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Abstract—Atrial Fibrillation (AF), a prevalent anomaly in 

cardiac rhythm, significantly impacts a substantial portion of the 

population, with projections indicating an escalation in its 

prevalence in the near future. This disorder manifests as 

irregular and accelerated heartbeats originating within the 

heart's upper chambers known as the atria. Neglecting to address 

this condition could potentially lead to serious consequences, 

particularly an elevated susceptibility to stroke and heart failure. 

This underscores the critical importance of developing an 

automated approach for detecting AF. In our study, an 

automatic approach was introduced for classifying short single-

lead Electrocardiogram (ECG) recordings signals into four 

categories: Atrial fibrillation (AF), Normal rhythm (N), Noisy 

rhythm (~), or Other rhythms (O). The wavelet scattering 

network (WSN) is employed to extract morphological features 

from the ECG signals, which are then inputted into an Artificial 

Neural Network (ANN) with time windows selection and 

majority vote. The results from the testing data exhibit that our 

proposed model outperforms the state-of-art models, achieving a 

remarkable overall accuracy of 87.35% and an F1 score of 

89.13%. 

Keywords—Electrocardiogram (ECG); Atrial Fibrillation (AF); 

Wavelet Scattering Network (WSN); Artificial Neural Network 

(ANN) 

I. INTRODUCTION 

The ECG is a recording of electrical potential differences 
on the body surface that result from the electrical activity in the 
heart [1]. An ECG is produced when a nerve impulse 
stimulates the heart, causing a current to spread across the 
body's surface. This current creates a voltage drop ranging 
from a few microvolts to millivolts, accompanied by variations 
in the impulse. Typically, these impulses have very low 
amplitude, necessitating thousands of times of amplification 
[2].  The ECG is typically a voltmeter that uses up to 12 
different leads (electrodes) placed on designated areas of the 
body [3]. 

Because of its straightforwardness and non-intrusive 
characteristics, the ECG has been extensively utilized in the 
identification of heart diseases [4]. The detection of heart 
diseases typically involves the analysis of ECG signals, which 
unveil irregularities commonly known as arrhythmias. These 
manifestations signify deviations from a regular heart rhythm, 
potentially causing irregular or abnormal heartbeats, often 

experienced as palpitations. Arrhythmias are broadly 
categorized into two main types: ventricular and 
supraventricular. Atrial Fibrillation (AF), a prevalent condition, 
falls under the category of supraventricular arrhythmias due to 
its origination within the heart's upper chambers, the atria. In 
contrast, ventricular arrhythmias arise from the heart's lower 
chambers or ventricles. Understanding this differentiation is 
crucial for accurately identifying and subsequently treating 
various forms of arrhythmias. This distinction aids medical 
professionals in precisely classifying the type of arrhythmia 
observed in a patient, paving the way for more targeted and 
effective treatment strategies. 

Early identification plays a pivotal role in addressing heart 
arrhythmias, potentially offering significant opportunities to 
save lives. Utilizing the ECG as a primary diagnostic tool 
becomes essential in achieving this imperative objective [5]. 
Nevertheless, the manual interpretation of prolonged ECG 
recordings introduces a multitude of escalating challenges. As 
these recordings extend in duration, the intricacies grow, 
rendering the process more time-consuming, intricate, and 
arduous. The exhaustive review demanded by these extended 
recordings not only prolongs the analysis but also heightens the 
complexity of the interpretation process, making it more 
challenging [6]. In response to these challenges, cardiologists 
turn to automated diagnostic algorithms, which streamline the 
analysis of extensive ECG data [7]. This incorporation of 
automated methodologies proves to be an invaluable solution, 
offering a streamlined approach to overcome the hurdles 
associated with manual interpretation. Consequently, the 
utilization of these automated tools not only enhances 
efficiency but significantly improves the precision and 
management of prolonged ECG recordings. Numerous 
research initiatives have concentrated on employing classical 
machine learning models to identify arrhythmias within ECG 
signals. These models have shown efficacy in analyzing both 
short-term and long-term ECG readings, primarily focusing on 
the scrutiny of individual heartbeats within the signal [8-9].  
Nevertheless, these models require feature engineering and 
domain expertise, introducing aspects that are time-consuming 
and demanding. To address these challenges, deep learning 
models like Convolutional Neural Networks (CNN) and Long 
Short-Term Neural Networks have emerged, showcasing 
impressive performance in detecting arrhythmias [10-11]. 
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AF is the prevailing prolonged cardiac irregularity, found in 
around 1-2% of the overall population [12-13]. This condition 
carries notable implications for both mortality and morbidity 
due to its strong links with various health risks. Individuals 
with AF face an increased likelihood of experiencing severe 
outcomes, including stroke, hospitalization, heart failure, and 
coronary artery disease. The association of AF with these risks 
underscores its profound impact on cardiovascular health [13-
14]. AF's connection to an elevated risk of death further 
underscores its significance. The irregular heartbeat pattern in 
AF can lead to blood clots forming within the atria, which 
might subsequently travel to the brain, causing a stroke. 
Additionally, the erratic heart rhythm can strain the heart's 
function over time, potentially culminating in heart failure. 

