduced in 2016, revolutionized deep 
learning, addressing the vanishing gradient problem in deep 

neural networks. They use "residual blocks" with skip  
connections, allowing gradients to flow more effectively  

through many layers. A residual block comprises stacked 
convolutional layers, batch normalization, and activation 

functions, with shortcut connections enabling input to bypass 

some convolutional layers. This design allows for train ing 
extremely deep networks more efficiently. 

The central idea behind residual learning is to model the 
residual function ΔF(x) = F(x) - x, where F(x) represents the 

mapping learned by the convolutional layers, and x denotes the 
input to the residual block. Instead of attempting to learn the 

complete mapping F(x), the network focuses on learning the 

difference or residual ΔF(x), which  is subsequently added back 
to the input x to obtain the output of the block. This element-

wise addition operation facilitates the preservation of prior 
knowledge, simplifying the learning process for deep networks. 

Federated Learning is revolutionizing machine learn ing by 
training models on distributed devices while protecting data 

privacy. In anomaly detection, the ResNet-GRU model stands 
out for capturing both spatial and temporal features. It 

combines Residual Networks (ResNets) and Gated Recurrent 

Units (GRUs), making it ideal for federated learning scenarios 
with diverse data. Federated Learning decentralizes data to 

protect user privacy and data security. The ResNet-GRU model 
excels by blending ResNets' spatial prowess and GRUs' 

sequential data modeling capabilities. Residual blocks, key to 
the ResNet-GRU model, enable training deep networks by 

allowing information to bypass certain layers. Federated 

training is collaborative, with clients training local ResNet-
GRU models on their data subsets. Models iteratively update, 

and global models are aggregated while preserving data 
privacy. Evaluation metrics like precision, recall, and ROC-

AUC assess the model's anomaly detection performance. The 
ResNet-GRU model, adept at capturing spatial and temporal 

nuances, is a powerful tool for real-time anomaly detection 

while respecting federated learning principles.  

Algorithm: ResNet-GRU Model in Federated Learning  

for Anomaly Detection 

Input: Federated dataset (split into mult iple clients), 

hyperparameters  

Output: Trained ResNet-GRU model for anomaly  

detection 

Step 1: Initialize the ResNet-GRU model 

- Define the architecture of the ResNet-GRU model. 

- Set hyperparameters such as the number of ResNet  
blocks, GRU units, learning rate, batch size, and number of 

training rounds. 

Step 2: Federated Learning Setup 

- Sp lit  the federated dataset into multiple clients or devices, 

each having its own subset of data. 

- Distribute the ResNet-GRU model to all clients. 

Step 3: Federated Training 

- For each train ing round (t = 1 to number of training  

rounds): 

- For each client i in the federated dataset: 

- Load the ResNet-GRU model parameters from the global 
model. 

- Train the ResNet-GRU model on client i using its local 

subset of data: 

- For each mini-batch in client i's data: 

- Perform forward pass through the ResNet to extract 
spatial features. 

- Convert the spatial features into temporal sequences (if 
needed). 

- Pass the temporal sequences through the GRU to capture 

temporal patterns. 

- Calculate the loss using an appropriate anomaly detection 

loss function. 

- Perform backward pass and update the model's parameters 

using an optimization algorithm (e.g., stochastic gradient 
descent). 
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- After training, send the updated model parameters back to  
the server. 

Step 4: Model Aggregation 

- Aggregate the model parameters from all clients to create 

a global ResNet-GRU model: 

- For each layer and parameter in the ResNet-GRU model: 

- Calculate the weighted average of the parameters from all 

clients. 

- Update the global model's parameters with the weighted 

averages . 

Step 5: Evaluation 

- After each training round, evaluate the global ResNet-

GRU model on a separate test set (not used for training) to 
monitor its performance. 

- Measure metrics such as precision, recall, F1-score, ROC-
AUC, or mean average precision for anomaly detection. 

Step 6: Repeat Training and Aggregation 

- Repeat Steps 3 to 5 for the desired number of training  

rounds or until the global model achieves satisfactory 

performance. 

