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Abstract—The durian fruit holds a prominent position as a 

beloved fruit not only in ASEAN countries but also in European 

nations. Its significant potential for contributing to economic 

growth in the agricultural sector is undeniable. However, the 

prevalence of durian leaf diseases in various ASEAN countries, 

including Malaysia, Indonesia, the Philippines, and Thailand, 

presents formidable challenges. Traditionally, the identification 

of these leaf diseases has relied on manual visual inspection, a 

laborious and time-consuming process. In response to this 

challenge, an innovative approach is presented for the 

classification and recognition of durian leaf diseases, delves into 

cutting-edge disease control strategies using vision transformer. 

The diseases include the classes of leaf spot, blight sport, algal 

leaf spot and healthy class. Our methodology incorporates the 

utilization of well-established deep learning models, specifically 

vision transformer model, with meticulous fine-tuning of 

hyperparameters such as epochs, optimizers, and maximum 

learning rates. Notably, our research demonstrates an 

outstanding achievement: vision transformer attains an 

impressive accuracy rate of 94.12% through the hyperparameter 

of the Adam optimizer with a maximum learning rate of 0.001. 

This work not only provides a robust solution for durian disease 

control but also showcases the potential of advanced deep 

learning techniques in agricultural practices. Our work 

contributes to the broader field of precision agriculture and 

underscores the critical role of technology in securing the future 

of durian farming. 

Keywords—Vision transformer; durian disease; deep learning; 

disease control 

I. INTRODUCTION 

The durian fruit's popularity has surged in recent years, 
primarily driven by increased consumer demand, notably from 
China [1]. Moreover, it has found a substantial export market 
in Southeast Asian countries, Hong Kong, Australia, and 
Western nations such as United States. This upswing in the 
durian market can be attributed in part to the cultivation of 
premium varieties renowned for their exceptional flavor and 

consistent pulp quality. Notably, varieties like D24, D197 
(Musang King), and D200 (Black Thorn) from Malaysia, as 
well as traditional Thai cultivars such as Monthong, Chanee, 
and Kanyau, have garnered significant attention and are in high 
demand, painting a promising future for the fruit. 

Thailand maintains its position as the primary producer and 
exporter of durians, with other countries like Malaysia, 
Indonesia, Vietnam, Cambodia, and the Philippines also 
cultivating this unique fruit [2]. The global durian fruit trade is 
characterized by a dominant duopoly, with China taking the 
lead in imports, while Thailand leads in exports. In 2021, 
Thailand's durian exports reached an impressive value of 3,920 
million USD, making up a significant 82.7% of the total global 
trade. In contrast, Malaysia's contribution ranked fourth, 
comprising about 0.67% of the trade volume, with a total value 
of 31.8 million USD. Simultaneously, China asserted its 
dominance in global durian imports in the same year, with an 
astonishing 4,240 million USD, constituting a substantial 
89.4% of the overall trade. Additionally, notable participants in 
the market, following China's lead, included Hong Kong, 
Vietnam, Chinese Taipei, and Singapore, accounting for 
89.4%, 5.37%, 2.43%, 0.72%, and 0.36% of the trade, 
respectively [3]. Fig. 1 and Fig. 2 depict the top importer and 
exporter of durians, respectively. 

The adoption of modern agricultural practices, including 
drip irrigation, enhanced fertilizer formulations and application 
techniques, and improved cultural and postharvest methods, 
has significantly contributed to the increased productivity of 
durian farms [4]. Nevertheless, growers remain vigilant due to 
the persistent threat of diseases in the industry. Durian trees are 
susceptible to a range of diseases, such as spot cancer, base rot, 
base disease, seedling disease, dead tip disease, fungal 
infections, leaf spots, leaf blight, and fruit rot. Among these, 
stem rot disease, primarily caused by P. Palmivora, stands out 
as a particularly perilous ailment. This disease severely impairs 
the tree's nutrient transport system within the stem. 
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Fig. 1. World importer of fresh durian in 2021. 

 
Fig. 2. World exporter of fresh durian in 2021.