AF impacts more than 12 million people in Europe and 
North America, and this number is expected to triple in the 
next 30-50 years. This escalating prevalence underscores the 
need for increased efforts in diagnosis, treatment, and 
management to address the growing public health challenge 
[15]. More notably, AF becomes more common as individuals 
age. For those between 40-50 years old, the incidence is under 
0.5%, while among those 80 and older, it ranges from 5-15%. 
This age-related rise in AF highlights the need for targeted 
monitoring and interventions to address the growing risk in the 
elderly [16]. Recognizing this trend, a multitude of research 
works and papers have emerged, aiming to develop automatic 
models utilizing Machine Learning (ML) techniques and Deep 
Learning (DL) [17]. These endeavors aim to facilitate the 
diagnosis and early detection of AF, potentially saving the lives 
of millions across the globe. 

In the following sections of this paper, related works were 
explored, specifically focusing on Automated AF systems from 
previous endeavors in Section II. Subsequently, our materials 
and methods cover a data description, data preprocessing, and 
the features extraction method in Section III. A detailed 
account was presented to explain the classification model used 
and the evaluation metrics applied. Further Section IV 
encompasses the results, where our findings were analyzed and 
described. The discussion section follows, where our results 
were compared with existing automated AF detection models. 
Lastly, the conclusion summarizes our findings, outlines 
limitations, and suggests avenues for future research in Section 
V. 

II. RELATED WORKS 

In this paper, a comparison was conducted with state-of-art 
models designed for AF detection. Notably, Garcia et al. [18] 
introduced a method that utilizes surface ECG data, capturing 
variability in ventricular and atrial activities. The approach 
involves generating time series data from R_R intervals and 
morphological features of fibrillatory waves in T_Q intervals. 
The regularity of these time series is quantified using the 
Coefficient of Sample Entropy (COSEn), and a multi-class 
Support Vector Machine (SVM) distinguishes between AF, N 
and O. Their algorithm underwent validation in the PhysioNet 
Computing in Cardiology Challenge 2017. 

Rajpurkar et al. [19] introduced an algorithm surpassing 
board-certified cardiologist’s proficiency, exhibiting 
exceptional accuracy in detecting a wide range of heart 

arrhythmias. The algorithm excels by applying to single-lead 
wearable monitor electrocardiograms. A sophisticated 34-layer 
CNN is crucial in mapping ECG sequences to rhythm classes. 
The study includes a gold standard test set annotated by board-
certified cardiologists, serving as a benchmark where the 
algorithm outperforms individual cardiologists in both recall 
and precision. 

Coppola et al. [20] introduced a data-driven model for 
automated AF detection from a single ECG lead. The model 
incorporates features such as heart rate variability, spectral 
power analysis, and statistical modeling to capture atrial 
activity nuances. Employing an over-sampling strategy for 
dataset balance, they crafted a hierarchical classification model 
predicting ECG signals into AF, N, noise interference or O. 
Their approach includes a hierarchical bagged ensemble 
classifier, achieving an average F1 score of 0.7855%. 

Makinckas et al. [21] introduced a paradigm utilizing a 
Long Short Term Memory (LSTM) network, a neural 
architecture efficiently learning patterns from pre-computed 
QRS complex features for ECG signal classification. Despite 
its classification as a deep neural network, their architecture, 
with a mere 1791 parameters, achieves a remarkable balance 
between complexity and efficiency. The crux of their 
methodology lies in the LSTM network's unique ability to 
comprehend patterns in QRS complex features, facilitating 
accurate categorization of diverse ECG signals. Their LSTM 
based model demonstrated effectiveness with a commendable 
final challenge F1 score of 78% across N, AF, O and ~. 

Schwab et al. [22] utilized a richly annotated dataset of 
12,186 single-lead ECG recordings. Their approach involved 
constructing a diverse ensemble of Recurrent Neural Networks 
(RNN) proficient in discerning differences among N, AF, O, 
and ~. To enhance temporal learning, they introduced a novel 
task formulation leveraging ECG signal segmentation into 
heartbeats, reducing time steps per sequence significantly. 
Incorporating an attention mechanism further augmented their 
RNN, enabling the model to focus on specific heartbeats for 
decision-making. With attention mechanisms, their model 
achieved an average F1 score of 79%. 

Andreotti et al. [23] classified ECG segments into AF, N, O 
and ~. They conducted a comparative analysis, pitting a feature 
based classifier against a CNN. Both were meticulously trained 
on challenge data and augmented with Physionet database. The 
feature based classifier achieved a 72.0% F1 score during 
training and 79% on the hidden test set. Meanwhile, the CNN 
scored 72.1% on the augmented database and 83% on the test 
set, resulting in a final score of 79%. 

