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Abstract—Within the field of medical sciences, addressing 

brain illnesses such as Alzheimer's disease, Parkinson's disease, 

and brain tumors poses significant difficulties. Despite thorough 

investigation, the search for truly successful neurotherapies 

continues to be challenging to achieve. The blood-brain barrier 

(BBB), which is currently a major area of research, restricts the 

passage of medicinal substances into the central nervous system 

(CNS). It is crucial in the field of neuroscience to create drugs 

that can effectively cross the blood-brain barrier (BBB) and treat 

cognitive disorders. The objective of this study is to improve the 

accuracy of machine learning models in predicting BBB 

permeability, which is a critical factor in medication 

development. In recent times, a range of machine learning 

models such as Support Vector Machines (SVM), K-Nearest 

Neighbors (KNN), Logistic Regression (LR), Artificial Neural 

Networks (ANN), and Random Forests (RF) have been utilized 

for BBB. By employing descriptors of varying dimensions (1D, 

2D, or 3D), these models demonstrate the potential to make 

precise predictions. However, the majority of these studies are 

biased to the nature of datasets. To accomplish our objective, we 

utilized three BBB datasets for training and testing our model. 

The Random Forest (RF) model has shown exceptional 

performance when used on larger datasets and extensive feature 

sets. The RF model attained an overall accuracy of 90.36% with 

10-fold cross-validation. Additionally, it earned an AUC of 0.96, 

a sensitivity of 77.73%, and a specificity of 94.74%. The 

assessment of an external dataset resulted in an accuracy rate of 

91.89%, an AUC value of 0.94, a sensitivity rate of 91.43%, and a 

specificity rate of 92.31%. 
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I. INTRODUCTION 

In the last few decades, human brain diseases like tumors in 
the brain, dementia, Alzheimer, and other brain disorders are 
the most common fastest-growing issue nowadays that causes 
disability in humans and received the most attention from the 
research community in medical sciences. As there are no 
effective treatments have been made by neurotherapist to treat 
these kinds of serious diseases. Almost all macro and small 
molecule drugs are blocked by a barrier named the BBB [1]. 
The BBB is the most important key point in the treatment of 
brain diseases as it forcibly prevents the drugs from crossing 
this barrier and enters the CNS [2]. Many ML and Deep 

learning techniques have been made in the past and till now 
most researchers have been working on this problem of BBB 
permeability but still, the question arises on the performance of 
models and their precise results for drug formation in 
pharmaceutics [3], [4]. 

As the name indicates BBB, it is the barrier between blood 
and the brain. The barrier is made of endothelium cells [5] 
which can prevent large and even small molecules from 
entering the CNS [6]. It only allows some specific molecules 
like water molecules and some lipid-soluble to cross the barrier 
[7]. The BBB is divided into two classes labeled BBB+ and 
BBB-. The BBB+ shows the higher permeability and the BBB- 
shows the lower permeability respectively [8]. Developing a 
classification model requires a piece of detailed information 
and a complete understanding of issues or problems regarding 
BBB permeability. These issues are mainly caused by the 
selection of algorithms and the dataset on which these 
computations are performed. The problems faced in algorithms 
include their lower coverage, overfitting w.r.t dataset, and 
lower accuracy scores while predicting the molecular 
compounds i.e., (BBB-). The problems raised regarding 
datasets are duplication of compounds or improper class label 
distribution in the BBB dataset, which is a serious cause of 
inaccurate results [9]. 

In BBB there are molecular descriptors used as features in 
the dataset. The definition of molecular descriptor states that 
the transformation of chemical compounds by applying 
mathematical procedure converts these compounds into 
standardized numeric information that can be used for further 
experiments [10]. Molecular descriptors encompass various 
characteristics of molecules, such as their weight, amount of 
carbon atoms, and hydrogen bonds. The literature review 
primarily focused on the discussion of various classes of 
molecular descriptors, namely one dimension, two dimensions, 
and three dimensions. The representation of molecular 
descriptors is categorized into several kinds. Numerous classes 
have been discussed in the existing body of scholarly literature. 
The classes were categorized into three distinct groups, namely 
1D, 2D, and 3D. 

One-dimensional molecular descriptors, such as the number 
of certain atoms and molecular weights, are utilized to express 
the attributes of molecules [11]. The presentation of structural 
information is accomplished by the utilization of 2D molecular 
descriptors. It is computed from the 2D molecular structure 
like the number of donors in the H bond, the number of C6H6 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 12, 2023 

486 | P a g e  

www.ijacsa.thesai.org 

rings, etc. [11]. The structural information is represented by 3D 
molecular descriptors like a positive partial charge structure of 
solvent-accessible surface area [11]. 

