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Abstract—Honeycomb lung is a pulmonary manifestation that 

occurs in the terminal stage of various lung diseases, which 

greatly threatens patients. Due to the different locations and 

irregular shapes of lesions, the accurate segmentation of the 

honeycomb region is an essential and challenging problem. 

However, most deep learning methods struggle to effectively 

utilize both global and local information from lesion images, 

resulting in cannot to accurately segment the lesion. In addition, 

these methods often ignore some semantic information that is 

necessary for the segmentation of lesion location and shape in the 

decoding stage. To alleviate these challenges, in this paper, we 

propose a dual-branch encoder and cascaded decoder network 

(DECDNet) for segmenting honeycombs lesions. First, we design 

a dual-branch encoder consisting of ResNet34 and Swin-

Transformer with different paradigm representations to extract 

local features and long-range dependencies respectively. Next, to 

further combine the different paradigm features, we develop the 

feature fusion module to obtain richer representation 

information. Finally, considering the problem of information loss 

during the decoder, a cascaded attention decoder is constructed 

to aggregate the multi-stage encoder information to get the final 

segmentation result. Experimental results demonstrate that our 

method outperforms other methods on the in-house honeycomb 

lung dataset. Notably, compared with the other nine universal 

methods, the proposed DECDNet obtains the highest IoU 

(86.34%), Dice (92.66%), Precision (93.21%), Recall (92.13%), 

F1-Score (92.66%), and achieves the lowest HD95 (7.33) and ASD 

(2.30). In particular, our method enables precisely segmenting 

lesions under different clinical scenarios as well. Our code and 

dataset are available at https://github.com/ybq17/DECDNet. 

Keywords—Honeycomb lung; attention; convolutional neural 

network; transformer; image segmentation 

I. INTRODUCTION 

 Honeycomb lung, also called interstitial pulmonary 
fibrosis, is a disease where the lung tissue is destroyed and 
fibrosed. It exhibits distinctive honeycomb-like features, that 
seriously threaten patient's life [1-2]. Based on published 
literature, the annual incidence of honeycomb lung is estimated 
to be between 0.9 and 13 cases per 100,000 individuals [3]. 
The survival time from initial diagnosis to death is short, 
ranging from three to five years, with a poor prognosis and 
high mortality rate [4-5]. Early diagnosis is vital for improving 
patient prognosis and prolonging their survival [6]. With the 
development of radiological technology, computed 
tomography (CT) has become the gold standard for diagnosing 
honeycomb lung [7]. Information such as the size and location 

of lesions in CT images can help doctors identify honeycomb 
regions and make subsequent treatment plans. 

In clinical practice, the contours of lesions are usually 
delineated by physicians. However, the unique characteristics 
of honeycomb lung make the delineation of lesions a 
challenging task for physicians. Honeycomb lesions usually 
have the following properties: (1) the location of the lesion is 
not fixed and the contour is complex. (2) The lesions are 
blended with surrounding normal tissue, resulting in blurred 
boundaries. (3) The size and shape of lesions often vary from 
person to person. The above properties make it very time-
consuming for doctors to contour lesions manually. In addition, 
due to the differences in doctor experience, the quality of 
delineation of diseased regions is inequality. To alleviate the 
burden on doctors and aid in diagnosis, many studies pay 
attention to computer-aided automatic diagnosis of lesions [8-
12]. However, due to the inherent properties of these methods, 
it is challenging to achieve an accurate diagnosis of the lesion 
tissue. 

With the development of deep learning, convolutional 
neural networks (CNN) have achieved significant success in 
the field of medical imaging due to their powerful feature 
extraction capabilities [13]. Many CNN methods have been 
applied to medical image segmentation, such as U-Net [14], V-
Net [15], and ResUnet [16] which have obtained excellent 
results. The above methods all adopt an encoder-decoder 
structure, where the encoder is used to extract feature 
information at different scales of the image, and the decoder 
restores the image according to the encoder information. Since 
the superiority of this architecture, a few variants based on it 
have a dominant position in segmentation tasks [17-18]. 
Despite these models having achieved significant performance, 
their performance is still restricted due to their inherent 
receptive field [19]. To overcome the limitations, some works 
try to integrate attention mechanisms and expand the receptive 
field to improve segmentation accuracy [20-22]. Although the 
above works improve the segmentation performance of the 
network, they still suffer from capturing insufficient long-range 
dependencies. 