Jiménez-Serrano et al. [24] integrated a Feedforward 
Neural Network (FFNN) for classifying short single-lead ECG 
segments into N, AF, O and ~. Extracting 72 features from 
ventricular activity in 8528 ECG records, they conducted a 
meticulous Feature Selection (FS) process and a detailed grid 
search for FFNN training parameters. Filtering down to 50 
features during FS improved the initial F1 score from 70% to 
73%. The FFNN model achieved a final F1 score of 77 %on 
test data, demonstrating its efficacy in discriminating ECG 
patterns. 
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Pandey et al. [25] analyzed ECG data from 
PhysioNet/CinC Challenge 2017, aiming to differentiate 
cardiac rhythms, particularly AF, N, O and ~. Their approach 
combined traditional machine learning with deep neural 
networks, integrating a Residual Network (ResNet), CNN, 
Bidirectional LSTM (BiLSTM), and Radial Basis Function 
(RBF) neural network. The hybrid model achieved an F1 score 
of 80% and an accuracy of 85% in discerning AF rhythms 
within the ECG data. 

Clifford et al. [26] utilized PhysioNet/CinC Challenge 2017 
to distinguish AF from ~, N, or O in short-term ECG 
recordings. The extensive dataset included 12,186 ECGs, with 
8,528 in the public training set and 3,658 in the hidden test set. 
Utilizing a combination of 45 algorithms, incorporating the 
LASSO technique, they achieved an F1 score of 86%. 

While numerous related works have attempted to detect AF 
through diverse techniques, including ML, DL, and hybrid 
models, the prediction accuracy remains notably low. The 
highest F1 score, achieved by Clifford et al. [26] was 86%, 
underscores the significance of developing a new approach to 
enhance the accuracy of AF detection. 

III. MATERIALS AND METHODS 

A. Database Description 

The research utilizes a publicly available database 
accessible through this link 
(https://archive.physionet.org/pn3/challenge/2017/). 

This database comprises 8,528 ECG recordings, which 
were made available as a public training set for utilization in 
the 2017 PhysioNet/Computing in cardiology challenge, Table 
I show the distribution of each class label of the dataset [27]. 
These recordings were captured using an AliveCor handheld 
device, which automatically uploads the recordings via a 
mobile phone application. The dataset includes both these 
recordings and an additional 3,658 recordings retained as a 
concealed test set. AliveCor provided these recordings for the 
Challenge. Each ECG recording was sampled at 300 Hz and 
underwent band-pass filtration through the AliveCor device. 

TABLE I.  CLASS LABELS DISTRIBUTION 

Class Label No. Instances 

N 5050 

AF 738 

O 2456 

~ 284 

B. Data Preprocessing 

The challenge's dataset draws from a particular database. 
To ensure a fair basis for comparison with earlier studies that 
utilized a 20-second interval, each ECG recording was divided 
into segments. This approach was adopted to establish a 
uniform time window for analysis, in accordance with previous 
research practices. Furthermore, the dataset exhibited an 
imbalance, which could pose training challenges leading to 
inaccurate classification outcomes. To address this, the 
Synthetic Minority Over Sampling Technique (SMOTE) was 

employed [28].  SMOTE generates synthetic instances of the 
minority class to rebalance the data and enhance classification 
performance. 

Following the application of the SMOTE technique on the 
8,528 ECG recordings with segmentations, our dataset was 
transformed, resulting in 18829 ECG segments. The successful 
application of SMOTE effectively balanced the class 
distribution. This balance is pivotal, as it enables the model to 
achieve precise classification outcomes and effectively 
differentiate among the four distinct classes. As a consequence 
of this enhanced discriminatory capacity, our approach will 
yield elevated accuracy and F1 score results. 

In Fig. 1, an ECG segment depicting AF is observed. 
Notably, the absence of a consistent sinus rhythm is evident 
through variable R_R intervals. Additionally, the ECG 
waveform reflects the absence of certain P waves, confirming 
the presence of AF. 

 
Fig. 1. ECG with atrial fibrillation. 

Fig. 2 displays an ECG segment with a normal rhythm. The 
fixed R_R interval and the presence of all waves and 
complexes in the ECG waveform are noticeable, indicating the 
normalcy of the ECG segment. 

Fig. 3 reveals an ECG segment with a variable R_R 
interval, signifying that the ECG segments cannot be classified 
as N. Notably, the presence of P waves in each ECG heartbeat 
suggests a deviation from AF. Instead, this ECG segment is 
categorized as another rhythm. 

 
Fig. 2. ECG with normal rhythm. 
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Fig. 3. ECG with other rhythm. 

 

Fig. 4. ECG with noise. 

Fig. 4 highlights the absence of identifiable waves or 
complexes in the ECG segment waveform, indicating that this 
ECG segment is noisy. 