In this study, the main focus is given to the diversity of 
datasets in terms of size and nature of datasets, further applying 
a variety of machine learning algorithms. The novelty of the 
work is the generation of chemical features from SMILES and 
testing them as unseen data for the best model. Further, we 
have tested machine learning algorithms with different 
hyperparameters and chosen the best hyperparameter for each 
algorithm that was missing in the previous literature. In 
previous studies, experiments were conducted with default 
hyperparameters [7], [12-15]. Also, the model is evaluated on 
several different evaluation metrics to validate the performance 
of the best-chosen model. 

II. RELATED WORK 

BBB is an up-and-coming research area that is widely used 
in the formation of drug discovery. In the last decades, several 
approaches to the BBB have been proposed. These approaches 
are based on ML algorithms and have followed their method of 
technique. Permitting the literature study, there were several 
approaches have been proposed which have their methods and 
techniques. These techniques vary with the number of 
compounds used and the selection of important features related 
to these chemical compounds. So, the proposed system will 
give outcomes in terms of results of model accuracy, 
sensitivity, specificity, and the robustness of testing scores. 

Dai et al. 2021 [1] proposed a feature representation in 
sequential-based prediction for BBB peptides. In this study, 16 
classes of peptide sequence feature descriptors have been used. 
For finding the best solution three-step method was used. In the 
three-step model, features were selected based on the F1 score, 
and Spearman’s rank-order correlation and a sequential 
forward selection strategy were implemented. In this study, 
many ML models were compared i.e., ERT, XGB, LR, MLP, 
RF, and SVM. While comparing the results of each model the 
LR has the best prediction ability to gain an overall AUC and 
AUPR score of 0.87 with 10-fold cross-validation. But dataset 
contains only 119 BBPs compound datasets having only seven 
features for classification and mainly focusing on peptide-
based molecular compounds. On the contrary, Zou 2022 [2] 
uses the physicochemical properties of amino acids and 
through these amino properties, the author identifies blood-
brain barrier peptides (BBPs) and also applies the features 
fusion method. In this research, SVM was implemented on a 
dataset that represents peptide sequences based on 100 samples 
from BBPs, and 100 samples from non-BBPs were used, 
together with 10 physicochemical characteristics descriptors. 
For the selection of discriminative features, the Fisher 
algorithm was used. The highest accuracy, specificity, and 
sensitivity achieved by the model on the training dataset is 
100%, while MCC and AUC are also 1.00, while on the 
independent dataset, it was 89.47%. The limitation of this work 
is limited samples were used and they just employed the 
correlation information between two different types of 
physicochemical properties. Also, there is a lack of biological 
experiments to validate the predicted results. 

Similarly, Shaker et al. 2021 [7] proposed a LightGBM 
algorithm that was implemented on a 7162 compounds dataset 
with BBB permeability in which 5453 BBB+ and 1709 BBB- 
class with 1119 molecular descriptors of SMILES format. 10-
fold cross-validation was implemented after splitting the 
dataset into 10% testing and 90% training and the results show 
an accuracy score of 0.89, specificity of 0.77, sensitivity of 
0.93, and area under the curve of 0.94 respectively. However, 
the accuracy can be improved in the future by testing other ML 
models as it is critical to decide which molecular compound 
can penetrate from CNS through BBB. However, the use of 
these many features increases the complexity of the models. 
Therefore, Alsenan et al. 2021 [9] proposed a model that used 
the Kernel Principal Component Analysis (KPCA) method for 
finding descriptors. The author also compares the deep learning 
(DL) models with ML models and comes with the result that 
deep learning models show more accurate results than ML 
models. The FFDNN and CNN achieve accuracy of 100%, 
specificity of 98.11 and 99.87, and sensitivity of 96.78 and 
98.76 respectively. The AUC was also calculated which was 
97.7 and 99.71 and Matthew's correlation coefficient was 95.55 
and 92.85 respectively. However, the dataset was composed of 
2500 molecular compounds with 6,394 molecular descriptors 
which are small datasets as a large dataset has a direct impact 
on accuracy and only focuses on the KPCA feature extraction 
technique. 

Furthermore, various variants of ML models are tested by 
Kumar et al. 2021 [12]. The author proposed an RF-based 
method for the prediction of the BBB by using chemical 
peptides. Different algorithms were implemented i.e., DT, RF, 
LR, KNN, GNB, XGB, and SVC. Three datasets were used in 
this study i.e., dataset-1 had 269 B3PPs and CPPs respectively. 
Dataset-2 was having 269 B3PPs and non-B3PPs respectively, 
while dataset-3 was having 269 B3PPs and 2690 non-B3PPs. 
The highest accuracy, specificity, and sensitivity were achieved 
by RF, which is 85.08, 85.08, and 86.97 respectively. Matthew 
correlation and AUC are also calculated which are 0.51 and 
0.93. But the author collected only 465 peptides from the 
B3Pdb database which is a small dataset of cell-penetrating 
peptides with 80 selected features. 

