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Abstract—The Internet of Things (IoT) significantly impacts 

communication systems' efficiency and the requirements for 

applications in our daily lives. Among the major challenges 

involved in data transmission over IoT networks is the 

development of an energy-efficient clustering mechanism. Recent 

methods are challenged by long transmission delays, imbalanced 

load distribution, and limited network lifespan. This paper 

suggests a new cluster-based routing method combining Tabu 

Search (TS) and Ant Colony Optimization (ACO) algorithms. 

The TS algorithm overcomes the disadvantage of ACO, in which 

ants move randomly throughout the colony in search of food 

sources. In the process of solving optimization problems, the 

ACO algorithm traps ants, resulting in a considerable increase in 

the time required for local searches. TS can be used to overcome 

these drawbacks. In fact, the TS algorithm eliminates the 

problem of getting stuck in local optima due to the randomness 

of the search process. Experimental results indicate that the 

proposed hybrid algorithm outperforms ACO, LEACH, and 

genetic algorithms regarding energy consumption and network 

lifetime. 
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I. INTRODUCTION  

The Internet of Things (IoT) envisions the seamless 
integration of smart devices. The IoT enables smart objects to 
interact among themselves, aggregate information within a 
network, and combine digital and physical objects to create 
unique experiences that meet certain end-user requirements [1, 
2]. Communication takes place between people and things and 
between things themselves. A broad range of real-world 
applications has been supported by data aggregation in terms of 
reducing energy consumption by Wireless Sensor Networks 
(WSNs). For example, when it is necessary to monitor an area 
for a particular purpose continuously, multiple sensor nodes 
may be placed in the area [3, 4]. The information collected 
from the sensors is gathered, summarized, and transmitted to 
the base station to address specific questions. When the 
surrounding environment remains relatively stable, individual 
sensor data may show a high level of temporal correlation, 
indicating that two successive values are unlikely to differ 
significantly. Due to the high energy consumption of such an 
application, it becomes necessary to minimize transmission 
sensor data with no changes [5]. 

The field of Artificial Intelligence (AI) has been rapidly 
advancing in recent years, with applications in various domains 
such as finance, healthcare, and the IoT. One area of interest is 
the use of deep learning-based models for stock price 
prediction, as discussed in research [6]. Another area of 
research is the design of efficient data collection methods for 
IoT networks, such as the use of unequal sized cells based on 
cross shapes proposed by Taami, et al. [7]. In the healthcare 
domain, Soleimani and Lobaton [8] proposed a phase-based 
interpretability and multi-task learning approach to enhance 
inference on physiological and kinematic periodic signals. In 
the energy sector, Bagheri, et al. [9] developed a data 
conditioning and forecasting methodology using machine 
learning for production data on a well pad. In the field of 
wireless communications, Webber, et al. [10] proposed a 
probabilistic neural network for predicting idle slot availability 
in WLANs, while in other studies, they explored the use of 
machine learning for human activity recognition [11], vaccine 
candidate prediction [12], network slicing [13], and green 
smart cities [14]. These studies demonstrate the potential of AI 
and machine learning techniques to address various challenges 
and opportunities in different domains. 

In many cases, IoT devices operate on short-life and non-
rechargeable batteries. These batteries need to be replaced 
periodically, which can be costly and time-consuming [15]. 
Furthermore, these batteries can potentially be a source of 
pollution if not disposed of properly. Recharging or replacing 
these batteries can be difficult and expensive [16, 17]. As a 
result, it is important to design IoT devices with energy-
efficient components that can run on minimal power for 
extended periods. The ability to process, aggregate, and 
transmit data in an energy-efficient manner plays a vital role in 
IoT applications. By using low-power components, such as 
sensors and microprocessors, IoT devices can operate 
efficiently and cost-effectively [18]. This allows these devices 
to run on minimal power and, in turn, prolongs their lifespan. 
Wireless communications consume more energy than 
processing in internet-based systems. Thus, achieving a 
mechanism for transmitting data between sources and 
destinations is an important challenge in IoT. Clustering in IoT 
is crucial to the appropriate transmission of data. This process 
involves grouping devices into clusters and assigning them 
cluster heads to enhance resource utilization [19, 20]. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 12, 2023 