Recently, transformer has achieved promising results in the 
field of natural language processing [23]. Due to its ability to 
capture long-distance dependencies, it has attracted the 
attention of researchers, and more and more works attempts to 
apply it to the field of computer vision. Dosovioskiy [24] was 
the first to introduce the transformer into the image recognition 
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task; he divided an image into non-overlapping patches instead 
of tokens and fed them into transformer. In order to further 
improve the performance of image tasks, multi-scale 
transformer has emerged. For instance, Swin-Transformer [25] 
and PVT [26] used sliding windows and pyramid architectures 
respectively to reduce computational cost. Inspired by these 
studies, we apply the transformer to the honeycomb lung image 
segmentation task, but the results are not satisfactory due to the 
limitations of only using self-attention, which restricts the 
acquisition of local information. 

CNN and transformer focus on two aspects of image 
information. On the one hand, due to the use of convolutional 
operations with inductive bias, CNN has locality and 
translation invariance [27]. This property allows CNN to 
preferably extract local information, but it also limits the 
receptive field, resulting in cannot to extract global features. 
Many solutions have been proposed to solve this problem, such 
as dilated convolution [28], large kernel convolution [29], and 
pyramid pooling [30]. However, these approaches can only 
alleviate this problem and cannot completely solve it. On the 
other hand, transformer utilizes the self-attention mechanism to 
capture long-range dependencies, but it neglects local 
information, resulting in the loss of detailed features. 

According to the above analysis, we believe that CNN and 
transformer can be combined to compensate for their 
weaknesses and obtain higher performance. Several methods 
have tried to combine CNN and transformer to get local 
information and long-range dependencies to segment specific 
medical images, such as TransUNet [31], Tfcns [32], and 
HiFormer [33]. However, these architectures have some 
drawbacks that limit their ability to achieve better performance: 
1) They cannot effectively combine local and global 
information from CNN and transformer respectively. 2) They 
cannot properly aggregate multi-stage information during the 
decoding stage. Considering these problems, we propose a 
novel network named DECDNet that combines different 
paradigms representation to segment the honeycomb region. 
Concretely, we first design two encoder branches, one is CNN 
to extract local information, and the other is transformer to get 
long-range dependencies. Second, we develop a feature fusion 
module to efficiently combine features from different branches. 
Lastly, to better aggregate multi-stage information, we 
construct an attention cascade decoder called ACD. Our 
contribution can be summarized as five-fold: 

 We innovatively segment large-scale honeycomb lung 
CT images and plan to open this dataset. Our dataset 
will be available at https://github.com/ybq17/ 
DECDNet. 

 In order to extract the local information and global 
information of the image, a dual-branch encoder 
composed of ResNet34 and Swin-Transformer is 
designed to obtain the multi-paradigms representation 
of the image. 

 Considering the problem of insufficient feature fusion, 
we develop a feature fusion module for efficiently 
combining information from different branches. 

 To track the information loss in the decoding stage, a 
novel attention-based cascade decoder is constructed to 
aggregate multi-stage encoder information. 

 Experimental results demonstrate that our proposed 
DECDNet surpasses other segmentation models as well 
as adaptable to different clinical scenarios. 

  The rest of this paper is organized as follows. We first 
review related work in Section II and describe the 
overall architecture in Section III. In Section IV, we 
evaluate the performance of DECDNet on the 
honeycomb lung dataset. In Section V we discuss the 
experimental results. We conclude the paper in Section 
VI. 

II. RELATED WORKS 

A. Honeycomb CT Image Segmentation 

CT imaging is a common technology used in clinical 
practice to diagnose honeycomb lung [34]. Different from 
pulmonary function tests (PFTs) and composite physiologic 
index (CPI) assessment in judging the patient's condition [35-
36], CT imaging quantifies the degree of fibrosis in the lung 
and helps physicians diagnose the disease more intuitively 
[37]. Currently, many related studies focus on automatically 
segmenting honeycomb regions in CT images to quantify the 
degree of lesions. 

For automatic segmentation methods of honeycomb lung 
can be divided into the following two categories: traditional 
computer-based CT analysis and deep learning-based models. 
The first category uses pulmonary fibrosis disease programs 
such as CALIPER to perform quantitative analysis of lesions. 
For instance, Jacob et al., [38] extracted characteristic 
manifestations in CT images, such as honeycomb lesions, 
reticular patterns, and ground-glass opacity. Then they used an 
automated procedure to quantify the severity. Nakagawa et al., 
[39] deployed a computer-assisted method to quantify fibrosis 
based on the estimated area of the lesions. However, such 
methods heavily rely on subjective experience that may lead to 
suboptimal results. Compared with traditional auxiliary 
approaches, deep learning-based methods achieve end-to-end 
automatic segmentation, not only reducing dependence on 
feature selection but also achieving promising results. Handa et 
al., [40] developed new deep-learning software that can 
automatically identify and quantify subdivided parenchymal 
honeycomb lesions. Su et al., [41] proposed a network called 
RDNet that accurately segmented the honeycomb regions, and 
the corresponding Dice index was 0.747. Considering more 
noise and lower contrast honeycomb images, Wei et al.,[42] 
introduced the popular transformer to quantify the lesions and 
achieved remarkable performance. Motivated by these studies, 
our work emphasizes the use of deep learning-based methods 
to reduce the role of feature selection and perform end-to-end 
lesions segmentation. 