Also, Liu et al. 2021 [13] proposed the SMOTE technique 
on 1757 chemical compounds, and the feature descriptors were 
produced by PaDEL-Descriptor software for nine molecular 
fingerprints and 2D and 3D descriptors on five-fold cross-
validation with 100 iterations. Three algorithms were 
implemented i.e., SVM, RF, and XGBoost from which RF 
shows the higher scores in terms of accuracy of 0.910, 
specificity of 0.867, sensitivity of 0.927, and AUC of 0.957 
respectively. But there are a smaller number of descriptors 
used and this model is not a quantitative approach to 
identifying which BBB chemical compound can penetrate or 
not. In comparison, Shi et al. 2021 [14] in this approach, 2354 
drug molecules of SMILES format were used with 33 
molecular features. 10-fold cross-validation was used and six 
types of methods were used for training of imbalance dataset 
i.e., Upsampling, RUS, Weight parameter, SMOTE, 
SMOTECENN, and ADASYN. The results clearly show that 
XGBoost outperforms other approaches in terms of precision 
0.92, recall 0.96, F1-score 0.94, Accuracy 0.95, specificity 
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0.93, sensitivity 0.98, and AUC 0.98 respectively. It is worth 
mentioning that, using too many resampling methods can lead 
to overfitting and inaccuracy. So, it may harm the model’s 
outcomes. 

Saber et al. 2020 [15] proposed a comparative approach to 
ML algorithms. The algorithms that are implemented in this 
research study are SVM with linear, polynomial, radial basis 
function kernels, LDA and QDA, and KNN. The author 
concludes that a genetic algorithm with SVM outperforms 
other approaches. It shows an accuracy of 96.23, a specificity 
of 86.67, and a sensitivity of 98.45. All algorithms compiled on 
1593 drug compounds and eight molecular descriptors were 
generated by sequential feature selection and genetic algorithm. 
There is a lack of a greater number of features and training the 
model on fewer features has a great impact on the outcomes. 
Similar dataset dimension biases also happened in the study 
proposed by Ciura et al. 2020 [16]. The authors suggested a 
technique that focuses on micellar electrokinetic 
chromatography and has 50 2D and 3D molecular descriptors 
from a collection of market available 45 chemical drugs. MLR 
and SVM were implemented on a given dataset and showed the 
same results for prediction, by showing the same results of 
RMSE and cross-validation of 0.310 and 0.314 respectively. 
But if a large dataset and a greater number of features were 
applied this will affect the results as model accuracy directly 
depends on the size of the dataset. 

Moreover, a study proposed by Singh et al. 2020 [17] 
comprised a novel validation approach of QSAR. In this 
approach, RF has been implemented on a 605 compounds 
dataset with 1444 molecular descriptors of 1D and 2D 
generated by PaDEL software 2.21. In the proposed 
methodology 10-fold cross-validation QSAR approach was 
used. Two types of thresholds were employed to divide the 
dataset. Specifically, threshold-1 was defined as (B/P>=0.6 
classified as BBB+ and B/P<0.6 classified as BBB-), while 
threshold-2 was defined as (B/P>0.6 classified as BBB+ and 
B/P<0.3 classified as BBB-). Threshold-1 and threshold-2 
attained precision of 86% and 87% accordingly. However, this 
study defined a specific range of thresholds to specify the 
classes of BBB and only focused on the QSAR approach may 
other techniques improved the results of the proposed model. 

A few other researchers such as Radchenko et al. 2020 [18] 
implemented an artificial neural network on 529 molecular 
compounds datasets based on their LogBB values and 100 to 
1000 descriptors were generated by using substructures of 
molecular compounds. The silico LogBB-based model used 
fragmental substructural descriptors representing the 
occurrence number of the various substructures. The results 
show that Q2 has a value of 0.815 and an RMSE of 0.318. 
However, this research work only concentrates on LogBB 
values of compounds with a small dataset of compounds. 
Saxena et al. 2019 [19] presented an ML model for 
permeability prediction of the BBB. In this study, SVM, KNN, 
RF, and NB were implemented in 1978 molecular compounds. 
Physicochemical characteristics, MACCS fingerprints, and 
substructure fingerprints were included in 1917 feature vectors. 
With an accuracy score of 96.77 percent, SVM with RBF 
kernel performs better as compared to other proposed ML 
techniques. However, the dataset used in this research study 