After addressing the imbalance in the dataset through the 
application of SMOTE, the data was divided into two distinct 
parts, employing an 80-20% split ratio. This division was 
carried out with a stratified approach, ensuring that each class 
label was proportionally represented in both the training and 
testing sets. Specifically, 80% of the data from each class was 
allocated to the training set, while the remaining 20% was set 
aside for testing purposes, which results in a total of 3764 ECG 
segments for testing and 15065 ECG segments for training. To 
further enhance the robustness of the model, the training set, 
constituting 80% of the data, underwent an evaluation process 
using a five-fold cross-validation technique. This technique 
involved partitioning the training data into five subsets, 
training the model on four of these subsets while using the 5

th
 

for validation, and then rotating the subsets iteratively. This 
meticulous combination of techniques facilitated the creation 
of a well-generalized model capable of effectively addressing 
the initial data imbalance and yielding reliable performance 
results. 

C. Features Extraction 

In this paper, the potential of the WSN was harnessed to 
meticulously extract an array of intricate morphological 
characteristics from ECG segments. The wavelet scattering 
approach is a distinguished member of the deep convolution 

network family crafted for signal processing, that serve as the 
linchpin for capturing multifaceted information. 

What sets the wavelet scattering method apart is its unique 
capacity to seamlessly navigate through both the time and 
frequency domains of signals. By employing wavelets as the 
foundational building blocks, the network inherently grasps 
both the rapid fluctuations occurring in short time spans and 
the nuanced oscillatory patterns occurring over varied 
frequency ranges. The WSN provides features with translation 
and rotation invariance, making it suitable for image and audio 
analysis [29]. It offers stable features for denoising and enables 
dimensionality reduction for enhanced accuracy. 

In this paper, the WSN with Gabor wavelets is utilized due 
to their morphological similarity to the QRS complex, making 
them suitable for extracting features from ECG segments [30]. 
The definition of a Gabor wavelet in Eq. (1) involves the 
multiplication of a Gaussian function by a complex exponential 
function. Fig. 5 shows the Gabor wavelet used with its real 
part, imaginary part, and its low pass filter. 

 ( )   
 

√    
 
   

                                   (1) 

where, t denotes time, σ represents the standard deviation 
of the Gaussian function. ω=2πf, where f is the center 
frequency of ѱ and i is the imaginary unit. The Gabor complex 
wavelet's envelope is a low-pass filter, noted as Փ in Eq. (2). 

 ( )   | ( )|                                    (2) 

The scattering network is consisting of three stages as 
shown in Fig. 6. In the WSN: the 0

th
 order S0, the signal with a 

low-pass filter Փ was convolved to analyze the slow variations 
and amplitude in the signal, and provide good time resolution 
but poor frequency resolution. Moving to the 1

st
 order S1, a 

specific-scale wavelet is employed to scrutinize high-frequency 
components within the ECG segments. And, the 2

nd
 order S2 

was proceed to further extract complementary high-frequency 
components from the analyzed signal. This process enhances 
our understanding of ECG characteristics. 

   ( )   ( )                                      (3) 

   ( )  |     |                                  (4) 

   ( )  ||     |     |                            (5) 

  ( )  *          +                                (6)  

After applying the WSN with an invariance scale of 10 
seconds and utilizing Q1=8 and Q2=1 as the quality factors for 
the 2 filter banks, a tensor of size 12x205 was obtained for 
each ECG segment. Fig. 7 shows the frequency bands of first 
and second filter banks. 

In this tensor, columns correspond to the scattering paths 
within the network, while rows represent time windows. This 
showcases the WSN's capability to achieve a 59% 
dimensionality reduction. 
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Fig. 5. Gabor complex wavelet. 

 

Fig. 6. Scattering network. 

 

Fig. 7. Frequency band of the first and the second filter bank. 
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Consequently, the training dataset becomes 15065x12x205, 
and the testing dataset becomes 3764x12x205 in tensor 
dimensions. Subsequently, reshaping the training and testing 
datasets into an appropriate format for classifiers result in 
feature matrices of size 180780x205 and 45168x205 for 
training and testing, respectively. 

The scalogram coefficients depicted in Fig. 8 showcase the 
outcomes of convolving the AF in ECG segment, as depicted 
in Fig. 1, with the real and imaginary components of Gabor 
wavelets within the initial filter bank. 

This visual representation is exceptional in its ability to 
delineate the various frequencies present within the signal 
while associating each frequency with its respective temporal 
occurrence. 

Moreover, the convolution process with these filters allows 
for the computation of similarity between the signal and the 
wavelets. These features are instrumental in providing insights 
into the amplitudes and frequencies within the signal, which in 
turn play a crucial role in accurately predicting atrial 
fibrillation. 

The preceding WSN was implemented in the MATLAB 
environment, with an invariance scale set to 10 seconds and a 
sampling frequency of 300 Hz utilized. 