B. Convolutional Neural Network 

With the development of deep learning, convolutional 
neural networks (CNN) have achieved remarkable success in a 
variety of computer vision tasks. In the segmentation task, 
Long et al., [43] proposed a fully convolutional neural network 
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that achieves pixel-level classification. Inspired by the success 
of FCN, several approaches were introduced to improve 
segmentation performance, such as dilated convolution [28] 
and context modeling [30]. Later, an encoder-decoder network 
called UNet [14] was proposed by Ronneberger for medical 
image segmentation. With the popularity of UNet, a series of 
U-shaped architectures have been developed to better segment 
medical images, such as UNet++ [44], ResUnet [16], etc. In 
order to further improve segmentation performance, attention 
mechanisms were introduced into UNet by Ozan [21]. 
Attention mechanisms can selectively balance the importance 
of different spatial locations in the feature maps, allowing the 
network to focus on relevant objective regions. This approach 
has shown great potential in improving segmentation 
performance. 

C. Vision Transformer 

Transformer was designed originally for Natural Language 
Processing (NLP) and has achieved remarkable progress in the 
field [23]. Instead of using convolutional operations, 
transformer uses self-attention to capture long-range 
dependencies. Inspired by the success of transformer in the 
NLP field, Dosovitskiy et al., [24] proposed the vision 
transformer (ViT) model, which applied transformer to visual 
tasks for the first time. ViT split the image into patches, similar 
to words, and fed them into the transformer. Experimental 
results demonstrated that ViT surpasses many CNN models 
and has become the backbone for vision tasks. However, ViT 
requires a large amount of data and high computational 
complexity. To address this issue, several methods try to 
reduce the computational cost of ViT. Wang et al., [25] 
proposed the Pyramid Vision Transformer (PVT), which is 
inspired by the CNN pyramid structure and reduced the 
computational cost by using a hierarchical feature extraction 
strategy. Liu et al., [26] proposed the Swin Transformer, which 
only focuses on each local window to reduce the computational 

cost to linear. Recently, massive work has applied transformer 
to medical image segmentation tasks. Chen et al., [31] 
proposed TransUnet, which was the first to apply transformer 
to medical image segmentation. It used a multi-layer CNN-
transformer encoder to extract both local and global 
information and a CNN decoder to restore the size of the 
output. Swin-UNet [45] and DS-TransUnet [46] used a pure 
transformer encoder-decoder architecture for 2D segmentation 
but did not achieve significant performance improvements. 
UNETR [47] adopted a transformer encoder to extract 
information and a CNN decoder to obtain 3D segmentation 
results. 

III. METHODOLOGY 

In this section, we describe our proposed method. Firstly, 
we illustrate a dual-branch encoder composed of ResNet34 and 
Swin-Transformer to extract complementary local information 
and long-distance dependencies of the image respectively. In 
the ResNet34 branch, the texture and structural information of 
lesions are fully utilized. In the Swin-Transformer branch, 
more attention is paid to the global features of lesions in 
images such as location and size. Then, we describe a feature 
fusion module that can fuse information from different 
branches at different scales. Finally, we present an ACD 
decoder that alleviates information loss during the decoding 
stage. As shown in Fig. 1, the input CT image size is 
224×224×3, and the output result is a binary lesion 
segmentation result. To learn different paradigms 
representation, the input image is extracted by ResNet34 and 
multi-level Swin-Transformer respectively to extract multi-
scale features of the image. Then, multi-scale features from 
different branches are fused by four feature fusion modules to 
obtain richer information. Lastly, to further reduce the 
information loss during the decoding stage, the ACD decoder 
receives fusion features to get the final segmentation result. 
More details are described in the following subsection. 

