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Abstract—Method for hyperparameter tuning of 

EfficientNetV2-based image classification by deliberately 

modifying Optuna tuned result is proposed. An example of the 

proposed method for textile pattern quality evaluation (good or 

bad textile pattern fluctuation quality classification) is shown. 

When using the hyperparameters obtained by Optuna without 

changing them, the accuracy certainly improved. Furthermore, 

as a result of learning by changing the hyperparameter with the 

highest degree of importance, the accuracy changed, so it could 

be said that the degree of importance was certainly high. 

However, the accuracy also changes when learning is performed 

by changing the least important hyperparameter, and sometimes 

the accuracy is improved compared to when learning is 

performed using the optimal hyperparameter. From this result, it 

is found that the optimal hyperparameters obtained with Optuna 

are not necessarily optimal. 
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I. INTRODUCTION 

To optimize these hyperparameters, hyperopt, gpyopt, 
AutoML, PyCaret, Optuna, etc. have been proposed as black 
box optimization methods, which automate trial and error 
regarding hyperparameters and automatically discover optimal 
solutions. Similarly, as black box optimization methods, white 
box conversion of DL, binary decision trees, random forests, 
and mind maps using GNNs has also been proposed [1]. In 
particular, Optuna uses an algorithm called TPE (Tree-
structured Parzen Estimator), which is a new method in 
Bayesian optimization, and is capable of parallel processing, 
and can be restarted midway by saving the results to the 
database. 

Depending on the definition of the objective function and 
the validity of the importance of the parameters, 
hyperparameters that are not necessarily suitable for 
comparison with the evaluation criteria may appear. Therefore, 
in this paper, we introduce such a case and propose a method 
of intentionally changing the hyperparameters obtained 
through optimization with Optuna and selecting parameters 
with greater accuracy through trial and error. 

As an application example of this method, we will show an 
example in which it was applied to the classification of pattern 
shifts in Kurume Kasuri. This is just one application example, 
and the proposed method can be widely applied to other 
classifications. 

In Section II, research background and related research 
works are described followed by the proposed method for 
hyperparameter tuning by modifying Optuna tuned result in 
Section III. Then experiment of application of the proposed 
method given in Section IV followed by remarks in Section V. 
Conclusion and future research work is given in Section VI and 
Section VII respectively. 

II. RESEARCH BACKGROUND AND RELATED RESEARCH 

WORKS 

A. Research Background 

Kurume Kasuri is a traditional cotton fabric handed down 
in the Chikugo region, and it is completed through over 30 
steps, including design, binding, dyeing, and weaving. A major 
feature of Kurume Kasuri is that the yarn is pre-dyed and the 
patterned thread is woven while matching the patterns, 
resulting in subtle deviations and a unique faded pattern. 

Regarding the degree of deviation, it is fine if the pattern 
shift is moderate, but if the deviation is too large, the product 
will not sell and will have to be sold at a low price. In addition, 
there is the problem that the evaluation criteria for the degree 
of deviation differ depending on the manufacturer. Therefore, 
in this study, we build an image recognition model that 
classifies whether the pattern shift of Kurume Kasuri is within 
an acceptable range (good or bad). At that time, Optuna 
searches for optimal hyperparameters and intentionally 
changes the most and least important parameters to improve 
accuracy. 

B. Examples of Quality of Kurume Kasuri 

Typical patterns of Kurume Kasuri are shown in Fig. 1. 
This Kurume Kasuri is woven with a rectangular pattern in 
mind. An example of pattern shift is shown in Fig. 2. Green 
indicates patterns within the acceptable range, and red indicates 
patterns outside the acceptable range. The red color has a shape 
that is almost different from the rectangular pattern, and it can 
be seen that the pattern is clearly too out of alignment. 
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Fig. 1. Typical kurume kasuri image. (sideways) 

 
Fig. 2. Example of kurume kasuri pattern shift. (Green: Within the 

acceptable range, Red: Outside the acceptable range). 

C. Related Research Works 

It has been proposed a method to evaluate the quality of 
pattern shifts in Kurume Kasuri by considering them as 1/f 
fluctuations [2]. Other than this, there are image classification 
method related research works as follows, 

EfficientnetV2: Smaller models and faster training are 
proposed [3] together with deep neural network configurations 
of network is network [4]. 

 Classification by re-estimating statistical parameters based 
on auto-regressive model is proposed [5]. Meanwhile, multi-
temporal texture analysis in Landsat Thematic Mapper: TM 
classification is also proposed [6]. On the other hand, 
maximum likelihood TM classification taking into account 
pixel-to-pixel correlation is proposed [7] together with a 
supervised TM classification with a purification of training 
samples [8]. Meantime, TM classification using local spectral 
variability is proposed in [9]. Also, classification method with 
spatial spectral variability is proposed in [10] together with TM 
classification using local spectral variability [11]. 