has a smaller number of chemical compounds which can affect 
the results. Roy et al. 2019 [20] proposed an approach SVM, 
KNN, gradient boost machine, and the statistical importance 
analysis method used to select 37 descriptors, and a 
generalized linear model was implemented on it. The results 
show that SVM surpasses other approaches with an accuracy of 
96%, a sensitivity of 99%, a specificity of 87%, a precision of 
96%, and an F1 score of 97% respectively. The dataset 
contains 1800 molecules and was divided into 75% training 
data and 25% testing data. Rui Miao et al. 2019 [21] proposed 
three clinical phenotypes data of 1000 molecular compounds 
were used. DL method, SVM with sigmoid, polynomial, radial 
basis kernel functions, KNN, and DT were implemented. The 
dataset was utilized for both training and testing with five-fold 
cross-validation. As 70 percent is used for training and 30 
percent is used for testing. The author concludes that the deep 
learning method outperforms other ML algorithms in terms of 
area under curve, accuracy, and F1-score i.e., 98%, 97%, and 
92% respectively. Saber et al. 2019 [22] implement SVM, 
ANN, and KNN models with 1593 drug compounds. For the 
selection of molecular features, a genetic algorithm was used 
which generated 8 descriptors. The highest overall accuracy 
was obtained with both Quadratic Discriminant Analysis and 
SVM classifiers at 96.23%. But this research study only 
focuses on ADMET characteristics of compounds, and it is not 
clear how well the system detects permeable compounds 
because of the small dataset. 

By Analyzing the related work, it is observed that the above 
research have some drawbacks. First, most of the researchers 
target datasets having a smaller number of molecular 
compounds. Second, the number of features used in the 
research is too small, and vice versa. 

III. METHODS AND METHODOLOGY 

A. Algorithm for Proposed Study 

The algorithm for the proposed study was given below 
which inputs the dataset and applies preprocessing techniques 
to the given dataset. After preprocessing the dataset is divided 
into 90% training and 10% testing purposes and for each 
molecular compound feature values were generated. By 
applying the ML models on preprocessed datasets if the 
molecular compound belongs to class BBB+ it would be 
updated to the permeable list and else the molecular compound 
belongs to class BBB- it would be updated to the non-
permeable list. For validation of our model, we test it on a test 
dataset and evaluate these results by using an evaluation 
matrix. 

ALGORITHM 1: ALGORITHM FOR PREDICTION OF BBB 

PERMEABILITY 

Input: BBB Dataset 

Output: List of compounds into permeable and non-permeable 

1 Initialization 

2 Input dataset 

3 Refining an initiated dataset 

4 Selection of 90% dataset for training data 

5 Selection of 10% dataset for testing data 

6 Filtration of data for required features  
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7 Applying ML models 

8 For (i=1; i<= n; i++), 

9  If (Comp(i) are permeable == Yes) 

10   Updating permeable list 

11  Else 

12   Updating non-permeable list 

13  End If  

14 zEnd For 
 

B. Results of Flow Charts 

The flow chart of the proposed methodology is discussed in 
Fig. 1. The dataset contains molecular compounds loaded for 
the filtration process. After filtration, the dataset was divided 
into 90% training and 10% testing. After the division of the 
dataset feature extraction process was applied in which 1D and 
2D features were extracted for each compound. The most well-
known ML models i.e., SVM, KNN, LR, ANN, and RF were 
applied to each chemical compound. ML models classify the 
dataset into two class labels i.e., BBB- (0) non-penetrating list 
and BBB+ (1) penetrating list. For evaluation and validation of 
results accuracy, specificity, sensitivity, precision, and recall, 
the F1-score is applied. 

 

Fig. 1. Flow chart of the BBB permeability prediction model. 

C. Data Collection 

The datasets used in the proposed study were collected 
from the online repository of the LightBBB [23] web server 
which was in SMILES format [24]. In these datasets, the 
compounds were grouped as BBB+ which belongs to class 1, 
and BBB- which belongs to class 0. There are numerous 
descriptors available for expressing the BBB permeability 
chemicals. It's crucial to pick efficient descriptors for model 
training to prevent overfitting and poor performance. The 
training dataset included chemical compounds with 1D and 2D 
descriptors for each compound after dataset pre-processing. 

D. Data Preprocessing 

Preprocessing is an essential task for each ML model. To 
obtain effective results preprocessing is to be done on the 
dataset. The accuracy of the model is directly impacted by the 
size of the dataset. In this research study, molecular 
compounds were compiled with the experimental BBB 
permeability which leads to compounds belonging to the class 
of BBB+ and BBB-. A SMILES format was used to prepare 

each molecule. The BBB+ belonged to class 1 and BBB- 
belongs to class 0. The dataset was preprocessed to remove 
duplicates inconsistent compounds and missing structural 
information data were also removed. The dataset was split into 
90% training and 10% testing using ten-fold cross-validation, 
with each iteration of validation being repeated ten times. For 
testing purposes, the external dataset contains molecular 
compounds of which some compounds belong to BBB+ and 
BBB- classes. 

E. Feature Set 

The physical and chemical characteristics of substances 
were described using molecular descriptors as features. As a 
result, these aspects provide more information to create a 
reliable BBB model [7]. 