 

Fig. 1. The architecture of the proposed honeycomb lung segmentation network (DECDNet).
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A. Encoder 

Our proposed encoder consists of two multi-scale branches 
Resnet34, Swin-Transformer, and four feature fusion modules 
(FFM). Specifically, ResNet34 and Swin-Transformer 
respectively extract local and global information of images at 
different scales, such as texture, position, and structure. Here, 
ResNet34 and Swin-Transformer have four distinct layers 
each. To produce features with different scales, the patch 
merging operation will be performed before the feature map is 
inputted into the next Swin-Transformer layer. Then, the 
obtained multi-scale features through the above two parallel 
hierarchical branches contain different levels of semantic 
information. The FFM fuses each layer’s information from 
different branches to enrich the features and feed them to the 
decoder. 

1) CNN branch: As shown in Fig. 1(a), we use ResNet34 

to construct the first encoder branch to obtain spatial detail 

and contextual information in the honeycomb lung images. In 

this branch, ResNet34 is divided into five blocks, noted as 

conv1, conv2, conv3, conv4, and conv5. When a feature map 

goes through a block, its width and height are reduced by a 

factor of 2. Taking a honeycomb lung CT image of size 

H×W×3 goes through conv1 and conv2 layers, which will 

yield a 3D feature c1 of size H/4×W/4×C, where we set C to 

48 to ensure feature consistency. Next, by passing through 

conv3, conv4, and conv5 layers, three features c2, c3, and c4 

are obtained, with sizes of H/8×W/8×2C, H/16×W/16×4C, 

and H/32×W/32×8C, respectively. These feature maps contain 

multi-scale semantic information and will be used as inputs 

for the feature fusion module. 

2) Transformer branch: Recently, Alexely [24] proposed 

ViT, the first application of the transformer model to visual 

tasks. ViT has achieved outstanding progress in visual tasks 

due to its ability to capture long-range dependencies. It mainly 

consists of two parts: multi-head self-attention (MSA) and 

multi-layer perception (MLP). However, it has a major issue 

that its exponential computational complexity makes it 

difficult for downstream tasks such as image segmentation. To 

address this problem, Swin-Transformer [25] is developed that 

only focuses on local regions, greatly reducing the 

computational complexity. Inspired by the success of Swin-

Transformer, we stack 12 Swin-Transformer blocks and patch 

operations to build the second encoder branch. In this branch, 

the focus is more on capturing the location and size 

information of the honeycomb lesions. Each Swin-

Transformer is composed of two modules. The first module 

consists of W-MSA, LN, MLP, and residual connections. The 

second module introduces a sliding window mechanism to 

improve W-MSA and enhance information interaction. This 

process is defined as follows. 

     ̂       (  (    ))        

       (  ( ̂ )   ̂   

  ̂          (  (  ))    , 

                                  (  ( ̂   ))   ̂                        (1) 

The encoder branch is divided into four layers, as shown in 
Fig. 1(a). The first layer consists of two Swin-Transformer 
blocks and a patch embedding operation that splits the image 
into patches. The remaining three layers use patch merging to 
reduce the size of the image. And the number of Swin-
Transformer blocks is set to 2, 6, and 2 for these layers, 
respectively. In this branch, the input image has the same 
dimensions as the CNN branch, which is H×W×3. The outputs 
of each layer are denoted as t1, t2, t3, and t4, with sizes of ((H/4, 
W/4), C), ((H/8, W/8), 2C), ((H/16, W/16), 4C) and ((H/32, 
W/32), 8C) respectively. They have the same pixel points as 
the outputs of the corresponding level CNN branch. We set the 
patch size to 4, so the feature dimension C is equal to 
4×4×3=48. 

3) Feature fusion module: In order to fuse different 

branches of features, we design the feature fusion module 

called FFM. It can efficiently and flexibly fuse features from 

CNN and transformer branches with different resolutions and 

different channels, and its structure is illustrated in Fig. 2. In 

this module, we first adjust the shape of the transformer 

features by reshaping operation. Then the CNN features and 

transformer features (called f and g) from each encoder branch 

are adjusted for dimensions by 1*1 convolution. Next, the f 

and g are merged by concatenation operation. The merged 

features are fed into the 1×1 convolution, and then the 

normalization operation and activation function are executed. 

Finally, the two encoder branch features are completely fused 

by a 1×1 convolution layer. In the encoder, we deploy four 

feature fusion modules to fuse the multi-scale features of CNN 

and Transformer under different branches. The fused feature 

balances multi-scale global information and local features, 

enriching  the representation information. 

 

Fig. 2. The structure of the proposed Feature-Fusion Module (FFM). 