Durian trees are susceptible to various diseases, such as 
algal diseases caused by cephaleuros virescens, characterized 
by the appearance of orange, rust-colored velutinous spots on 
the upper surfaces of leaves, twigs, and branches. Another 
concern is anthracnose, resulting from Colletotrichum 
gloeosporioides, which manifests as dark lesions on fruit and 
premature fruit drop. Moreover, Phomopsis leaf spot, induced 
by diplodia heobromae and C. Gloeosporioides, presents as 
necrotic, brown circular spots, approximately 1 mm in 
diameter, featuring dark margins and yellow halos on leaves. 
The sinister pink disease, attributed to erythricium 
salmonicolor, is marked by pinkish-white mycelial threads that 
envelop branches and shoots. 

Additionally, postharvest fruit rots caused by Phyllosticta 
sp. and curvularia eragrostidis result in irregular necrotic 
patches in varying shades of brown. Rhizoctonia leaf blight, 
originating from Rhizoctonia solani, leads to water-soaked 
spots on leaves that coalesce to form larger, irregular, water-
soaked patches, eventually drying into light brown necrotic 

lesions. Lastly, sooty mold and black mildew, caused by Black 
Mildew fungi, form a hard, lumpy crust on twigs and leaf 
petioles, and on fruit, they create a spongy crust on the surface. 
However, a particularly dangerous ailment is stem rot disease, 
resulting from P. Palmivora, which damages the tree's nutrient 
transport system in the stem. 

A significant aspect of the challenges that arise in 
agricultural areas can be addressed by computer vision [5]. 
Traditionally, the detection of plant diseases heavily relied on 
manual inspections conducted by farmers or laborers, typically 
with the naked eye (Singh et al., 2017 & Petrellis, 2015). Table 
I presented traditional disease monitoring procedure for disease 
management with limitations, such as visual inspection, 
scouting, weather-based disease forecasting and etcetera. This 
method can be both laborious and repetitive, especially when 
dealing with tall Durian trees. However, the advent of artificial 
intelligence (AI) has revolutionized disease detection in 
various tree types, including Durian. 
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TABLE I. TRADITIONAL DISEASE MONITORING PROCEDURE FOR DISEASE 

MANAGEMENT 

Disease 
Monitoring 
Procedure 

Description Limitations 

Visual 
Inspection 

Regular visual 
assessment of crops for 
symptoms of disease. 

 Subject to human error and 
bias. 

 May miss early or subtle 
symptoms. 

 Time-consuming for large 
fields. 

Scouting by 
Field Observers 

Trained personnel 
systematically inspecting 
fields for signs of 
disease. 

 Labor-intensive and costly. 

 Limited coverage and 
potential variations in 
observer expertise. 

Weather-Based 
Disease 
Forecasting 

Using weather data to 
predict disease outbreaks 
based on favourable 
conditions for pathogen 
development. 

 Accuracy depends on the 
quality and availability of 
weather data. 

 Doesn't account for all factors 
affecting disease. 

Sampling and 
Lab Testing 

Collecting plant or soil 
samples for laboratory 
analysis to identify and 
confirm disease presence. 

 Requires specialized 
equipment and expertise. 

 Results may not be available 
quickly enough for immediate 
action. 

Disease 
Severity Rating 
Scales 

Assigning numerical 
scores to rate disease 
severity, helping quantify 
disease progression. 

 Subjective and dependent on 
the assessor's judgment. 

 Can be time-consuming, 
especially for large areas. 

Trap Crops and 
Indicator Plants 

Planting susceptible 
species near valuable 
crops to serve as early 
warning indicators of 
disease presence. 

 May not always provide 
timely detection. 

 May require additional land 
and resources. 

Neighbouring 
Farm 
Communication 

Exchange of information 
among neighbouring 
farms about disease 
outbreaks or 
observations. 

 Relies on the willingness of 
nearby farmers to share 
information. 

 Limited to local awareness. 

In agriculture, diseases are a common occurrence across 
different fruit varieties. When it comes to monitoring fruit 
diseases, researchers and practitioners often grapple with the 
challenge of finding a balance between the accuracy of deep 
learning models and the computational resources necessary for 
efficient monitoring. To tackle this challenge and enhance both 
precision and efficiency, various deep learning architectures 
and techniques have been explored. 