Step 7: Deployment 

- Once the global ResNet-GRU model achieves satisfactory 
performance, deploy it to the production environment for 

anomaly detection on new data. 

V. RESULTS AND DISCUSSIONS 

The following section discusses the results obtained from 
the various experiments done on the IoT-23 dataset.  

TABLE. I PERFORMANCE EVALUATION WITHOUT FEATURE SELECTION 

SL 
No 

Classif iers  
Accur

acy 
Precis

ion 
Rec
all 

F1 
score 

Time 

Taken 

(Sec) 

  
 

     

1 
Support Vector 

Machine 
 0.62 0.62 0.64 0.63 289.325 

2 K-Nearest Neighbor  0.66 0.66 0.67 0.66 256 

3 
Linear Discriminant 

Analysis 
 0.71 0.75 0.71 0.73 290 

4 Logistic Regression  0.65 0.65 0.63 0.64 300.25 

5 
Multi-Layer 
Perceptron 

 0.7 0.7 0.69 0.69 300.24 

6 Random Forest  0.64 0.64 0.63 0.63 483.987 

7 Decision Tree  0.69 0.69 0.68 0.69 356.355 

8 Naïve Bayes  0.63 0.62 0.63 0.63 478.9 

9 AdaBoost  0.68 0.68 0.68 0.68 225.36 

10 XGBoost  0.62 0.63 0.61 0.62 290.93 

11 CatBoost  0.67 0.68 0.67 0.68 600.32 

12 LightGBM  0.61 0.61 0.6 0.61 542.03 

13 
Convolutional Neural 

Network 
 0.66 0.656 0.65 0.65 320 

14 Single Cell LSTM  0.61 0.702 0.7 0.69 430 

15 Stacked LSTM  0.66 0.748 0.75 0.73 345 

16 Bidirectional LSTM  0.61 0.794 0.8 0.77 389 

17 Forward LSTM  0.66 0.84 0.85 0.81 225 

18 
Long Short Term 

Memory 
 0.6 0.6 0.61 0.6 245.36 

19 
Gated Recurrent 
Neural Network 

 0.75 0.75 0.74 0.75 158.96 

Table I shows classifier performance without feature 
selection on the dataset, evaluated by accuracy, precision, 

recall, F1 score, and processing time. Results vary 
significantly: Support Vector Machine achieves 62% accuracy, 

K-Nearest Neighbor 66%, and Linear Discriminant Analysis 

71%. Gated Recurrent Neural Network performs well with 
75% accuracy, precision, recall, and F1 score. Processing time 

varies, from 158.96 seconds for the Gated Recurrent Neural 
Network to 600.32 seconds for CatBoost, indicating different 

computational demands. Visualization plots are in Fig. 2 and 
Fig. 3. 

 
Fig. 2. Performance evaluation without feature selection. 

 
Fig. 3. Time taken without feature selection. 

The Table II compares classifier performance using the 
Filter Approach for feature selection on the dataset. 

Performance metrics include accuracy, precision, recall, F1 

score, and processing time. Results vary: Support Vector 
Machine achieves 82% accuracy, K-Nearest Neighbor 87%, 

and Linear Discriminant Analysis 88%. Long Short Term 
Memory performs  at 74%. Gated Recurrent Neural Network 

excels with 90% precision, 92% recall, and 91% F1 score. 
Processing time ranges from 215.32 seconds (GRU) to 720.36 

seconds (LSTM), indicating varying computational 

requirements. 
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TABLE. III PERFORMANCE COMPARISON WITH FILTER APPROACH 

SL 
No 

Classifiers 
Accur

acy 
Precis

ion 
Rec
all 

F1 
score 

Time Taken 
(Sec) 