Application of inversion theory for image analysis and 
classification methods is proposed [12]. Meanwhile, 
polarimetric Synthetic Aperture Radar: SAR image 
classification with maximum curvature of the trajectory in 
Eigen space domain on the polarization signature is proposed 
[13]. 

A hybrid supervised classification method for multi-
dimensional images using color and textural features is 
proposed [14]. On the other hand, polarimetric SAR image 
classification with high frequency component derived from 
wavelet Multi Resolution Analysis: MRA is proposed [15]. 

Comparative study of polarimetric SAR classification 
methods including proposed method with maximum curvature 
of trajectory of backscattering cross section in ellipticity and 
orientation angle space is proposed [16]. 

Human gait gender classification using 2D discrete wavelet 
transforms energy is attempted [17] together with human gait 
gender classification in spatial and temporal reasoning [18]. 
Meanwhile, comparative study on discrimination methods for 
identifying dangerous red tide species based on wavelet 
utilized classification methods is conducted [19]. 

Multi spectral image classification method with selection of 
independent spectral features through correlation analysis is 
proposed [20]. Meanwhile, image retrieval and classification 
method based on Euclidian distance between normalized 
features including wavelet descriptor is proposed [21]. 

 Gender classification method based on gait energy motion 
derived from silhouettes through wavelet analysis of human 
gait moving pictures is proposed [22] together with human gait 
skeleton model acquired with single side video camera and its 
application and implementation for gender classification [23]. 
Meantime, gender classification method based on gait energy 
motion derived from silhouette through wavelet analysis of 
human gait moving pictures is proposed [24] together with 
human gait gender classification using 3D discrete wavelet 
transformation feature extraction [25]. 

Image classification considering probability density 
function based on Simplified beta distribution is proposed [26]. 
Maximum likelihood classification based on classified result of 
boundary mixed pixels for high spatial resolution of satellite 
images is proposed [27]. On the other hand, context 
classification based on mixing ratio estimation by means of 
inversion theory is proposed [28]. 

Optimum spatial resolution of satellite-based optical 
sensors for maximizing classification performance is found 
[29]. Meanwhile, the combined non-parametric and parametric 
classification method depending on normality of Probability 
Density Function: PDF of training samples is proposed [30]. In 
recently, method for hyperparameter tuning of image 
classification with PyCaret is proposed and well validated [31]. 

III. PROPOSED METHODS 

A. Image Recognition Model 

In order to classify whether the pattern shift is within an 
acceptable range, we used the pre-trained model 
EfficientNetV2 [3]. EfficientNetV2 is a model that achieves 
both learning efficiency and high classification accuracy by 
using NAS (Neural Architecture Search) and model scaling. 

Regarding the implementation, using TensorFlow in 
Python, we added Global Average Pooling [4] and dropout to 
the final layer of EfficientNetV2, which is a model that has 
already trained ImageNet, and built a model that changed to 
binary classification (see Fig. 3). Global Average Pooling is a 
layer that takes the average value for each feature map obtained 
in the previous layer. By using this, it is possible to reduce the 
number of parameters compared to the case of a fully 
connected layer. 
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Fig. 3. Model architecture. 

With this model, we performed two types of learning: 
transfer learning only and transfer learning + fine tuning. 

B. Hyperparameter Tuning 

Hyperparameter tuning was performed using the following 
three methods, and the accuracy of each method was compared. 

1) Manual setting. 

2) Optimization using Optuna. 

3) Deliberately changing the most important (lowest) 

hyperparameter among the hyperparameters obtained by 

Optuna. 

In addition, in (2) Optimization using Optuna, specify TPE 
as the Sampler. 

IV. EXPERIMENT 

A. Data Used 

From the scanned Kurume Kasuri images, contour 
extraction and other operations were performed using OpenCV, 
and a total of 70 pattern images of 80 × 80 pixels were 
extracted. Then, based on the results obtained from the pattern 
evaluation questionnaire to weavers, patterns with pattern shift 
within the acceptable range were classified as good, and 
patterns outside the acceptable range were classified as bad [2]. 
After that, we used a total of 210 image data (training: 180 
images, test: 30 images) that was created by applying data 
augmentation to all of them by adding salt-and-pepper noise 
and skew (see Fig. 4). 

       

       
(a) Original                (b) Salt and pepper noise                (c) Skew 

Fig. 4. Sorted Kurume Kasuri pattern image. (upper - good, lower - bad). 

B. Transfer Learning 

Table I shows the hyperparameters and prediction accuracy 
for test data when optimizing manually and using Optuna in 
transfer learning. The two hyperparameters searched were 
dropout rate and batch size, and the results showed that 
learning using the optimal hyperparameters obtained by 
Optuna resulted in better accuracy. 