F. Machine Learning Models 

In recent decades, there has been a numerous growth in ML 
models and most of all have been used in the prediction of the 
BBB. Some BBB prediction models show good performance 
with a high accuracy score. Therefore, it was a challenging task 
to develop an ML model for the prediction of BBB 
permeability as the dataset of BBB available in biological 
science gives the impression of being limited [19]. ML 
approaches are classified as supervised, unsupervised, or 
reinforced. There are many supervised learning techniques 
some of them are; SVM, KNN, LR, ANN, and RF are mainly 
used for classification or regression problems and some deep 
learning-based algorithms are used for the prediction of BBB. 
Scikit-learn, a Python-based toolkit, were used in the 
implementation of the model. 

1) Support Vector Machine (SVM): The support vector 

machine (SVM) is a widely recognized approach in supervised 

learning, commonly employed for solving classification and 

regression problems. The proposal was initially forth during 

the decade of the 1990s and has since been effectively utilized 

within the fields of bioinformatics and computer-aided 

diagnosis. Therefore, the SVM classification model was 

utilized in this research work to analyze the BBB dataset. The 

support vector classifier (SVC) is implemented using the 

support vector machines toolkit. The algorithm typically 

accommodates the supplied attributes' points of information 

and identifies the optimal hyperplane for classifying the data 

into two distinct categories [12]. The SVM model's 

effectiveness over traditional methods can be attributed to its 

inherent structure and the risk management philosophy it 

employs. Multiple kernel functions, such as polynomial, 

linear, radial basis function, and sigmoid, are utilized in 

Support Vector Machines (SVM) to facilitate the 

transformation of data into a higher-dimensional space where 

a distinct separation between classes can be achieved [20]. 

This research paper examines the performance of the Support 

Vector Machine (SVM) algorithm, specifically utilizing a 

linear kernel function, in the context of classification 

problems. 

2) K-Nearest Neighbors (KNN): The k-nearest neighbor 

(KNN) approach is an example of supervised machine 

learning that may be applied to both classification and 
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regression tasks. The technique, which was introduced in 

1951, has gained significant popularity over the years as a 

reliable method for predicting drug penetration and blood-

brain barrier (BBB) permeability. Unlabeled datasets are 

classed through the assignment of a class based on the 

similarity to neighboring data points. The K-nearest neighbors 

(KNN) algorithm computes the distances among the 

information points, namely the feature values, using metrics 

such as Euclidean distance or Manhattan distance. In the 

context where a desirable value of k is sought, it is necessary 

to evaluate multiple neighboring values. The decision to 

choose one of these neighbors has a significant influence on 

the general efficacy of the prediction system that is being 

constructed. Typically, the value of k is limited to an integer 

not exceeding 20 [19]. 

3) Logistic Regression (LR): Logistic regression is one of 

the most popular statistical models that uses a logistic function 

for binary dependent variables [14]. This algorithm comes 

under the tree of supervised machine techniques. LR is like 

linear regression as linear regression is used for regression 

problems and LR is used for solving classification problems. 

4) Random Forest (RF): Random Forest (RF) is a 

machine-learning technique that is based on decision trees. 

The bootstrap resampling approach allows for the extraction 

of multiple samples from the original set of data. Following 

the choice of specimens, a prediction decision-making 

structure was constructed for each sample, which was 

subsequently aggregated through a voting mechanism to 

obtain the ultimate outcomes. Random Forest (RF) can be 

utilized to address both classification and regression problems. 

The primary advantage of the RF model is its ability to 

mitigate errors resulting from asymmetrical data during 

training, particularly when there is a substantial disparity 

between the two types of class compounds. Additionally, this 

model has superior performance in mitigating the overfitting 

phenomena, as well as exhibiting enhanced capability in 

effectively addressing outliers and noisy data [13]. 

5) Multi-Layer Perceptron (MLP): A multi-layer 

perceptron (MLP) refers to an artificial neural network 

characterized by a forward architecture, wherein it transforms 

a given set of input vectors into a corresponding set of output 

vectors. The MLP can be conceptualized as a directed graph 

including multiple tiers of nodes. The subsequent layer is 

interconnected with the preceding layer. Every node, except 

the input node, represents a neuron that possesses a non-linear 

activation function. [16]. 

6) Light Gradient Boosting Machine (LGBM): Gradient 

boosting decision trees are a popular machine learning 

algorithm that combines the strengths of decision trees and 

gradient boosting. This algorithm iteratively builds an 

ensemble of weak decision trees, where There are various 

manifestations of trees, one of which is LightGBM (GBDT). 