B. Decoder 

As illustrated in Fig. 1(b), we propose a novel decoder 
called ACD that can efficiently aggregate multi-stage 
information from the encoder. It consists of four components: 
Up, AG, CSA, and FB. Up is used for upsample operation, AG 
is used for cascaded feature fusion, CSA can refine features, 
and FB is used to fuse multi-level features. Specifically, we set 
up three CSA to enhance feature information at different scales 
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and three AG corresponding to the output of FFB. In addition, 
AG is employed to integrate the fusion information from the 
FFB and the upsampled features from the lower level. Next, we 
use a concatenation operation to merge the features of AG and 
the lower layer. Then, CSA is executed to refine the merged 
features. Finally, we use FB to integrate the output of different 
layers to obtain the final prediction. More details are described 
in the following subsection. 

1) Up: Up is used to restore the current feature size to 

match the dimension of the upper layer's feature. Each Up 

consists of a ReLU activation function, batch normalization 

operation, a 3*3 convolution operation, and a linear 

upsampling. Upsample () with an upsampling factor of 2. The 

Up operation can be formulated as follows: 

             ( )  (    (  (    (        ( )))))        (2) 

2) Fusion block: To enhance feature representation, we 

design the Fusion Block (FB) to efficiently utilize multi-level 

features. As shown in Fig. 3(a), FB consists of two parts: 

residual connection and Convblock. The Convblock consists 

of Convolution (Conv), Batch Normalization (BN), and 

Rectified Linear Unit (ReLu). On the one hand, the 

convolutional block assists the network in enhancing features. 

On the other hand, the residual connection avoids gradient 

explosion. Then, the results of the two parts are added together 

to obtain the final prediction result. 

3) Channel spatial attention: The Channel Spatial 

Attention (CSA) module can refine the feature map, as shown 

in Fig. 3(b). It consists of spatial attention, channel attention, 

and a 1×1 convolution. When the input features enter this 

module, parallel channel attention and spatial attention are 

used to enhance the spatial and channel features of the image, 

respectively. Then, these features are fused through 

concatenation and the dimension is reduced through 

convolution. The fusion feature retains important spatial and 

channel information, which assists the decoder in better-

recovering information. 

4) Attention gate: Motivated by the success of the 

attention mechanism, we introduce the attention gate (AG), 

which can combine multi-stage features, extract areas of 

interest, and ignore irrelevant parts using spatial attention. As 

shown in Fig. 3(c), each AG consists of two 1x1 convolutions 

to change dimensions, two batch normalizations, and two 

activation functions: ReLu and Sigmoid. Specifically, the FFB 

features denoted f is first added point-wise with the features 

from the lower-level denoted d. Then, convolution and 

activation operations are performed to obtain the spatial 

attention map. Finally, the attention map is element-wise 

multiplied by f using the Hadamard product. 

 
Fig. 3. Structure of (a) FB, (b) CSA, and (c) AG. 

IV. EXPERIMENTAL RESULTS 

A. Datasets 

We use CT images of honeycomb lungs provided by 
Shanxi Provincial People's Hospital for the experiment. A total 
of 7170 honeycomb images with size 512 × 512 pixels were 
collected from chest CT scans of 121 patients as our dataset. 
These scans were conducted using specific scan parameters, 
including an X-ray voltage of approximately 120 kVp, a 
current of 200-500 mA, and a gantry rotation speed of 0.5 
seconds per rotation. And the slice images were acquired with 

a uniform slice thickness of 5 mm. The dataset includes images 
with lesion sizes ranging from small focal areas of a few 
millimeters to extensive lesions spanning large lung areas. 
Lesion appearances also vary, from early-stage subtle 
honeycombing with fine reticular patterns to advanced-stage 
prominent cystic changes as illustrated in Fig. 4. All of these 
images are labeled by experienced radiologists. After 
annotation, we resize the images to 224×224 and apply 
normalization to accelerate model convergence. We divide the 
dataset into training/validation/testing sets at a ratio of 6:2:2, 
with 4302 images used for training and 1434 images used for 
validation and testing. 
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B.  Evaluation Metrics 

We adopt five common metrics to evaluate segmentation 
performance: Dice coefficient (Dice), Jaccard index (IoU), 
Precision, Recall, and F1-score. These metrics are calculated 
using true positives (TP), false positives (FP), true negatives 
(TN) and false negatives (FN): 

     
   

         
  (3) 

    
  

        
   (4) 

          
  

     
  (5) 

       
  

     
   (6) 

         
                  

                
  (7) 

In addition, Hausdorff distance (HD) 95% and average 
surface distance (ASD) are used to measure the performance of 
the model in segmenting the boundaries of honeycomb regions. 

 
Fig. 4. (a) A normal lung image, (b) A honeycomb lung image, (c) 

Honeycomb lung lesions, and (d) Some honeycomb lung images in the 

datasets. 