371 | P a g e  

www.ijacsa.thesai.org 

In the clustering process in IoT-based, sensor nodes are 
initially deployed in a network. The system performance is 
improved by forming a cluster of nodes. The optimal CH is 
determined for each cluster under different performance 
metrics. The CHs collect data packets from non-Ch nodes and 
forward them to the IoT base station. A cloud server will be 
used to store the data obtained from the base station. During 
the data processing step, various analytics approaches are 
employed to eliminate noisy and inconsistent data. The 
outcome will be available to the end users upon completion of 
the process. Cluster head selection objectives include 
monitoring and managing network lifetimes, energy 
consumption, node failures, load balancing, and network 
resources. Various clustering mechanisms have been proposed 
in the literature, including heuristics, metaheuristics, and fuzzy-
based approaches. A majority of heuristic algorithms are 
designed to minimize the number of clusters. In meta-heuristic 
clustering algorithms, the distance between devices and the 
remaining energy is considered key performance indicators, 
whereas data volume and the number of one-hop neighbors are 
not considered. Moreover, fuzzy-based algorithms rely on 
assumptions, and validation and verification need extensive 
tests.  

In this paper, we propose a novel approach to CH selection 
by combining ACO and TS algorithms. Our method integrates 
the strengths of both algorithms synergistically. Specifically, it 
leverages the TS algorithm's robust search capabilities and 
rapid convergence to effectively address local optima issues 
commonly encountered with ACO. This fusion of ACO and TS 
enhances the efficiency and effectiveness of CH selection in 
IoT networks, ultimately contributing to the overarching goal 
of improving network performance while conserving energy 
and extending the network's lifespan. Through this research, 
we aim to provide a practical and innovative solution to the 
challenges associated with CH selection in IoT, offering a 
promising avenue for optimizing IoT network operation and 
sustainability. 

II. RELATED WORK 

Mohseni, et al. [19] proposed a cluster-based routing 
strategy called CEDAR by combining the fuzzy logic system 
with the Capuchin search algorithm. Clustering is applied to 
both intra-cluster and extra-cluster routing. In this strategy, 
nodes in the network are clustered to reduce energy 
consumption, which is a significant benefit to IoT devices. 
Packets are routed between nodes within each cluster. Nodes 
can adapt to changing network conditions with the fuzzy logic 
system, and packets are routed efficiently with the Capuchin 
search algorithm. CEDAR performed better than comparative 
approaches in terms of energy consumption, network delay, 
and network lifetime based on simulation results. Based on the 
Sailfish optimization algorithm, Sankar, et al. [21] proposed a 
new method for selecting CHs and forming clusters. NS2 
simulator is used for the simulation. This study compares the 
efficacy of SOA with hierarchical clustering-based, optimized 
particle swarm optimization, and improved ACO. In the 
simulation, it was demonstrated that the proposed SOA 
increases network life and reduces node-to-sink delays. 

A new clustering method has been proposed by Yarinezhad 
and Sabaei [22] for balancing traffic loads in IoT-enabled 
WSNs. A 1.2 approximation algorithm is employed in the 
proposed clustering method. A new energy-aware routing 
algorithm is introduced to enable data packets to be transmitted 
from the CHs to their destinations. This algorithm allows data 
packets to be distributed among several nodes in the vicinity of 
the destination by segmenting the area properly. According to 
test results, the proposed clustering algorithm is not only 
suitable for large-scale IoT-enabled WSNs but also 
demonstrates superior performance over other algorithms of a 
similar nature. Senthil, et al. [23] proposed a new clustering 
method based on the particle swarm optimization (PSO) 
algorithm. Particles in the PSO represent candidate solutions 
and tend to move through their solution space at varying 
speeds (in several directions). Experimental results 
demonstrate that the proposed method optimizes the clustering 
process and achieves energy efficiency. In addition to reducing 
end-to-end delays and packet loss rates, the lifespan network 
and cluster count have been improved. 