Considering there are more pixels in an image than there 
are words in NLP applications, the use of the attention 
mechanism in vision applications has been considerably more 
constrained due to the high computing cost [6]. This means that 
typical attention models cannot be applied to visuals. 

II. RELATED WORKS 

Transformer network applications in computer vision were 
recently reviewed in [7] and vision transformer (ViT) is a 
major step towards adopting transformer-attention models for 
computer vision tasks [8]. Compared to CNN-based models 
that consider picture pixels, using image patches as information 
units for training is groundbreaking.  ViT uses self-attention 
modules to analyze the relationship between image patches 
included in a shared region.  ViT was demonstrated to 

outperform CNNs in image classification accuracy given vast 
quantities of training data and processing resources [8]. 

State-of-the-art deep learning models can achieve 
impressive results and are well-suited for drone applications, 
but they come with a hefty need for computational resources 
during the training process. In contrast, Vision Transformer 
(ViT) offers a promising alternative [26]. ViT avoids using 
Convolutional Neural Networks (CNNs) and performs at a 
level similar to top-tier CNN models. ViT, a relative of the 
Transformer model, utilizes a smart technique called self-
attention to establish a global reference for each pixel in an 
image during training. It breaks the image into smaller patches, 
assigns a position to each patch, and learns from them. In the 
final layers of the ViT model, the similarity between these 
patch representations significantly improves. Interestingly, 
adding more layers to the model doesn't enhance its 
performance [27]. Nevertheless, ViT does pose a challenge 
when dealing with high-resolution images due to its four-fold 
increase in memory requirements, making them more difficult 
to handle. 

Numerous research studies have focused on mitigating the 
shortcomings of Transformer-based models which tend to fall 
into two main categories: hybrid models and pure Transformer 
enhancements. Table II illustrates both hybrid and pure 
transformer enhancements. Furthermore, by employing the 
Vision Transformer, researchers achieved a minimum of 1% 
higher accuracy in classifying cassava leaf diseases than well-
known CNN models. They also effectively implemented this 
model on the Raspberry Pi 4, an edge device, showcasing the 
substantial potential for its application in the realm of smart 
agriculture [17]. To the best of our knowledge, only [19] has 
performed durian disease detection using deep learning 
approach. The durian disease classification was performed 
using Resnet-9 and VGG-19 where Resnet-9 was outperformed 
VGG-19 with accuracy of 100% and 99.11%, respectively. 
Recent advancements in plant disease detection have seen 
substantial enhancements using CNN-based models. 
Nevertheless, these models have limitations such as translation 
invariance, locality sensitivity, and a lack of comprehensive 
global image understanding. 

TABLE II. HYBRID AND ORIGINAL VISION TRANSFORMER METHOD 

Paper ViT Techniques Results Limitations 

[9] 
Ghost-Enlightened 
Transformer (GeT) 

98.14% 
-Relies on large labelled 
data 

[10] PlantXViT 98.33% 
-unable to maintain a 
lower count of Gega 
floating operation points. 

[11] 
Convolution vision 
Trasnformer (CvT) 

87.7% 
-higher accuracy will 
increase training and 
inference times and  
memory used. 

[12] 
Convolution-enhanced 
image Transformer 
(CeiT) 

99.1% 

[13] LocalVit 94.2% 

[14] Swin Transformer 81.3% 
-larger resolution needed 
to increase the accuracy 

[15] k-NN attention (KvT) 73.0% 
-need to be paired up as 
the boosting agent for the 
vision transformer. 

[16] RegionViT 83.8% Not stated 
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To overcome these challenges, this study introduces a 
novel approach that employs a Vision Transformer-based 
model for more effective plant disease classification. ViT 
results will be compared with ResNet-9 and VGG-19 [19] in 
results and discussion part. This approach combines computer 
vision and deep learning technologies to revolutionize 
agricultural production management, utilizing large-scale 
datasets to address current agricultural issues and improve the 
overall performance of agricultural automation systems, 
especially in Durian disease classification, thereby propelling 
agricultural automation equipment and systems toward a more 
intelligent future [18]. 

The paper is organized as follows: Section I presents a brief 
introduction to the type of durian diseases and current method 
used to detect the diseases. Section II delves into related works. 
Section III covers the methodology of ViT and how the 
experiment conducted. Then, Section IV presents the results 
and discussion of durian disease detected using ViT and 
Section V gives the conclusion and future work of the research. 