C. Implementation Details 

Our architecture is implemented using PyTorch and trained 
on an RTX Nvidia 3090 GPU. And we use the SGD as the 
optimizer with a momentum of 0.9 and weight decay of 
0.0001. The learning rate and batch size are set to 0.0001 and 
24, respectively. Further, aiming to improve the generalization 
and robustness of the model, we use data augmentation 
technology such as flipping and rotation to diversify the data.  

The loss function is composed of commonly used cross-
entropy loss and dice loss, defined as follows: 

     (   )    (8) 

where, l1 denotes the cross-entropy loss and l2 denotes the 
dice loss. The weight ratio α is a balancing factor, set to 0.4 
based on experimental testing. 

D. Evaluation Results 

To demonstrate the effectiveness of our proposed 
DECDNet, we conducted comparative experiments with nine 

methods. All methods are evaluated both quantitatively and 
qualitatively. These competing methods include the following: 
U-Net [12], Att-UNet [19], UNet++ [42], FPN [28], DABNet 
[46], ViT [22], CGNet [47], TransUNet [29], SwinUNet [43]. 
The above methods cover three types: traditional CNN 
architecture, pure transformer architecture, and the combined 
architecture of CNN and transformer. And we evaluated our 
method on seven evaluation metrics mentioned earlier. The 
smaller the ASD and HD95 value is, the better the performance 
is; the larger the other index values are, the better the 
performance is. Table I shows the qualitative evaluation results 
of all methods on the honeycomb lung dataset. The 
experimental results demonstrate that our proposed network 
has higher IoU, Dice, Precision, Recall, and F1-score, as well 
as smaller HD95 and ASD. Compared with the second-ranked 
SwinUNet, our method increases IoU and Dice by 2.13% and 
1.23%, respectively, reaching 86.34% and 92.66% Precision, 
Recall, and F1-Score also improved by 1.68%, 0.81%, and 
1.24%, respectively. HD95 and ASD decreased by 2.08 and 
0.51 compared to Swin-UNet, reaching 7.33 and 2.30, 
respectively. These results indicate that our proposed 
DECDNet can accurately segment the honeycomb lesions. 
Moreover, our method outperforms traditional CNN methods, 
ViT, and TransUnet in terms of FLOPs or Params, not only 
achieving the best segmentation results but also balancing the 
accuracy and computational complexity. 

Meanwhile, to quantify segmentation performance, we 
conducted visual comparisons of the segmentation with 
different methods on the honeycomb lung dataset. As shown in 
Fig. 5, we visually compared the segmentation results of UNet, 
FPN, TransUNet, SwinUNet, and our model with the ground 
truth. Within these results, the red box draws attention to 
significant differences compared with the mask. Obviously, the 
transformer method is more accurate than the traditional CNN 
method for segmenting honeycomb lung lesions However, due 
to the transformer ignores the local features of the image, the 
segmentation of the lesion boundary is smoother compared 
with the mask. In contrast, our proposed architecture efficiently 
utilizes different paradigms representation and alleviates the 
information loss during the decoding stage. The boundary 
delineation and region segmentation of the honeycomb lung 
are more similar to the ground truth. In the above quantitative 
and qualitative analyses, DECDNet achieves the best 
performance on the honeycomb lung dataset, demonstrating 
that our proposed method can accurately segment the contours 
and regions of honeycomb lung. 

Additionally, to evaluate the adaptability of this model in 
clinical practice, we performed experiments to evaluate our 
method under various conditions considering the patient 
positioning, lesion size, and the presence of adjacent organs 
that commonly occur in clinical applications. We conducted 
the visual analysis of CT images of different lesion sizes, 
different slices, and different angles. As shown in Fig. 6 and 
Fig. 7, regardless of the size, axis, or slice of the lesion, 
DECDNet can accurately segment and outline the lesions. 
Table II shows the quantitative results for Dice and Hd95 in 
various conditions, further proving the adaptability of our 
method for lesion area segmentation in different clinical 
scenarios. 
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TABLE I.  COMPARING OUR METHOD WITH OTHER METHODS ON THE HONEYCOMB LUNG DATASET 

Methods IoU (%) Dice (%) Precision (%) Recall (%) F1-Score (%) HD ASD FLOPs(G) Params(M) 

U-Net [14] 76.82 86.89 87.58 86.20 86.38 15.05 5.27 37.03 31.04 

Att-UNet [21] 

U-Net++ [44] 

FPN [30] 

DABNet [48] 

ViT [24] 

CGNet [49] 

TransUNet [31] 

SwinUNet [45] 

Ours 

78.12 

79.67 

81.65 

82.08 

80.32 

82.72 

83.53 

84.21 

86.34 

87.72 

88.68 

89.90 

90.16 

89.08 

90.54 

91.03 

91.43 

92.66 

87.21 

87.71 

89.89 

90.90 

89.48 

91.01 

91.55 

91.53 

93.21 

88.23 

89.68 

89.46 

89.32 

88.57 

89.38 

90.49 

91.32 

92.13 

87.71 

88.68 

89.67 
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Fig. 5. The qualitative comparison of the honeycomb lung dataset. 