 
Fig. 8. Scalogram coefficients for the first filter bank. 

D. Classification Model 

In our study, an ANN was constructed with a single hidden 
layer containing 200 neurons. The goal was to effectively 
differentiate among classes A, N, O, and ~. The ReLU was 
used as activation function layer and Softmax as output 
activation layer. To enhance the model's performance, the 
Limited-memory-Broyden–Fletcher–Goldfarb–Shanno 
(LBFGS) solver was adopted, setting the maximum number of 
iterations to 1000. Throughout our analysis, we focused on 
refining the accuracy and efficacy of our approach. 

The first hidden layer equation for each neuron j can be 
described as follows: 

   ∑    
 
                                         (7) 

       (    )                                     (8) 

where, n is the number of input features, Wij is the weight 
between input features i and hidden neuron j, bj is the bias term 
of hidden neurone j, and aj is the output of neuron j after 
applying the ReLU activation function. 

For each class c of the output layer: 

   ∑    
   
                                      (9) 

    
   

∑     
   

                                     (10) 

where, Yc is the predicted probability for class c after 
applying the Softmax activation function. 

The ANN was constructed within the MATLAB 
environment, with initial weights determined using the 'glorot' 
method and initial biases set to zeros. The maximum number of 
iterations was set at 1000, and the gradient tolerance was 
established as 10

-6
. The lambda parameter remained fixed at 0. 

E. Evaluation Metrics 

Our classifier model's performance was evaluated using 
metrics like accuracy, precision, recall, specificity, and the F1 
score. Accuracy measures correct classifications, precision 
gauges accurate positive predictions, recall assesses positive 
instances captured, specificity measures accurate negative 
predictions, and the F1 score balances precision and recall. 

Accuracy: It evaluates the ratio of accurate forecasts 
generated by the model among all the predictions it makes. 

          
     

           
                          (11) 

Precision: It evaluates how well the model correctly 
identifies positive cases, indicating the ratio of true positives to 
all positive predictions. 

                  
  

     
                           (12) 

Sensitivity: It measures the percentage of real positive 
instances accurately detected by the model and also referred as 
recall or the true positive rate. 

                       
  

     
                       (13) 

Specificity: It evaluates the model's capability to correctly 
recognize negative cases through the measurement of true 
negative prediction’s proportion. 

             
  

     
                               (14) 

F1 Score: It calculates a balanced evaluation of the model's 
performance by taking the harmonic mean of both precision 
and recall, merging them into a single metric. 

          
                       

                     
                     (15) 

F. System Description 

The implementation of all algorithms was carried out using 
MATLAB version R-2021b on a Windows server. The system 
employed for execution featured an Intel (R), Core (TM), i5, 
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CPU 6300U, processor clocked at 2.40 GHz, with a 12 GB 
RAM capacity and operating on a 64 bits architecture. 

IV. RESULTS AND DISCUSSION 

A. Results 

The objective of our paper was to classify ECG signals into 
four classes: AF, N, O, and ~. Numerous ML models were 
tested to assess their effectiveness in distinguishing these 
classes. Our findings, as indicated in Table II, revealed that an 
ANN with a single hidden layer and a size of 100 neurons 
yielded the best classification results. This architecture 
achieved an accuracy of 87.2% on the validation data and 
81.1% on the testing data. 

Interestingly, our observations also highlighted that 
increasing the size of the first hidden layer led to improved 
accuracy in both training and testing data. To delve deeper into 
this phenomenon, the impact of various hidden layer sizes was 
examined on classification outcomes. The results, depicted in 
Fig. 9, confirmed that accuracy consistently improved with 
larger layer sizes. However, it's important to note that 
excessively increasing the layer size can result in heightened 
computational costs and reduced prediction speed. Therefore, 
the layer size was adjusted at 200 neurons, which balanced 
accuracy and computational efficiency. With this 
configuration, a remarkable accuracy rates were achieved: 
90.35% on the validation data and 82.10% on the testing data. 

Upon applying the WSN to each ECG signal, a tensor of 
dimensions 12x205 was obtained. After reshaping the data for 
training and testing, an ANN was employed with a hidden 
layer size of 200. The ANN produced 12 results corresponding 
to different time windows. Consequently, each time window 
exhibited distinct validation and testing accuracies. 

In Fig. 10, the impact of these time windows on validation 
and testing accuracy was analyzed. The results revealed that 

the 5
th
 time window yielded the highest classification 

performance, achieving 91.85% accuracy on validation data 
and 83.95% accuracy on testing data. 

This proposed approach, known as Time Window Selection 
showcased a noteworthy enhancement in accuracy. Validation 
accuracy improved from 90.35% to 91.85%, while testing 
accuracy saw an increase from 82.10% to 83.95%. 

Enhancing the testing accuracy is achievable through the 
strategic selection of optimal time windows for classification, 
followed by applying a majority vote approach. Fig. 10 
illustrates that starting from the 3

rd
 time window, there is a 

noticeable improvement in validation accuracy. 