TABLE I.  HYPERPARAMETERS AND PREDICTION ACCURACY FOR TEST 

DATA WHEN OPTIMIZED MANUALLY AND WITH OPTUNA 

 Manual Optuna 

Dropout Rate 0.5 0.129 [0 ~ 0.5] 

Batch Size 16 32 [16, 32, 64] 

Accuracy 76.67% 90% 

※The hyperparameter search range is in [] 

The importance of hyperparameters obtained through 
optimization using Optuna is shown in Fig. 5. The dropout rate 
is 0.77 and the batch size is 0.23, indicating that the dropout 
rate is more important. 

 
Fig. 5. Importance of hyperparameters when transfer learning was 

performed. 

 
(a) Changed only the dropout rate, which had the highest importance. 

 
(b) Changed only the batch size, which had the lowest importance. 

Fig. 6. Change in accuracy when changing hyperparameters of high (low) 

importance among the hyperparameters obtained by optimization with 
Optuna. 
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Fig. 6(a) shows the change in accuracy when only the 
dropout rate, which was highly important, was changed. 
Accuracy changed to some extent, but not regularly, and never 
exceeded the 90% accuracy in Optuna. 

Fig. 6(b) shows the change in accuracy when only changing 
the batch size, which was of low importance. Accuracy 
changed little and never exceeded the accuracy of Optuna of 
90%, as was the case when only the dropout rate was changed. 

C. Transfer Learning and Fine Tuning 

Table II. shows the hyperparameters and prediction 

accuracy for test data in transfer learning + fine tuning when 

optimized manually and with Optuna. The searched 

hyperparameters were the dropout rate, the learning rate, the 

number of epochs and batch size for transfer learning, and the 

batch size for fine tuning. 

TABLE II.  HYPERPARAMETERS AND PREDICTION ACCURACY FOR TEST 

DATA WHEN OPTIMIZED MANUALLY AND WITH OPTUNA 

 Manual Optuna 

Dropout Rate 0.5 0.124 [0 ~ 0.5] 

Learning Rate 0.001 0.001 [0.001, 0.0005, 0.0001] 

Epoch (Transfer Learning) 10 15 [10, 15, 20] 

Batch Size (Transfer Learning) 16 32 [16, 32] 

Batch Size (Fine Tuning) 16 32 [16, 32] 

Accuracy 50% 80% 

※The hyperparameter search range is in [] 

As with the case where only transfer learning was 
performed, the optimal hyperparameters obtained by Optuna 
were used. The result was that the accuracy was better when 
learning was performed. The importance of hyperparameters 
obtained through optimization using Optuna is shown in Fig. 7. 
The dropout rate was the most important at 0.49, and the batch 
size (transfer learning) was the lowest at 0.05. 

 

Fig. 7. Importance of hyperparameters when transfer learning and fine 

tuning were performed. 

Fig. 8(a) shows the change in accuracy when only the 
dropout rate, which was highly important, was changed. Unlike 
the case of only transfer learning, the accuracy changed 
significantly, and when the dropout rate was 0.4, the accuracy 
was 90%, which exceeded the accuracy of Optuna of 80%. 

Fig. 8(b) shows the change in accuracy when only changing 
the batch size (transfer learning), which was of low importance. 

Unlike the case of only transfer learning, the accuracy changed 
to some extent, and exceeded the accuracy of Optuna of 80%, 
which is the same as when changing only the dropout rate. 

 
(a) Changed only the dropout rate, which had the highest importance. 

 
(b) Changed only the batch size in the transfer learning, which had the lowest 

importance. 

Fig. 8. Change in accuracy when changing hyperparameters of high (low) 

importance among the hyperparameters obtained by optimization with optuna. 
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In both the case of transfer learning only and the case of 
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by Dropout are random, so if a node with features that have a 
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due to the fact that there were cases where this was not done. In 
order to measure accuracy more accurately, it is necessary to 
perform verification using K-fold cross validation. 

In transfer learning + fine tuning, by changing the 
hyperparameters with the highest (lowest) importance, the 
accuracy was improved compared to the results with Optuna. 
This is because Optuna's search algorithm used this time, TPE, 
is based on Bayesian optimization and does not exhaustively 
search all hyperparameters like grid search, so a locally optimal 
solution was reached. This is thought to be the cause. 
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VI. CONCLUSION 

We proposed a method of intentionally changing the 
hyperparameters obtained through optimization using Optuna 
and selecting parameters with greater accuracy through trial 
and error. As an application of the proposed method, we 
classified pattern shifts in Kurume Kasuri. 

 In both cases, whether it's transfer learning alone or fine-
tuning after transfer learning, learning with hyperparameters 
obtained through optimization with Optuna clearly improved 
accuracy compared to setting them manually. In transfer 
learning + fine tuning, by changing the hyperparameters with 
the highest (lowest) importance, the accuracy was improved 
compared to the results with Optuna. 

From this result, we found that the optimal 
hyperparameters obtained with Optuna are not necessarily 
optimal. 

VII. FUTURE RESEARCH WORKS 

Further study is required for validation of the proposed 
method for hyperparameter tuning with a variety of examples 
of image classifications. Also, the other method for 
optimization of automate hyperparameter search has to be 
investigated in the near future. 
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