 

Fig. 6. DECDNet segmentation lesions visualization under different 

conditions (a) represents the lesion size (b) represents scan angle (c) 
represents the slice lesion. 

TABLE II.  QUANTITATIVE ANALYSIS UNDER DIFFERENT CONDITIONS 

Condition Dice HD 

Different size 91.24 7.61 

Different angle 92.83 7.15 

Different slice 92.70 7.26 

 

Fig. 7. DECDNet segmentation lesion boundaries visualization under 

different conditions (a) represents the lesion size (b) represents scan angle (c) 
represents the slice lesion. 

E. Ablation Studies 

1) Evaluation of encoder: Our encoder is composed of 

CNN and transformer with different paradigms. Since the 

transformer can capture long-range dependencies, it tends to 

ignore local feature information. To address this issue, we 

introduced CNN as an auxiliary branch to compensate for the 

loss of spatial detail information. To further verify the 

importance of the CNN branch, we employed variants of pure 

transformer and CNN-combined transformer as two encoder 

structures. As shown in Fig. 8, the encoder that combines 

CNN with the transformer outperforms the pure transformer 

encoder. The results presented in Table III suggest that the 

integration of the CNN branch also enhances boundary 

segmentation performance. Thus, the introduction of CNN as 

an auxiliary branch is necessary to improve segmentation 

performance. 

TABLE III.  ABLATION EXPERIMENTS ON BOUNDARY EVALUATION FOR 

CNN BRANCH 

Methods HD ASD 

No-CNN 

Ours 

8.40 

7.33 

3.01 

2.30 
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Fig. 8. Ablation study on the influence of CNN branch. 

2) Evaluation of FFM: To verify the effectiveness of FFM 

in segmentation performance, we removed FFM and used 

Conv2d to adjust the feature dimensions, then adopted the add 

operation to fuse feature. In this way, we denote the variable 

as Conv2d+add to verify the importance of FFM. The 

segmentation performance shown in Fig. 9 reveals the effect 

of FFM in feature fusion. Specifically, the model with FFM 

achieved higher IoU, Dice, Precision, Recall, and F1-score 

compared to using only the add operation. In addition, the 

employment of FFM can improve boundary segmentation 

performance. As shown in Table IV, our method achieved 

lower HD95 and ASD. These results demonstrate that simply 

using add cannot fully utilize the features from CNN and 

transformer, while FFM can better help the network utilize 

different branches feature. 

3) Evaluation of decoder: The decoder is an important 

factor that affects segmentation performance, and its main role 

is to restore feature maps to obtain the final prediction. The 

classic decoder does not use attention mechanisms but restores 

image resolution by fusing multi-stage skip connections and 

upsampling features to achieve the final prediction. While, 

Atten-UNet uses attention in skip connections during the 

decoding stage to focus on the lesions, denoted as the attention 

decoder. Different from the above decoder, we proposed a 

new attention-based cascaded decoder called ACD to 

efficiently combine multi-stage features from the encoder, 

enabling the network to better focus on the honeycomb 

regions. The results shown in Fig. 10 demonstrate that 

compared to the classic decoder and attention decoder, the 

architecture using ACD achieves improvements in IoU, Dice, 

Precision, Recall, and F1-score. Our decoder also obtains the 

smallest HD95 and ASD, as shown in Table V. The presented 

results provide evidence that our decoder can better focus on 

the lesions and efficiently integrate multi-stage features to get 

segmentation results. 

4) Evaluation of combination FFM and cascade: To 

verify the effectiveness of the FFM and Cascade decoder 

combination for model performance, we conducted four sets 

of experiments to explore the influence of each component on 

honeycomb lung segmentation. Firstly, setting a model that 

only uses pointwise additive fusion and classical encoder for 

segmentation as the baseline model. To ensure fairness, all 

experiments adopt the same environment settings. 