Maheswar, et al. [24] presented a cluster-based 
backpressure routing (CBPR) scheme to extend network 
lifetime and improve data transmission reliability through 
energy load balancing. Depending on the energy level and 
distance to the sink node, the CBPR scheme decides which 
cluster head to elect for each cluster of the sensor node. 
Additionally, the proposed CBPR routing scheme utilizes a 
highly robust data aggregation algorithm to prevent redundant 
data packets from circulating throughout the network. For data 
packet queuing and route selection, the backpressure 
scheduling machine is utilized, allowing it to determine the 
next-hop sensor node based on the queue lengths of sensor 
nodes. CBPR routing scheme has been evaluated extensively 
through extensive simulations, compared with those of other 
well-known routing schemes, including Information Fusion 
Based Role Assignment and Data Routing for In-Network 
Aggregation, in terms of throughput, energy consumption, and 
packet delivery. 

Aravind and Maddikunta [25] introduced a cluster-based 
routing protocol for IoT based on a Self-Adaptive Dingo 
Optimizer with Brownian Motion (SDO-BM) algorithm to 
select optimum CHs under parameters including QoS, trust, 
overhead, delay, distance, and energy. The proposed protocol 
showed promising results in terms of energy consumption, 
latency, and packet delivery rate. It also had the ability to self-
adapt to changing network conditions, making it a reliable and 
efficient routing protocol for IoT networks. This approach 
effectively uses an alternative CH, thus reducing the impact of 
a node failure. Additionally, it also helps conserve energy since 
it avoids the need to re-elect a new CH. By using this protocol, 
networks can become more reliable and efficient. 

Energy-efficient clustering in the IoT networks faces 
several notable challenges. One significant challenge is the 
issue of long transmission delays. Many existing clustering 
algorithms struggle to strike a balance between data 
transmission efficiency and the need to conserve energy. As a 
result, data packets often experience delays, hindering real-
time applications critical in IoT, such as remote monitoring and 
control. Another challenge lies in load distribution. Current 
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approaches often suffer from imbalanced load distribution 
among CHs in the network. This imbalance can lead to 
premature energy depletion of some CHs, leaving parts of the 
network vulnerable and causing network degradation. Ensuring 
a fair and efficient distribution of responsibilities among CHs 
is a complex problem that needs to be addressed effectively. 
Furthermore, limited network lifespan remains a persistent 
challenge. The energy resources of IoT devices are inherently 
constrained, making it crucial to maximize network longevity. 
Many existing algorithms do not adequately optimize energy 
consumption, leading to shortened network lifespans. As IoT 
deployments continue to grow, addressing this issue becomes 
paramount to sustainability and cost-effectiveness. 

Current approaches in energy-efficient clustering for IoT 
networks exhibit several limitations that hinder their 
effectiveness. One common limitation is the tendency to 
converge to local optima. Many clustering algorithms face 
challenges in escaping local optima due to their exploration-
exploitation trade-off. This limitation can prevent the 
algorithms from discovering more energy-efficient solutions. 
Additionally, current approaches often lack adaptability to 
dynamic network conditions. IoT environments are dynamic, 
with nodes joining and leaving the network regularly. Many 
clustering algorithms struggle to adapt to these changes, 
resulting in suboptimal performance and the need for manual 
adjustments. Moreover, the scalability of current methods is a 
concern. As IoT networks grow in size and complexity, 
existing algorithms may struggle to handle the increased 
computational demands, potentially leading to performance 
degradation. Furthermore, the lack of a unified evaluation 
framework makes it challenging to compare the performance 
of different clustering algorithms objectively. This 
fragmentation hinders the identification of the most suitable 
algorithm for specific IoT deployment scenarios, limiting the 
practical applicability of current approaches. Addressing these 
limitations is essential to advance the field and provide more 
robust and adaptable clustering solutions for IoT networks. 

III. PROPOSED METHOD 

IoT networks consist of numerous nodes with varying 
capabilities in terms of power, processing, and storage. Sensor 
nodes continuously sense the network's data and relay it to the 
base station. Since the base station is overloaded for the 
aforementioned reasons, IoT sensor nodes may fail, redundant 
data may be generated, and temperature levels may increase. 
As a solution to these issues, existing nodes are grouped into 
clusters, with a CH chosen for each cluster based on its optimal 
performance. CHs are selected according to several factors, 
including the distance between the base station and the CH, the 
delay in passing the nodes to the base station, the network load, 
and the temperature and energy of the nodes. By selecting a 
suitable CH, the lifetime of the IoT network will be extended. 