To harness this insight, the results from the ANN with a 
200-layer size across 12-time windows were utilized, focusing 
on the 3

rd
 through the 10

th
 time windows, which displayed 

superior validation accuracy. Employing a majority vote 
technique on these eight selected time windows, we observed a 
significant enhancement in testing accuracy and F1 score. 

TABLE II.  PERFORMANCE COMPARAISON OF DIFFERENT MACHINE 

LEARNING MODELS 

    

    Models 

 

 

 

 
Accuracy  

Decision 

Tree 

Narrow 

Neural 

Network 

layer 

size: 10 

Medium 

Neural 

Network 

layer 

size: 25 

Wide 

Neural 

Network 

layer 

size: 100 

Bilayered 

Neural 

Network 

First layer 

size: 10 

Second 

layer size: 

10 

Validation 

 Data % 
61.8 75.2 80.2 87.2 75.8 

Testing 

 Data % 
62.1 74.4 78.0 81.1 72.1 

 
Fig. 9. ANN layer and its impact on validation and testing accuracy. 
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Fig. 10. Time windows impact on validation and testing accuracies. 

TABLE III.  TESTING RESULTS USING WSN + ANN + TIME WINDOWS 

SELECTION + MAJORITY VOTE 

Class Name  Precision %  Recall % Specificity %  F1 score % 

AF 89.05    93.23   98.11   91.09   

N 85.19   89.37   89.86   87.23   

O 84.19   76.73   93.48   80.29 

~ 97.40   98.43   99.53   97.91   

Average  88.96   89.44   95.24   89.13 

TABLE IV.  SUMMERIZED RESULTS ON THE VALIDATION AND THE 

TESTING DATASETS 

 
Methodology Accuracy % F1 score % 

5 Folds Cross 

Validation on 

the Training 

Dataset 

WSN + ANN with 12 

Time window 
90.35 91.53 

WSN + ANN + 5
th

 

Time window 
91.85 93.02 

Testing 

Dataset 

WSN + ANN with 12 

Time window 
82.10 84.22 

WSN + ANN + 5
th

 

Time window 
83.95 85.94 

WSN + ANN + Time 

Windows selection + 

Majority Vote 

87.35 89.13 

This approach led to a testing accuracy of 87.35% and an 
F1 score of 89.13%. 

Detailed testing results are available in Table III, while 
Table IV provides a concise summary of the outcomes 
obtained through various methodologies. 

Fig. 11 displays the various steps outlined in this paper for 
classifying ECG signals as N, AF, ~, or O. 

B. Discussion 

In this study, we compared the outcomes produced by our 
classification method with those of previously established 
state-of-the-art models. Our model, which combines WSN, 
ANN, Time window, and Majority vote technique, achieves 
the highest overall accuracy. When contrasted with the findings 
of Pandey et al. [18], as presented in Table V, our model 
outperforms the state of art models in term of accuracy. 

A comparative analysis of our results with those of other 
studies was conducted, specifically focusing on the F1 score. 

The highest F1 score, 89.13%, was attained in our paper. 
Nonetheless, as shown in Table VI, it remains evident that our 
proposed methodology surpasses the performance of preceding 
works in terms of F1 score. 

An extensive examination of the model's complexity was 
conducted, encompassing the neuron count in the ANN and the 
overall count of learnable parameters. Additionally, the time 
taken for feature extraction from a single ECG segment, 
quantified at approximately 67.3 milliseconds as displayed in 
Table VII. The predictive speed of our ANN successfully 
attains a rate of 22,584 ECG segments per second, showcasing 
a remarkably high prediction speed for detecting atrial 
fibrillation within ECG segments. 
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Fig. 11. ECG segments classification process. 

TABLE V.  OVERALL ACCURACY COMPARAISON WITH OTHER PREVIOUS 

WORK 

Study Methodology Accuracy % 

Pandey et al. [25] 

 

ResNet 84.40 

ResNet + LSTM 82.87 

ResNet + RBF 84.56 

Present Study 

 

WSN + ANN 82.10 

WSN + ANN + 5
th

 Time 

window 
83.95 

WSN + ANN + Time 

windows selection + 

Majority Vote 

87.35 

TABLE VI.  F1 SCORE COMPARAISON WITH OTHER PREVIOUS WORKS 

Study  F1 score % 

García et al. [18] (2017) 73 

Rajpurkar et al. [19] (2017) 79.9 

Coppola et al. [20] (2017) 78.55 

Maknickas et al. [21] (2017) 78 

Schwab et al. [22] (2017) 79 

Jimenez-Serrano et al. [23] (2017) 77 

Andreotti et al. [24] (2017) 79 

Clifford et al. [26] (2017) 86.8 

Pandey et al. [25] (2022) 80.56 

Present Work (2023) 89.13 

TABLE VII.  COMPLEXITY ANALYSIS 

No. Neurons 204 

No. Learnabeles 42004 

Feature Extraction Time for 1 

ECG segment 
67.3 millisecond 

Prediction Speed of ANN  22584 ECG segment/s 

Training Time 240.7 minutes 

V. CONCLUSION 

In our research, an innovative approach for the automated 
classification of ECG signals and the detection of atrial 
fibrillation was presented. 