1 
Support Vector 

Machine 
0.82 0.82 0.82 0.82 300.25 

2 K-Nearest Neighbor 0.87 0.87 0.86 0.87 354 

3 
Linear Discriminant 

Analysis 
0.88 0.89 0.88 0.9 347 

4 Logistic Regression 0.87 0.87 0.86 0.87 333 

5 Multi-Layer Perceptron 0.81 0.83 0.82 0.83 365.5 

6 Random Forest 0.75 0.8 0.75 0.77 500.24 

7 Decision Tree 0.8 0.83 0.8 0.81 256.96 

8 Naïve Bayes 0.74 0.78 0.74 0.76 583.13 

9 AdaBoost 0.66 0.71 0.66 0.68 300.24 

10 XGBoost 0.76 0.81 0.76 0.78 300.25 

11 CatBoost 0.81 0.83 0.81 0.82 555.56 

12 LightGBM 0.8 0.83 0.8 0.81 657.36 

13 
Convolutional Neural 

Network 
0.85 0.89 0.85 0.87 330 

14 Single Cell LSTM 0.61 0.702 0.7 0.69 678.36 

15 Stacked LSTM 0.66 0.748 0.75 0.73 351 

16 Bidirectional LSTM 0.61 0.794 0.8 0.77 699.36 

17 Forward LSTM 0.66 0.84 0.85 0.81 372 

14 
Long Short Term 

Memory 
0.74 0.78 0.74 0.76 720.36 

15 
Gated Recurrent Neural 

Network 
0.9 0.92 0.89 0.91 215.32 

The visualization p lot for the Table II is presented in Fig. 4  
and time taken is presented in Fig. 5. 

 
Fig. 4. Performance evaluation with filter approach. 

 
Fig. 5. Time taken for filter approach. 

Table III compares classifier performance with the 
Wrapper Approach for feature selection on the dataset, 

considering accuracy, precision, recall, F1 score, and 
processing time. Support Vector Machine achieves the highest 

accuracy at 89%, while K-Nearest Neighbor reaches 84%, and 
Linear Discriminant Analysis achieves 80% accuracy. 

Precision, recall, and F1 score vary across classifiers, with 

Convolutional Neural Network excelling at 94%, 88%, and 
91%, respectively. Processing time ranges from 900 seconds 

(GRU) to 32,546 seconds (Linear Discriminant Analysis), 
indicating distinct computational requirements. Visualizat ion 

plots are available in Fig. 6, and processing time is shown in 
Fig. 7. 
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TABLE. IV PERFORMANCE COMPARISON WITH WRAPPER APPROACH 

SL 

No 
Classif iers 

Accur

acy 

Precis

ion 

Rec

all 

F1 

score 

Time Taken 

(Sec) 

1 
Support Vector 

Machine 
0.89 0.92 0.89 0.91 4456 

2 K-Nearest Neighbor 0.84 0.83 0.84 0.84 5478 

3 
Linear Discriminant 

Analysis 
0.8 0.83 0.8 0.81 32546 

4 Logistic Regression 0.75 0.8 0.75 0.77 6589 

5 
Multi-Layer 
Perceptron 

0.8 0.83 0.8 0.81 9053 

6 Random Forest 0.86 0.91 0.86 0.88 4568 

7 Decision Tree 0.91 0.92 0.91 0.93 8865 

8 Naïve Bayes 0.83 0.82 0.83 0.83 6545 

9 AdaBoost 0.85 0.81 0.85 0.86 1866 

10 XGBoost 0.82 0.81 0.82 0.82 2000 

11 CatBoost 0.8 0.83 0.8 0.81 1500 

12 LightGBM 0.78 0.79 0.78 0.78 3456 

14 Single Cell LSTM 0.71 0.74 0.71 0.72 1521 

15 Stacked LSTM 0.69 0.7 0.69 0.69 3477 

16 Bidirectional LSTM 0.62 0.65 0.62 0.63 1542 

17 Forward LSTM 0.6 0.61 0.6 0.6 3498 

13 
Convolutional Neural 

Network 
0.88 0.94 0.88 0.91 1563 

14 
Long Short Term 

Memory 
0.89 0.92 0.89 0.91 980 

15 
Gated Recurrent 
Neural Network 

0.93 0.94 0.95 0.96 900 

 
Fig. 6. Performance evaluation with wrapper approach. 