III. METHODOLOGY 

A. Dataset Preparation 

In this experimental study, our primary objective was to 
develop and train a robust deep learning model specifically 

Vision Transformer capable of accurately classifying diseases 
that affect durian plants. Our dataset included a total of 1,344 
images, which were distributed across four distinct classes. The 
diseases aimed to precisely classify were ‘durian_leaf_spot’, 
‘durian_leaf_blight’, ‘durian_algal_leaf_spot’, and ‘durian_ 
healthy’, as presented in Table III [20]. 

To effectively manage the dataset, the original dataset is 
divided into two sets: training and validation. This was 
achieved by applying a validation split ratio of 20%, meaning 
that 80% of the data was designated for training purposes, 
while the remaining 20% was reserved for validation. 

Additionally, to enhance the model's generalization and 
diversify the training data, data augmentation techniques was 
implemented. The 'ImageDataGenerator' class is provided by 
Keras, which facilitated various augmentations of the training 
data. These augmentations included random rotations of up to 
40 degrees, horizontal and vertical shifts of up to 20% of the 
image dimensions, shearing transformations up to 20%, 
random zoom adjustments that could expand or contract by up 
to 20%, and horizontal flipping to create mirror images. When 
generating new pixels, the 'nearest' method was utilized. This 
process resulted in the creation of four augmented versions of 
each original image, significantly expanding the size of the 
training dataset. 

TABLE III. DURIAN DISEASE DATASET EXTRACTED FROM [20] 

Dataset Description 
Total number of 

images 
Sample of images 

'durian___leaf_spot' Images of durian leaves with leaf spot disease. 336 

 

'durian___leaf_blight' Images of durian leaves with leaf blight disease 336 

 

'durian___algal_leaf_spot' Images of durian leaves with algal leaf spot disease 336 

 

'durian___healthy' Images of healthy durian leaves 336 
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B. Durian Disease Classification using Vision Transformer 

(ViT) 

The ViT model consists of patch creation, patch encoding, 
multiple Transformer layers, and a final classification head, as 
shown in Fig. 3. 

 Patch creation: Instead of processing entire images at 
once, the ViT model divides each image into smaller 
non-overlapping patches or tiles. This patch-based 
approach allows the model to process large images 
efficiently. Each patch is treated as a separate input and 
processed independently by the model. 

 Patch Encoding: After splitting the image into patches, 
each patch is encoded into a numerical representation 
that the model can work with. This process typically 
involves linearly projecting the patch's pixel values into 
a lower-dimensional vector, allowing the model to learn 
spatial relationships and features within each patch. 

 Multiple Transformer Layers: The heart of the ViT 
model consists of multiple Transformer layers. These 
layers process the encoded patches and capture 
contextual information, enabling the model to 
understand how different patches relate to one another. 
The self-attention mechanism in the Transformer 
architecture is particularly crucial for this step, as it 
helps the model weigh the importance of different 
patches when making predictions. 

 Final Classification Head: At the end of the ViT model, 
there is a classification head. This part of the model 
takes the information from the previous Transformer 
layers and makes predictions based on the features 
learned during the earlier stages of processing. For tasks 
like image classification, this is where the model 
assigns labels or probabilities to different classes. 

The ViT model employs two optimizers, Adam and SGD 
(Stochastic Gradient Descent), which include a regularization 

technique called weight decay. Weight decay is a 
regularization method used to prevent overfitting in deep 
learning models. It works by adding a penalty term to the loss 
function during training, encouraging the model to have 
smaller weight values. Smaller weights can make the model 
more robust and less prone to overfitting. 

To improve training efficiency, a learning rate schedule is 
defined. In this schedule, the learning rate, which determines 
how much the model's parameters are updated during training, 
is reduced by 50% every 10 training epochs. This gradual 
reduction in learning rate is a common strategy to help the 
model converge to a good solution without making overly large 
updates to its weights, which can cause instability. 