Our technique leverages a combination of WSN with ANN, 
Time Windows Selection, and Majority Vote to yield 
promising results when compared to prior studies, achieving an 
accuracy of 87.35%, a precision of 88.96%, a recall of 89.44%, 
a specificity of 95.24%, and an F1 score of 89.13%. 

Although, our proposed approach has shown a good 
performance, it still has some limitations. Firstly, the ANN 
performance was dependent on the accuracy and reliability of 
the features derived from the raw ECG data before being 
inputted. Secondly, the current method is challenged by a 
significant computational burden due to the feature extraction 
process. 

In forthcoming work, we intend to explore a technique that 
mitigate the computational costs associated with our proposed 
model 

To addressing these identified constraints, future endeavors 
will focus on enhancing the proposed model through the 
application of dimensionality reduction techniques utilizing 
machine learning. This enhancement aims to streamline the 
feature space, thereby lowering the computational load in the 
classification process without compromising the ANN efficacy. 

DATA AVAILABILITY  

ECG readings were taken from: 
https://archive.physionet.org/pn3/challenge/2017/. 

CONFLECTS OF INTEREST 

We confirm that all authors declare no conflicts of interest. 

ACKNOWLEDGMENT 

This work was supported by the National Scientific and 
Technical Research Centre (CNRST), Morocco. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 12, 2023 

503 | P a g e  

www.ijacsa.thesai.org 

REFERENCES 

[1] J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K. A. Mardal, A. Tveito, 
“Computing the electrical activity in the heart,” Springer Science & 
Business Media, (Vol. 1), 2007. 

[2] M. K. Islam, G. Tangim, T. Ahammad, M. R. H. Khondokar, “Study and 
analysis of ecg signal using matlab &labview as effective 
tools,” International journal of Computer and Electrical 
engineering,  4(3), 404. 2012. 

[3] A. K. M. F. Haque, M. H. Ali, M. A. Kiber, M. T. Hasan, “Detection of 
small variations of ECG features using wavelet,” ARPN Journal of 
Engineering and applied Sciences, 4(6), 27-30, 2009. 

[4] E. J. D. S. Luz, W. R. Schwartz, G. Cámara-Chávez, D. Menotti, “ECG-
based heartbeat classification for arrhythmia detection: A 
survey,” Computer methods and programs in biomedicine, 127, 144-
164, 2016. 

[5] A. U. Rahman, R. N. Asif, K. Sultan, S. A. Alsaif, S. Abbas, M. A. 
Khan, A. Mosavi, “ECG classification for detecting ECG arrhythmia 
empowered with deep learning approaches,” Computational intelligence 
and neuroscience, 2022. 

[6] S. S. Hussain, F. Noman, H. Hussain, C. M. Ting, S. R. G. S. bin Hamid, 
H. Sh-Hussain, ..., J. Ali, “A Brief Review of Computation Techniques 
for ECG Signal Analysis,” In Proceedings of the Third International 
Conference on Trends in Computational and Cognitive Engineering: 
TCCE 2021 (pp. 223-234). Singapore: Springer Nature Singapore, 
February 2022. 

[7] L. Saclova, A. Nemcova, R. Smisek, L. Smital, M. Vitek, M. Ronzhina, 
“Reliable P wave detection in pathological ECG signals,” Scientific 
Reports, 12(1), 6589, 2022. 

[8] R. Holgado-Cuadrado, C. Plaza-Seco, L. Lovisolo, M. Blanco-Velasco, 
“Characterization of noise in long-term ECG monitoring with machine 
learning based on clinical criteria,” Medical & Biological Engineering & 
Computing, 1-14, 2023. 

[9] X. Dong, W. Si, “Heartbeat dynamics: a novel efficient interpretable 
feature for arrhythmias classification,” IEEE Access, 2023. 

[10] V. Rawal, P. Prajapati, A. Darji, “Hardware implementation of 1D-CNN 
architecture for ECG arrhythmia classification,” Biomedical Signal 
Processing and Control, 85, 104865, 2023. 

[11] M. Karri, C. S. R. Annavarapu, “A real-time embedded system to detect 
QRS-complex and arrhythmia classification using LSTM through 
hybridized features,” Expert Systems with Applications, 214, 119221, 
2023. 

[12] G.Y.H. Lip, L. Fauchier, S.B. Freedman, I. Van Gelder, A. Natale, C. 
Gianni, S. Nattel, T. Potpara, M. Rienstra, H. Tse, D.A. Lane, “Atrial 
fibrillation,” Nature Reviews Disease Primers 2, 16016, 2016. 