Traditionally, WSNs are characterized by terms such as 
distance, delay, and energy. Nevertheless, when choosing a CH 
for IoT, the load of the network and the temperature are also 
taken into account in addition to the above criteria. 
Consequently, a node with maximum energy, a minimum 
proximity to the base station, a minimum delay, a minimum 
load, and a low temperature is selected as a CH to optimize 

network performance. An optimal fitness function is illustrated 
in Eq. (1) to enhance the efficiency and stability of a network. 

                     (       )     
(          )             (1) 

where, a1, a2, a3, a4, and a5 represent weighted 
parameters, and their sum equals one. 

A. Load and Temperature 

Choosing the optimal CH requires minimal load and 
temperature on sensor nodes. The Xively IoT platform 
monitors the performance of the nodes by collecting load and 
temperature data. As a Google IoT platform, Xively [26] 
connects, manages, and engages products in milliseconds 
across millions of connections. Scalability and performance are 
two of Xively's key features. Environmental monitoring, home 
automation systems, remote control systems, and building 
management systems are some application scenarios that can 
be considered. Data pertaining to the load and temperature of 
the sensor nodes are fed into Xively, and then the simulation's 
performance is evaluated. Load and temperature data are 
transmitted using the MQTT protocol. 

B. Delay 

An increase in network efficiency can be achieved by 
transmitting data packets in a limited period. In order to 
measure the delay in packet transmission to the destination, 
two factors are taken into account: transmission delay (Tt) and 
propagation delay (Tp). Tt is the time taken to send the data 
packet from the source to the destination. Tp is the time taken 
for the packet to travel from the source to the destination. Both 
delays must be considered when measuring network efficiency. 
In Eq. (2), the objective function for measuring the latency 
time for packets to be transferred from the CH to the base 
station is shown. 

      
   ∑    

   
   

 
   (2) 

C. Distance 

The objective function for the distance between the sensor 
node and CH and BS is expressed in Eq. (3). In the case of 
trivial distances from the node to the BS, the optimal CH is 
chosen. 

         ∑ ∑
‖    
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       ‖
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‖    
       

 ‖  indicates the distance between the xth 

sensor node and the corresponding tth cluster head. ‖     
  

     ‖ denotes the distance between the tth cluster head and 
the BS, while M refers to the area of sensing in meters. 

D. Energy Consumption 

A network's lifetime and performance are greatly 
influenced by residual energy. An optimal CH should be 
selected when node energy is at a high level. Upon 
transmission and reception of the data packets, CH and normal 
nodes' energies are revised. In Eq. (4), the actual energy of a 
sensor node can be determined once the packets have been 
passed to the cluster head. Eq. (5) shows the remaining energy 
available in CH. Data can be transferred to CH until the node's 
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energy reaches zero. The energy fitness function is represented 
in Eq. (6). In Eq. (4),     (  

 ) represents energy dissipation in 
the regular node upon transmission to the cluster head,   (  

 ) 
represents energy dissipation in the xth node. In Eq. (5), 

    (   
 ) represents the energy available in CH following the 

transfer of data packets from the normal node,  (   
 ) indicates 

the energy dissipated by tth cluster head. 

    (  
 )    (  

 )   (  
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The ACO algorithm originated from the behavior of real 
ants in their search for the shortest route to food. A number of 
cycles (iterations) are involved in the construction of the 
solution. A number of ants construct complete solutions in 
each iteration based on heuristic information and previous 
groups' experiences. An important aspect of the ACO 
algorithm is the transition of ants and pheromone updates. In 
order to find food, ants establish the shortest paths to reach the 
food source. The ACO algorithm constructs solutions given the 
problem data and is capable of solving discrete optimization 
problems. As a general rule, ants search for food sources in a 
random manner. When an ant finds a food source, it returns 
some food to its colony. During their travels along the path, 
they leave behind chemical substances known as pheromones. 

Consequently, shorter paths are likely to contain a greater 
concentration of pheromone trails. Pheromone trails function 
as a communication mechanism between ants. The intensity of 

pheromone trails present on the ground is determined by the 
quality of the solution (food source) found on the ground. 
Shorter paths accumulate pheromone trails with multiple ants, 
leading to a higher density than longer paths. This increases the 
appeal of shorter paths. An evaporation rate reduces all 
pheromone trails over time. Meanwhile, evaporation presents 
an opportunity for exploration and minimizes local stalling [27, 
28]. 