This technique is commonly employed for classification, 

regression, and efficient parallel training. The LightGBM 

algorithm is widely recognized as a rapid and efficient 

variation of the Gradient Boosting Decision Tree (GBDT) 

technique. The proposed approach involves partitioning the 

tree into individual leaves and thereafter identifying the leaf 

that exhibits the highest delta loss. Hence, under the 

LightGBM framework, the leaf-wise approach can minimize 

loss to a greater extent compared to the level-wise strategy 

when expanding on the identical leaf. [7]. The description of all 

the parameters applied to ML models is discussed below in 

Table I. 

G. Description of Datasets 

ML models are implemented on three BBB datasets. These 
datasets have two classes i.e., class 0 belongs to (BBB-) which 
specifies non-permeable compounds to BBB and class 1 
belongs to (BBB+) permeable compounds to BBB. All the 
molecular compounds were in SMILES format. The datasets 
were randomly divided into 90% training and 10% testing data 
on which ML models were trained. 

Dataset 1 contains 1072 (317 BBB+ and 755 BBB-) 
molecular compounds in SMILES format with a variety of 196 
1D descriptors generated from RDKit library [25] which is a 
Python built-in library mainly used for molecular descriptors. 
The test dataset contains 266 molecular compounds with 196 
1D descriptors that are extracted for each compound. 

TABLE I.  DESCRIPTION OF PARAMETERS FOR MACHINE LEARNING 

MODELS 

Name Value Description 

Kernel Linear 
Defines the type of kernel to be used 

in the algorithm 

Random_state None 
Controls the creation of pseudo-
random numbers used to shuffle the 

data used to calculate probabilities. 

N_neigbors 7 

The numbers of neighbours that k-

neighbors queries will by default 
utilize. 

Metric Minkowski 

Metric to employ for distance 

calculations that, when p = 2, yields 
the usual Euclidean distance. 

P 2 Minkowski metric's power parameter 

Solver liblinear The optimization problem's algorithm. 

Random_state None Used when Solver = liblinear 

Hidden_layer_sizes (8, 8, 8) 

The number of neurons in the ith 

hidden layer is represented by the ith 

element. 

Activation Relu 
The buried layer rectified linear unit 
function's activation function gives the 

result f(x) = max (0, x) 

Solver Adam 
A stochastic gradient-based optimizer 
is referred to in the solution for weight 

optimization. 

Max_iter 2000 The maximum number of iterations. 

n_estimator 100 
It means how many numbers of trees 

can be generated. 

Max_depth None The depth of trees. 

Min_sample_split 2 
The needed minimum number of 
samples 

Random_state 42 
It means how many times the function 

calls for the same instance. 

Max_features Sqrt 
It means max_features= 

sqrt(n_features) 
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Dataset 2 contains 7162 (5453 BBB+ and 1709 BBB-) 
molecular compounds in SMILES format with 1119 1D and 
2D descriptors that are extracted for each compound. The test 
dataset contains 74 (39 BBB+ and 35 BBB-) molecular 
compounds with 1119 1D and 2D descriptors that are extracted 
for each compound [23]. These features were generated using 
Dragon software (version 7.0.10) [26]. 

Dataset 3 was constructed by adding more chemical 
compounds in dataset 2 which contains 9230 (6852 BBB+ and 
2378 BBB-) molecular compounds in SMILES format with 
1119 1D and 2D descriptors that are extracted for each 
compound. The test dataset contains 74 (39 BBB+ and 35 
BBB-) molecular compounds with 1119 1D and 2D descriptors 
that are extracted for each compound. These features were 
generated using Dragon software (version 7.0.10). 

H. Evaluation Matrices 

1) Confusion matrix: The utilization of the confusion 

matrix is frequently observed in machine learning to assess 

and illustrate the performance of algorithms in supervised 

classification tasks. The matrix in question is a square matrix 

whereby the rows correspond to the actual class and the 

columns correspond to the predicted class. The confusion 

matrix establishes a quantitative assessment of the 

concordance between observed and forecasted data. 

2) Sensitivity: The sensitivity is defined as the percentage 

of chemical compounds that the model properly classifies as 

BBB+ [9] and it is calculated by the given formula as shown 

in Eq. (1). 

            
  

     
        (1) 

3) Specificity: The specificity is defined as the percentage 

of chemical compounds that the model properly classifies as 

BBB- [9] and it is calculated by the given formula as shown in 

Eq. (2). 

            
  

     
        (2) 

4) Accuracy: The accuracy shows the overall performance 

of the model [9] and it is calculated by the given formula as 

shown in Eq. (3). 

         
     

           
        (3) 

5) Receiving Operating Characteristics (ROC): The 

model was graphically evaluated using an ROC curve [27], 

which is a highly efficient approach for determining how well 

the model can accurately distinguish between classes [7]. 

6) AUC: The AUC is used to assess how well the 

classifier separates the classes by calculating the area under 

the ROC curve and its output will always be between 0 and 1 

[9]. 