TABLE IV.  ABLATION EXPERIMENTS ON BOUNDARY EVALUATION FOR 

FFM 

Methods HD ASD 

Conv2d+add 

Ours 

8.27 

7.33 

3.09 

2.30 

 
Fig. 9. Ablation study on the influence of FFM. 

 

Fig. 10. Ablation study on the influence of different decoders. 

TABLE V.  ABLATION EXPERIMENTS ON BOUNDARY EVALUATION FOR 

DIFFERENT DECODERS 

Methods HD ASD 

Classic decoder 

Attention decoder 

11.30 

8.19 

3.38 

2.88 

Ours 7.33 2.30 

As shown in Fig. 11, the combination of FFM and Cascade 
decoder achieved the best segmentation performance of 
honeycomb lesions. For boundary outline, the combination 
method also obtains the lowest HD and ASD as illustrated in 
Table VI, which is more similar to the groundtruth. Therefore, 
FFM and Cascade are necessary to improve the accuracy of 
segmentation. 

 

Fig. 11. Ablation study on the influence of the combination FFM and Cascade. 
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TABLE VI.  ABLATION EXPERIMENTS ON BOUNDARY EVALUATION FOR 

THE COMBINATION FFM AND CASCADE 

Methods HD ASD 

baseline 

baseline+FFM 

12.78 

10.60 

4.05 

3.29 

baseline+Cascade 9.82 3.11 

baseline+FFM+Cascade 7.33 2.30 

V. DISCUSSION 

Honeycomb lung is a terminal manifestation of lung 
disease, which greatly threatens patients. In clinical 
applications, the segmentation of lesions is essential. It aids in 
evaluating lesions, identifying the distribution of lesions, and 
assisting doctors in making accurate diagnoses. Moreover, 
segmenting honeycomb lung is a challenging task due to their 
ambiguous and irregular characteristics. Therefore, it is crucial 
to design a network that achieves higher segmentation 
accuracy for the precise localization of honeycomb lung 
lesions. Our proposed DECDNet architecture integrates global 
and local information from different paradigms to alleviate the 
limitations of CNN and transformer. In addition, the specially 
designed ACD decoder can effectively recover image 
information from the encoder. We conducted experiments on 
our method and nine universal segmentation algorithms, and 
our method achieved the highest IoU (86.34%), Dice (91.87%), 
Recall (92.13%), Precision (93.21%), F1-score (92.66%), and 
the smallest HD95 (7.33) and ASD (2.30). To quantify the 
results, we show the visual segmentation results of different 
methods, as shown in Fig. 5. Compared with other methods, 
our method can not only focus on the major lesions but also 
pay more attention to the boundaries of the honeycomb lung. 
Next, we visualized the segmentation performance in different 
clinical situations, as shown in Fig. 6 and Fig. 7, indicating that 
the proposed model is adaptable to diverse clinical scenarios. 
Additionally, to verify the effectiveness of each part of our 
architecture, we conducted three groups of ablation 
experiments to explore the effects of the dual-branch encoder, 
FFM, and ACD decoder. The results show that all three parts 
are effective and can improve the segmentation performance of 
the network. Therefore, our proposed method can precisely 
segment the honeycomb lung lesions, alleviate the burden on 
doctors, and assist in diagnosis. 

Although our method has shown outstanding performance 
on the honeycomb lung dataset, it still has some defects that 
need to be addressed. On one hand, our model did not achieve 
promising performance in cases where the lesion size is small 
and the background is complex. On the other hand, as we have 
only tested on data from a single center, the generalizability of 
our model remains to be considered. In the future, we will 
expand and improve our method by adjusting multi-scale 
inputs and collecting data from multiple centers to address 
these issues. 

VI. CONCLUSION 

In this paper, we propose a novel network called DECDNet 
for the segmentation of honeycomb lung CT images. 
Specifically, we first design a dual-branch encoder to 
efficiently capture global and local information from different 
paradigms. Next, the feature fusion module is developed to 

fuse CNN and transformer features. Finally, we develop an 
attention-based cascade decoder to aggregate multi-stage 
encoder information. Our method demonstrated its 
effectiveness in extensive experiments through the effective 
extraction, fusion, and restoration of local information (such as 
the texture and structure of lesions) and global information 
(such as location and size). And our model achieves state-of-
the-art performance on the honeycomb lung dataset. In 
addition, our model also accurately segments lesions under 
various conditions, making it a valuable method for assisting 
doctors in locating and tracking lesions, as well as making 
diagnoses. In the future, we will focus on further automatic 
diagnosis of honeycomb lung, such as by adopting multi-scale 
inputs to avoid noise and collecting multi-center data to 
enhance the model's generalizability. 
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