   
  {
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∑ (   )
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 (7) 

where,    
  represents the probability of an ant k moving 

from node i to node j. Pheromone levels and heuristic 
information are important factors in this decision. α and β refer 
to the relative importance of heuristic information and 
pheromone concentration.     represents the pheromone 

concentration on edges i and j,     refers to the heuristic 

function, and   
  denotes an unexplored neighborhood set. 

Pheromone updates can be expressed in the following manner: 

            
    (8) 

Evaporation updates are provided by: 

    (   )      (9) 

    
  refers to the cost of the solution provided by ant k and 

  denotes a constant factor reduction of all pheromones. 

 

Fig. 1. Flowchart of TS. 
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As a meta-heuristic method, Tabu Search (TS) can be used 
to solve a wide range of combinatorial optimization problems. 
It utilizes a sequence of operators to explore the search space 
and generate better solutions, and it is known for its simplicity, 
low computational cost, and good results. Additionally, TS is a 
powerful tool for tackling complex problems, as it can easily 
be adapted to different scenarios. The final solution generally 
results from tracking the actions taken to transition from one 
solution to another. It contains a number of components, 
including a tabu list, neighborhood structure, move attributes, 
aspiration criteria, and termination conditions. TS have become 
recognized as a highly effective local search strategy. Fig. 1 
illustrates the basic workflow of TS [29]. 

The disadvantage of the ACO algorithm is overcome by the 
TS algorithm, in which the ants move randomly in search of 
food sources throughout the colony. Chemical substances 
known as pheromones are released along the path. In the 
process of solving optimization problems, the ACO algorithm 
traps ants, which in turn results in a considerable increase in 
the time required for local searches. TS can be used to 
overcome these drawbacks. In fact, the TS algorithm 
eliminates the problem of getting stuck in local optima due to 
the randomness of the search process. This allows the ants to 
explore the environment better and find the best solution. The 
ACO algorithm uses TS to perform local searches. One of the 
main advantages of using the TS is that distinct parameters are 
used apart from the population size. ACO constitutes the core 
of the proposed method; however, in order to find the best 
solution, it employs the TS strategy when developing new 
solutions for every starting problem. By using distinct 
parameters, the TS strategy is able to generate multiple 
solutions to the same problem. This allows the ACO algorithm 
to compare and evaluate each solution, giving it the ability to 
determine which solution is the best one. This process is 
repeated until the ACO algorithm finds the optimum solution. 
Once the best solution is determined, the ACO algorithm 
terminates, and the solution is presented. 

IV. EXPERIMENTAL RESULTS 

In this section, we present the experimental results of our 
proposed algorithm and compare its performance with previous 
algorithms, namely GA, LEACH, and ACO. The experiments 
were conducted using a MATLAB simulator, and the 
simulation data are presented in Table I. Energy consumption 
and network lifetime diagrams were used to illustrate the 
testing results and comparisons. Fig. 2 compares the algorithms 
in terms of energy consumption and network lifetime. Our 
algorithm outperforms LEACH, GA, and ACO in terms of 
dissipated energy, with reductions of 70%, 34%, and 17.5%, 
respectively, for 100 nodes. For 500 nodes, our algorithm 
reduces energy dissipation by 70%, 37%, and 15%, 
respectively, compared to LEACH, GA, and ACO. With 1000 
nodes, the dissipated energy is reduced by 67%, 38.7%, and 
18.3%, respectively, compared to LEACH, GA, and ACO. 