[13] Developed with the Special Contribution of the European Heart Rhythm 
Association (EHRA), Endorsed by the European Association for Cardio-
Thoracic Surgery (EACTS), Authors/Task Force Members, Camm, A. 
J., Kirchhof, P., Lip, G. Y., ... & Zupan, I. (2010). Guidelines for the 
management of atrial fibrillation: the Task Force for the Management of 
Atrial Fibrillation of the European Society of Cardiology (ESC). 
European heart journal, 31(19), 2369-2429. 

[14] R. Colloca, “Implementation and testing of atrial fibrillation detectors 
for a mobile phone application, 2013. 

[15] I. Savelieva, J. Camm, J., “Update on atrial fibrillation: part I,” Clinical 
Cardiology: An International Indexed and Peer‐Reviewed Journal for 

Advances in the Treatment of Cardiovascular Disease, 31(2), 55-62, 
2008. 

[16] G. V. Naccarelli, H. Varker, J. Lin, K. L. Schulman, “Increasing 
prevalence of atrial fibrillation and flutter in the United States,” The 
American journal of cardiology, 104(11), 1534-1539, 2009. 

[17] A. Ghrissi, D. Almonfrey, F., Squara, J. Montagnat, V. Zarzoso, 
“Identification of spatiotemporal dispersion electrograms in atrial 
fibrillation ablation using machine learning: A comparative 
study,” Biomedical Signal Processing and Control, 72, 103269, 2022. 

[18] M. García, J. Ródenas, R. Alcaraz, J. J. Rieta, “Atrial fibrillation 
screening through combined timing features of short single-lead 
electrocardiograms,” In 2017 Computing in Cardiology (CinC) (pp. 1-4). 
IEEE, September 2017. 

[19] P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn, A. Y. Ng, 
“Cardiologist-level arrhythmia detection with convolutional neural 
networks,” arXiv preprint arXiv:1707.01836, 2017. 

[20] E. E. Coppola, P. K. Gyawali, N. Vanjara, D. Giaime, L. Wang “Atrial 
fibrillation classification from a short single lead ECG recording using 
hierarchical classifier,” In 2017 Computing in Cardiology (CinC) (pp. 1-
4). IEEE, September 2017. 

[21] V. Maknickas, A. Maknickas, “Atrial fibrillation classification using qrs 
complex features and lstm,” In 2017 Computing in Cardiology (CinC) 
(pp. 1-4). IEEE, September 2017. 

[22] P. Schwab, G. C. Scebba, J. Zhang, M. Delai, W. Karlen, “Beat by beat: 
Classifying cardiac arrhythmias with recurrent neural networks,” 
In 2017 Computing in Cardiology (CinC) (pp. 1-4). IEEE, September 
2017. 

[23] F. Andreotti, O. Carr, M. A. Pimentel, A. Mahdi, M. De Vos, 
“Comparing feature-based classifiers and convolutional neural networks 
to detect arrhythmia from short segments of ECG,” In 2017 Computing 
in Cardiology (CinC) (pp. 1-4). IEEE, September 2017. 

[24] S. Jiménez-Serrano, J. Yagüe-Mayans, E. Simarro-Mondéjar, C. J. 
Calvo, F. Castells, J. Millet, “Atrial fibrillation detection using 
feedforward neural networks and automatically extracted signal 
features,” In 2017 Computing in Cardiology (CinC) (pp. 1-4). IEEE, 
September 2017. 

[25] S. K. Pandey, G. Kumar, S. Shukla, A. Kumar, K. U. Singh, S. Mahato, 
“Automatic Detection of Atrial Fibrillation from ECG Signal Using 
Hybrid Deep Learning Techniques,” Journal of Sensors, 2022. 

[26] G. D. Clifford, C. Liu, B. Moody, H. L. Li-wei, I. Silva, Q. Li, ..., R. G. 
Mark, “AF classification from a short single lead ECG recording: The 
PhysioNet/computing in cardiology challenge 2017,” In 2017 
Computing in Cardiology (CinC) (pp. 1-4). IEEE.  F1 score :0.868, 
September 2017. 

[27] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. Ivanov, R. 
G. Mark, ..., H. E. Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: 
components of a new research resource for complex physiologic 
signals,” circulation, 101(23), e215-e220, 2000. 

[28] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P0 Kegelmeyer, “SMOTE: 
synthetic minority over-sampling technique,”  Journal of artificial 
intelligence research, 16, 321-357, 2002. 

[29] J. Bruna, S. Mallat, « Invariant scattering convolution networks,” IEEE 
transactions on pattern analysis and machine intelligence, 35(8), 1872-
1886, 2013. 

[30] S. S. Goh, A. Ron, Z. Shen, “Gabor and wavelet frames,” World 
Scientific, (Vol. 10), 2007. 

 