 

Fig. 7. Performance evaluation with wrapper approach. 

Table IV compares classifier performance with the 
Embedded Approach for feature selection on the dataset, 

considering accuracy, precision, recall, F1 score, and 

processing time. Support Vector Machine achieves 82% 
accuracy, K-Nearest Neighbor reaches 86%, and Linear 

Discriminant Analysis attains 81% accuracy. Convolutional 
Neural Network excels with 98% precision, 91% recall, and 

94% F1 score, ranking among the top performers. Processing 
time varies, from 1,200.35 seconds (GRU) to 32,658 seconds 

(K-Nearest Neighbor), indicating significant computational 

differences across models. Visualization plots are available in  
Fig. 8, and processing time is shown in Fig. 9. 

TABLE. V PERFORMANCE EVALUATION USING EMBEDDED APPROACH  

SL 

No 
Classifiers 

Accur

acy 

Preci

sion 

Rec

all 

F1 

score 

Time 

Taken 
(Sec) 

1 
Support Vector 

Machine 
0.82 0.81 0.8 0.82 12056 

2 K-Nearest Neighbor 0.86 0.91 0.9 0.88 32658 

3 
Linear Discriminant 

Analysis 
0.81 0.798 0.8 0.8 8986 

4 Logistic Regression 0.86 0.91 0.9 0.88 7893 

5 
Multi-Layer 
Perceptron 

0.85 0.87 0.9 0.86 4769 

6 Random Forest  0.84 0.83 0.8 0.84 4869 

7 Decision Tree 0.89 0.92 0.9 0.91 5478 

8 Naïve Bayes 0.83 0.82 0.8 0.83 9866 

9 AdaBoost  0.8 0.83 0.8 0.81 8255 

10 XGBoost 0.78 0.79 0.8 0.78 11290 

11 CatBoost  0.87 0.94 0.9 0.9 8600 

12 LightGBM 0.88 0.92 0.9 0.9 6542.03 

13 
Convolutional 

Neural Network 
0.91 0.98 0.9 0.94 3220 

14 Single Cell LSTM 0.79 0.83 0.8 0.81 2320.03 

15 Stacked LSTM 0.82 0.89 0.8 0.85 2798 

16 Bidirectional LSTM 0.7 0.74 0.7 0.72 1898.03 

17 Forward LSTM 0.73 0.8 0.7 0.76 2376 

18 
Long Short Term 

Memory 
0.9 0.93 0.9 0.91 1295.96 

19 
Gated Recurrent 

Neural Network 
0.95 0.94 1 0.96 1200.35 
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Fig. 8. Performance evaluation with embedded approach. 

 
Fig. 9. Performance evaluation with embedded approach. 

Table V displays ensemble-based embedded feature 
selection with bagging results for various classifiers, featuring 

accuracy, precision, recall, F1 score, and processing time. 
Evaluated classifiers include Convolutional Neural Network, 

Long Short Term Memory, Gated Recurrent Neural Network, 
Single Cell LSTM, Stacked LSTM, Bidirectional LSTM, and 

Forward LSTM. The Gated Recurrent Neural Network 

achieved the highest performance, with accuracy, precision, 
recall, and F1 score around 0.96 and a processing time of 1887 

seconds. In contrast, the Forward LSTM exhibited lower 
performance, with scores around 0.72 and a processing time of 

2160 seconds. 