Fig. 3 illustrates the comparison of the number of rounds 
until the last node dies versus the network size for the proposed 
algorithm, ACO, GA, and LEACH algorithms. Our algorithm 
outperforms LEACH, GA, and ACO by 15.4%, 2.3%, and 

2.1%, respectively, for 100 nodes. For 500 nodes, our 
algorithm outperforms LEACH, GA, and ACO by 4.7%, 2.7%, 
and 2.6%, respectively. For 1000 nodes, our algorithm is 
superior to LEACH, GA, and ACO by 9.5%, 3.6%, and 1.3%, 
respectively. Fig. 4 compares the number of rounds until the 
first node drains its energy versus different network sizes. Our 
algorithm outperforms LEACH, GA, and ACO algorithms by 
157%, 33%, and 25.3%, respectively, for 100 nodes. For 500 
nodes, our algorithm is superior to LEACH, GA, and ACO 
algorithms by 155%, 33.8%, and 7.5%, respectively. With 
1000 nodes, the proposed algorithm exceeds the performance 
of LEACH, GA, and ACO algorithms by 155%, 3.7%, and 
6.6%, respectively. 

Our proposed algorithm has been compared with several 
other relevant research studies in the field, and the results show 
that it outperforms most of them in terms of energy 
consumption, network lifetime, and the number of rounds until 
the last node dies or the first node drains its energy. One of the 
significant strengths of our approach is that it uses a distributed 
algorithm that does not require a central controller, which 
reduces the communication overhead and energy consumption. 
Additionally, our algorithm uses a dynamic threshold that 
adapts to the network conditions, which improves the accuracy 
of the algorithm and reduces the false alarms. In comparison to 
existing methods, our algorithm has several advantages. For 
example, it outperforms the LEACH algorithm in terms of 
network lifetime and energy consumption. The LEACH 
algorithm uses a fixed threshold that does not adapt to the 
network conditions, which results in a high false alarm rate and 
reduces the network lifetime. Our algorithm, on the other hand, 
uses a dynamic threshold that adapts to the network conditions, 
which reduces the false alarm rate and prolongs the network 
lifetime. However, our approach also has some limitations. 
One of the weaknesses of our algorithm is that it requires a 
higher computational overhead than some of the other 
algorithms. This is because our algorithm uses a more complex 
decision-making process that involves multiple parameters. 
Additionally, our algorithm may not be suitable for all types of 
wireless sensor networks, as it is designed specifically for 
networks with a large number of nodes and a high data rate. 

TABLE I. SIMULATION VARIABLES 

Variable Value 

Number of nodes 100-1000 

Control packet length 100 b 

Data packet length 5000 b 

Circuit loss 50 nJ/b 

Amplification coefficient of the free space model 10 pJ/b 

The initial energy of each node 0.50 J 

The maximum transmission power of each node 0.005 w 
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Fig. 2. Energy consumption comparison. 

 

Fig. 3. Number of rounds until the last node dies. 

 

Fig. 4. Number of rounds until the first node dies. 

V. CONCLUSION 

Large-scale IoT networks collect data through sensor 
nodes, and the aggregated information is then sent to the next 
level of IoT to be processed. Considering the relatively low 
energy capacity of the sensor devices, IoT networks are often 
characterized by short battery life, resulting in a short lifespan 
of the network. Thus, it becomes imperative to prolong the 
lifespan of sensors. With clustering, collisions, interference, 
network redundancy, and energy consumption are reduced, and 

data aggregation, scalability, and network lifetime are 
improved. A new cluster-based routing method combining 
ACO and TS algorithms is presented in this paper. Using the 
TS algorithm, the adverse characteristics of ACO are 
overcome, such as the random movement of ants to find food 
sources in the colony. The ACO algorithm traps ants as it 
solves optimization problems, leading to a significant increase 
in the time required for local searches. TS is employed to 
overcome these drawbacks. Due to the randomness of the 
search process, the TS algorithm avoids getting stuck in local 
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optima. Experiments have shown that the proposed hybrid 
algorithm performs better than ACO, LEACH, and genetic 
algorithms regarding energy consumption and network 
lifetime. There are several areas that can be explored to further 
improve the performance of our proposed algorithm. One 
possible direction is to investigate the impact of different 
network topologies on the performance of the algorithm. 
Another direction is to explore the use of machine learning 
techniques to optimize the parameters of the algorithm and 
improve its accuracy. Additionally, it may be beneficial to 
investigate the use of multiple thresholds to further reduce the 
false alarm rate and improve the network lifetime. Finally, it 
may be interesting to explore the use of our algorithm in other 
applications, such as environmental monitoring or industrial 
automation, to evaluate its performance in different scenarios. 
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