IV. RESULTS AND DISCUSSION 

Dataset 1 contains 1072 chemical compounds with 196 1D 
descriptors on which ML models were trained. The dataset was 
divided into 90% for training and 10% for testing with 10-fold 

cross-validation and 10 times iterated the whole process. The 
results are demonstrated below in Table II. 

On cross-validation, the training dataset contains 964 
chemical compounds whereas the testing dataset contains 108 
chemical compounds. The results on Dataset 1 show that we 
achieved an overall accuracy of the RF of 93.52, an AUC of 
0.97, a sensitivity of 95.95, and a specificity of 88.24 on 10-
fold cross-validation. The higher AUC value indicates that our 
model has a high level of accuracy in predicting BBB 
permeability and is suitable for use in BBB prediction. In 
contrast with other ML models, the RF model outperforms 
other ML models as shown in Fig. 2. The results of ML models 
are demonstrated by using ROC Curve for cross-validation on 
dataset 1 as shown in Fig. 2. 

For validation of the models, we test the ML models on an 
external dataset 1. Fig. 3 shows ROC curve of ML models for 
cross-validation of dataset 1. The RF model shows an accuracy 
of 78.38, an AUC of 0.83, a sensitivity of 94.29, and a 
specificity of 64.1. Comparing RF results with other ML 
models clearly shows that RF outperforms in the prediction of 
BBB permeability compounds. 

The LightBBB dataset contains 7162 molecular compounds 
and was divided into 90% training and 10% testing. After the 
division of the dataset feature extraction process was applied. 
The LightBBB dataset contains 1119 1D and 2D descriptors 
extracted for each chemical compound. These descriptors were 
generated using Dragon software (version 7.0.10). The most 
well-known ML models i.e., the SVM, KNN, LR, ANN, and 
RF were applied to each chemical compound. ML models 
classify the dataset into two class labels i.e., BBB- (0) non-
penetrating list and BBB+ (1) penetrating list. For evaluation 
and validation of results accuracy, specificity, sensitivity, 
precision, and recall, the F1-score has been computed. The 
results are demonstrated below in Table III. 

TABLE II.  CROSS-VALIDATION RESULTS OF ML MODELS ON DATASET 1 

Models AUC Specificity Sensitivity Accuracy 

SVM 0.91 88.24 83.78 85.19 

KNN 0.95 94.12 81.08 85.19 

LR 0.91 85.29 85.14 85.19 

MLP 0.91 76.47 79.73 78.07 

LGBM 0.97 88.24 94.59 92.59 

RF 0.97 88.24 95.95 93.52 

 
Fig. 2. Performance of ML models on cross validation dataset 1. 
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Fig. 3. ROC curves of ML models for cross validation on dataset 1. 

TABLE III.  CROSS-VALIDATION RESULTS OF ML MODELS ON DATASET 2 

Models AUC Specificity Sensitivity Accuracy 

SVM 0.90 93.49 73.78 88.98 

KNN 0.92 96.02 62.8 88.42 

LR 0.91 94.03 73.78 89.4 

MLP 0.92 93.41 75.44 89.12 

LGBM 0.94 0.77 0.93 89 

RF 0.95 95.12 75.0 90.52 

On cross-validation, the training dataset contains 6445 
chemical compounds whereas the testing dataset contains 717 
chemical compounds. The results on Dataset 2 show that we 
achieved an overall accuracy of the RF of 90.52, an AUC of 
0.95, a sensitivity of 75.0, and a specificity of 95.12 on 10-fold 
cross-validation. The higher AUC value indicates that the RF 
model has a high level of accuracy in predicting BBB 
permeability and is suitable for use in BBB prediction. In 
contrast with other ML models, the RF model outperforms 
other ML models as shown in Fig. 4. The results of ML models 
are demonstrated by using the ROC Curve on cross-validation 
dataset 2 as shown in Fig. 5. For validation of the models, we 
test the ML models on an external dataset 2. The RF model 
shows an accuracy of 93.24, an AUC of 0.96, a sensitivity of 
91.43, and a specificity of 94.87. Comparing RF results with 
other ML models clearly shows that RF outperforms in the 
prediction of BBB permeability compounds. 

Dataset 3 contains 9230 molecular compounds and was 
divided into 90% training and 10% testing. After the division 
of the dataset feature extraction process was applied. The 
dataset contains 1119 1D and 2D features extracted for each 
chemical compound. The most well-known ML models i.e., the 
SVM, KNN, LR, ANN, and RF were applied to each chemical 
compound. ML models classify the dataset into two class 
labels. The results are demonstrated below in Table IV. 