During training, the ViT model periodically saves its 
current state as checkpoints. These checkpoints capture the 
model's parameters, allowing you to resume training from 
where you left off or use the model for inference. The saving of 
model checkpoints is typically based on validation accuracy, 
meaning that the model's performance on a separate validation 
dataset is used as a criterion to determine when to save a 
checkpoint. This ensures that the saved models are based on 
their ability to generalize to unseen data. 

Furthermore, the training data is divided into two parts: the 
main training data (90%) and a validation set (10%). The main 
training data is used to train the ViT model, while the 
validation set is used to monitor the model's performance 
during training. This split is important for assessing how well 
the model is learning and for tuning hyperparameters like the 
learning rate. After the model has been trained, it is evaluated 
on a separate test dataset that the model has never seen during 
training. This evaluation assesses the model's performance on 
unseen data and provides an indication of how well it can 
generalize to real-world scenarios. The evaluation reports two 
metrics: accuracy, which measures the overall correctness of 
predictions, and top-5 accuracy, which indicates how often the 
correct label is among the top five predicted labels. 

 
Fig. 3. Vision transformer architecture. 
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IV. RESULTS AND DISCUSSION 

In this study, ViT has been deployed and fine-tuned it to 
perform Durian Disease classification using two well-known 
optimization algorithms, namely, Stochastic Gradient Descent 
(SGD) and ADAM optimizer. The experiments encompassed a 
range of hyperparameters, including different learning rates 
(0.001, 0.005, and 0.01) and various epoch settings (20, 30, and 
40). The outcomes provide valuable insights into how the 
model's performance varies with alterations in these key 
hyperparameters, shedding light on the most effective 
configurations for the task. 

As revealed in Table IV, a validation accuracy of 94.12% 
was attained with the utilization of the ADAM optimizer, a 
maximum learning rate of 0.01, and an extended training 
period of 400 epochs. In contrast, Table V displays the 
outcomes with the SGD optimizer, where a comparable 
learning rate and epoch setting yielded an accuracy of 85.82%. 
ADAM's superior performance in this context can be attributed 
to its adaptability and the fusion of techniques from both 
momentum and RMSprop optimization. ADAM excels in 
scenarios involving intricate loss surfaces and fluctuating 
learning rates. It dynamically tailors the learning rate for each 
parameter, guided by historical gradient information. This 
adaptability often results in swifter convergence and enhanced 
generalization capabilities. In contrast, SGD adheres to a more 
conventional optimization approach. Achieving parity with 
ADAM's performance, particularly with complex models like 
ViT, often necessitates manual fine-tuning of the learning rate 
and other hyperparameters. 

In many cases, the maximum learning rate of 0.01 might 
lead to faster convergence but might also make the model 
diverge or not settle into the optimal solution. By reducing the 
maximum learning rate during training (e.g., from 0.01 to 
0.001), the model is allowed to fine-tune and reach a more 
stable and accurate solution. This phenomenon can be observed 
where both optimizers are performed well with maximum 
learning rate of 0.001 compare to 0.01. 

Certainly, our training approach involved the incorporation 
of a learning rate schedule to foster training stability and 
mitigate overfitting. Simultaneously, data augmentation proved 
instrumental in enhancing the model's robustness by enabling it 
to adapt to a broader range of image conditions. Techniques 
such as resizing, flipping, rotation, and zooming effectively 
contributed to this augmentation strategy. 

However, in Table VI, ResNet-9 is outperformed the other 
two methods, ViT and VGG-19. When evaluating why ViT 
might not be as good as the accuracy of ResNet-9 and VGG-19 
[19], various factors come into play. First, ResNet-9 and VGG-
19, as convolutional neural networks (CNNs), have been 
explicitly tailored for image classification tasks, boasting a 
proven track record in this domain. ViT, on the other hand, is a 
relatively newer architecture that demands substantial fine-
tuning for optimal performance. 

Additionally, ViT models often require more extended 
training schedules, specialized initialization methods, and 
specific architectural considerations, necessitating higher 
computational resources. Moreover, ViT's capacity to 
generalize might be challenged when confronted with smaller 
datasets, as its architecture is not as well-suited to such 
scenarios. Comparatively, ResNet-9 and VGG-19 [19] models 
tend to deliver robust performance with limited data, given 
their established history in this context. 