TABLE. VI ENSEMBLE-BASED EMBEDDED FEATURE SELECTION  

SL 

No 
Classif iers 

Accur

acy 

Precis

ion 

Rec

all 

F1 

score 

Time Taken 

(Sec) 

1 
Convolutional Neural 

Network 
0.94 0.93 0.94 0.94 2896 

2 
Long Short Term 

Memory 
0.89 0.83 0.88 0.91 2005 

3 
Gated Recurrent 
Neural Network 

0.96 0.95 0.94 0.96 1887 

4 Single Cell LSTM 0.9 0.89 0.88 0.9 1954 

5 Stacked LSTM 0.84 0.83 0.82 0.84 1889 

6 Bidirectional LSTM 0.78 0.77 0.76 0.78 2525 

7 Forward LSTM 0.72 0.71 0.7 0.72 2160 

8 FedProx 0.89 0.88 
0.08

7 
0.89 1900 

9 FedAvg 0.9 0.89 0.88 0.9 1950 

10 Fed+ 0.88 0.87 0.87 0.88 2367 

The visualization plots for the Table V is presented in Fig. 
10 and time taken is presented in Fig. 11. 

 

Fig. 10. Evaluation with ensemble-based embedded feature selection with 

bagging. 

 

Fig. 11. Time taken with ensemble-based embedded feature selection with 

bagging. 

This Table VI compares the performance of six classifiers  
in solving the task, considering accuracy, precision, recall, and 

F1 score. The classifiers are Gated Recurrent Neural Network, 
ResNet-GRU, Single Cell LSTM, Stacked LSTM, 

Bid irectional LSTM, and Forward  LSTM. ResNet-GRU stands 
out as the top performer, excelling in all metrics. However, it's 

important to consider the computational cost, as processing 

time varies among models. The choice of the best classifier 
depends on specific application requirements and available 

computational resources. 

TABLE. VII FEDERATED LEARNING PERFORMANCE METRIC. 

SL 
No 

Classif iers 
Accur

acy 
Precis

ion 
Rec
all 

F1 
score 

Time Taken 
(Sec) 

       

1 
Gated Recurrent 

Neural Network 
0.96 0.95 0.94 0.96 1887 

2 ResNet-GRU 0.97 0.96 0.95 0.97 1550 

3 Single Cell LSTM 0.94 0.93 0.92 0.94 1899 

4 Stacked LSTM 0.95 0.94 0.93 0.95 1562 

5 Bidirectional LSTM 0.92 0.91 0.9 0.92 1911 

6 Forward LSTM 0.93 0.92 0.91 0.93 1574 

7 FedProx 0.86 0.86 0.85 0.86 1880 

8 FedAvg 0.89 0.88 0.89 0.88 1750 

9 Fed+ 0.9 0.89 0.88 0.88 1987 

The visualization p lots for the Table VI is presented in Fig. 
12 and time taken is presented in Fig. 13. 
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Fig. 12. Performance metric with federated learning. 

 
Fig. 13. Time taken with federated learning. 

In federated learning, the loss function curve is essential for 

tracking the model's progress in a privacy-preserving setting. It 
enables multiple devices or clients to train a global model 

collaboratively without sharing raw data centrally. Each client 

trains its model locally, and the loss function measures the 
model's prediction accuracy compared to actual labels. The loss 

function curve depicts how this accuracy evolves over 
federated learning rounds. Initially, it may fluctuate as models 

adapt to individual data. Over rounds, it generally decreases, 
indicating improved performance. However, federated 

learning's unique challenge arises from diverse data 

distributions across clients, leading to varying loss function 
curves and potentially non-smooth trajectories due to 

aggregation of local models. The loss function curve obtained 
from our setting is shown in Fig. 14.  

 
Fig. 14. Loss-Function curve. 

VI. CONCLUSION AND FUTURE ENHANCEMENT   

In this study, we analyzed the IoT23 dataset, focusing on 

botnet attacks, and used statistical tests to uncover patterns. We 

employed various feature selection methods and tested 19 
classifiers, with the GRU model and embedded lasso-based 

feature selection performing the best. An ensemble of LassoCV 
models improved feature selection, and integrating the ResNet 

architecture further boosted the GRU model's performance. We 
addressed privacy concerns using federated learning, and the 

optimized ResNet-GRU model outperformed existing 

algorithms. Future work should include robustness testing, 
hyperparameter tuning, and exploring larger datasets. 

Investigating different federated learning approaches and 
assessing real-world deployment challenges are also promising 

directions for further research. 
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