On cross-validation, the training dataset contains 8307 
chemical compounds whereas the testing dataset contains 923 
chemical compounds. The results on Dataset 3 show that we 
achieved an overall accuracy of the RF of 90.36, an AUC of 
0.96, a sensitivity of 77.73, and a specificity of 94.74 on 10-
fold cross-validation. In contrast with other ML models, the RF 

model outperforms other ML models as shown in Fig. 6. The 
results of ML models are demonstrated by using the ROC 
Curve on cross-validation dataset 3 as shown in Fig. 7. For 
validation of the models, we test the ML models on an external 
dataset 3. RF shows an accuracy of 91.89, an AUC of 0.94, a 
sensitivity of 91.43, and a specificity of 92.31. Comparing RF 
results with other ML models clearly shows that RF 
outperforms in the prediction of BBB permeability compounds. 

While comparing our results with previously published 
BBB permeability prediction models it seems that our 
technique outperforms the existing methods. The uniqueness of 
our technique is the use of optimal hyperparameters and a high 
density of data. We compared the models by considering all the 
evaluation parameters i.e., AUC, specificity, sensitivity, and 
accuracy as shown in Table V. 

 
Fig. 4. Performance of ML models on dataset 2. 

 
Fig. 5. ROC curves of ML models for cross validation on dataset 2. 

TABLE IV.  CROSS-VALIDATION RESULTS OF ML MODELS ON DATASET 3 

Models AUC Specificity Sensitivity Accuracy 

SVM 0.90 94.31 70.17 88.08 

KNN 0.94 93.14 65.55 86.02 

LR 0.92 93.72 68.49 87.22 

MLP 0.96 91.94 85.09 90.25 

LGBM 96 95.18 74.37 89.82 

RF 0.96 94.74 77.73 90.36 
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Fig. 6. Performance of ML models on dataset 3. 

 
Fig. 7. ROC curves of ML models for cross validation on dataset 3. 

TABLE V.  COMPARISON OF ML MODELS WITH PREVIOUSLY PUBLISHED 

BBB MODELS 

Reference AUC Specificity Sensitivity Accuracy 

[7] 0.94 0.77 0.93 89% 

[12] 0.93 0.85 0.86 85.08% 

[13] 0.95 0.86 0.92 91% 

[17] - 0.71 0.92 87% 

[21] 0.98 - - 97% 

[28] 0.90 0.83 0.98 94% 

[29] - 0.88 0.85 86% 

[30] 0.78 - - 82% 

[31] - 0.65 0.90 74.7% 

[32] - 0.80 0.82 81.5% 

[33] - 0.72 0.82 95% 

[34] - 0.80 0.72 83% 

[35] - 0.37 0.91 82.5% 

[36] - 0.79 0.84 82% 

[37] 0.85 - - 85% 

Proposed Technique 0.96 94.74 77.73 90.36% 

V. CONCLUSION 

In the proposed study five machine learning models were 
applied to highly accurate small and large datasets with a larger 
number of features. The dataset is balanced and free from 
inconsistent and redundant data with accurate class labeling. 
On the contrary, other ML models were trained on a smaller 
dataset and fewer features, leading to differing accuracy levels 
but being unable to compensate for the variety of molecular 
components. The model uses 10-fold cross-validation with 10 
iterations to assure correctness. The dataset contains molecular 
compounds and features. It was concluded that our ML model 
RF for the prediction of BBB penetration shows more accurate 
results on both small and large datasets than other ML 
algorithms. 

The higher accuracy achieved by RF on dataset 1 is 93.52, 
with an AUC of 0.97, a sensitivity of 95.95, and a specificity of 
88.24 on 10-fold cross-validation. 

The higher accuracy achieved by RF on dataset 2 is 90.52, 
with an AUC of 0.95, a sensitivity of 75.0, and a specificity of 
95.12 on 10-fold cross-validation. On testing our model on an 
external dataset RF shows an accuracy of 93.24, an AUC of 
0.96, a sensitivity of 91.43, and a specificity of 94.87. 

The higher accuracy achieved by RF on dataset 3 is 90.36, 
with an AUC of 0.96, a sensitivity of 77.73, and a specificity of 
94.74 on 10-fold cross-validation. On testing our model on an 
external dataset RF shows an accuracy of 91.89, an AUC of 
0.94, a sensitivity of 91.43, and a specificity of 92.31. The 
greater the value of AUC, the higher the accuracy of the model 
will be. Our model outperforms previously reported models. 

VI. FUTURE WORK 

To encourage future study, it may focus on the features of 
BBB datasets which can also be increased. It may also focus on 
applying feature extraction techniques for finding the most 
important features that were highly influential to the prediction 
compounds and how these models can be applied to treatments 
of the brain. Moreover, it may also focus on applying DL 
models to large datasets and comparing their outcomes with 
other ML models. Future work may intend to combine two 
techniques i.e., swarm algorithms with RF to obtain more 
precise results for this problem. 
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