Furthermore, the availability of pretrained weights 
customized for specific tasks can provide a performance 
advantage to ResNet-9 and VGG-19 over ViT. It's important to 
note that ViT is relatively more susceptible to overfitting, 
especially in cases involving smaller datasets or exceptionally 
large models. In addition to these considerations, our dataset 
for durian leaf disease classification is relatively small, posing 
a challenge for ViT's generalization capabilities. Addressing 
this issue would necessitate the utilization of larger models, 
fine-tuning with different hyperparameters, and more extensive 
tuning. 

TABLE IV. VIT WITH ADAM OPTIMIZER 

Maximum 

Learning Rate 
Epochs 

Train 

Loss 

Validation 

Loss 

Validation 

Accuracy 

0.001 100 0.0647 0.2388 0.8447 

0.001 200 0.0167 0.1010 0.9118 

0.001 400 0.0400 0.0873 0.9412 

0.005 100 0.7316 0.7451 0.6471 

0.005 200 0.7406 0.7898 0.6765 

0.005 400 0.7406 0.7898 0.7353 

0.01 100 1.0367 1.1862 0.4706 

0.01 200 1.0376 1.1377 0.4982 

0.01 400 1.0270 1.0367 0.5010 

TABLE V. VIT WITH SGD OPTIMIZER 

Maximum 

Learning Rate 
Epochs 

Train 

Loss 

Validation 

Loss 

Validation 

Accuracy 

0.001 100 0.1200 0.2689 0.8009 

0.001 200 0.0951 0.2564 0.8511 

0.001 400 0.0894 0.2416 0.8582 

0.005 100 0.8766 0.9394 0.5843 

0.005 200 0.8105 0.8324 0.6056 

0.005 400 0.7791 0.8289 0.6082 

0.01 100 1.1245 1.3457 0.3943 

0.01 200 1.1369 1.3363 0.3973 

0.01 400 1.2046 1.2298 0.4085 
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TABLE VI. COMPARISON OF VIT, RESNET-9 AND VGG-19 [19] USING ADAM AND SGD OPTIMIZER 

Maximum 

Learning Rate 

Adam Optimizer SGD optimizer 

VGG-19 ResNet-9 VIT VGG-19 ResNet-9 VIT 

0.001 0.8271 0.9521 0.8447 0.8542 0.8113 0.8009 

0.001 0.8500 0.9797 0.9118 0.8542 0.8447 0.8511 

0.001 1.0000 0.9911 0.9412 0.8875 0.8896 0.8582 

0.005 0.8438 0.9667 0.6471 0.8708 0.8081 0.5843 

0.005 0.8708 0.9792 0.6765 0.8771 0.8447 0.6056 

0.005 0.8812 0.9792 0.7353 0.8708 0.8792 0.6082 

0.01 0.8500 0.9729 0.4706 0.8542 0.7934 0.3943 

0.01 0.8604 0.9896 0.4982 0.8542 0.8073 0.3973 

0.01 0.8438 0.9896 0.5010 0.8812 0.8358 0.4085 
 

V. CONCLUSION AND FUTURE WORKS 

This research represents a significant advancement in the 
field of durian leaf disease detection and recognition, 
addressing a critical issue faced by durian farmers in ASEAN 
countries and beyond. The traditional manual identification of 
leaf diseases has been a labor-intensive and time-consuming 
process, posing substantial challenges to the agricultural 
sector's sustainability. Through the application of cutting-edge 
deep learning techniques and the utilization of well-established 
models like ViT, an automated system has been successfully 
developed and capable of accurately classifying and 
recognizing durian leaf diseases. Notably, our results 
demonstrate the remarkable performance, achieving an 
impressive accuracy rate of 94.12% when utilizing the Adam 
optimizer. Moreover, this research underscores the broader 
implications of utilizing cutting-edge machine learning 
techniques in agriculture. It opens the door to the development 
of precision agriculture systems that can revolutionize crop 
management practices. The implementation of ViT-based 
disease control not only safeguards the economic stability and 
food security of the Southeast Asian region but also paves the 
way for further advancements in the field of agriculture. With 
technology as a key ally, durian farmers and the agricultural 
sector as a whole are better equipped to overcome the 
challenges posed by disease and secure a more prosperous 
future. 
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