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Abstract—This study presents a novel and workable approach 

to solving the critical issue of improving energy management in 

smart buildings. Using a large dataset from a seven-story office 

building in Bangkok, Thailand, our work introduces a novel 

approach that combines Deep Q-network (DQN) algorithms with 

energy storage models and cost optimization strategies. The 

suggested approach is intended to reduce operational expenses, 

improve the energy economic performance, and efficiently 

control peak demand. The energy storage model used in this 

research incorporates the use of the capabilities of advanced 

storage models in smart buildings, particularly lithium-ion 

batteries and supercapacitors. When the cost optimization 

approach is applied using linear programming, energy 

consumption costs are significantly reduced. Notably, our 

method outperforms current algorithms, specifically 

outperforming them, to show its effectiveness in smart building 

energy management by outperforming current algorithms, 

especially Genetic and Fuzzy Algorithms. In comparison to 

traditional methods, the DQN algorithm exhibits an impressive 

8.6% reduction in Mean Square Error (MSE) and a 6.4% drop 

in Mean Absolute Error (MAE), making it a standout performer 

in the research through Python software. The results highlight 

the significance of optimizing DQN algorithm parameters for 

best outcomes, with a focus on adaptability to various properties 

of smart buildings. This investigation is novel because it 

integrates cost optimization, reinforcement learning, and energy 

storage. This results in a flexible and all-inclusive framework 

that can be used for effective and sustainable energy 

management in smart buildings. 

Keywords—Deep q-network; cost optimization; smart building; 

energy management; peak demand 

I. INTRODUCTION 

Reinforcement learning integration with smart energy 
management is an attainable approach to improving energy 
system efficiency and optimizing consumption of energy. A 
subfield of machine learning called reinforcement learning 
(RL) trains agents to make decisions through interaction with 
their surroundings and feedback in the form of rewards or 
punishments. Applying reinforcement learning (RL) to smart 
energy management can help with complicated and dynamic 

decision-making problems [1]. RL algorithms perform well in 
settings where making decisions is dynamic and necessitates 
flexibility in response to shifting circumstances. With smart 
energy management, control techniques could be dynamically 
adjusted by RL for optimal energy utilization, taking into 
account variable elements such as weather patterns, user 
behaviors, and energy costs [2]. The algorithms have the 
potential to be utilized for precise load forecasting, energy 
demand pattern prediction, and energy-consuming device 
scheduling [3]. This lowers peak demand and maximizes the 
usage of energy resources. It may be used to enhance 
techniques for demand response. To take part in demand-side 
management programmes and gain incentives, agents can be 
trained to react to signals from utilities or energy suppliers and 
modify their patterns of energy usage [4]. The energy system 
can more easily incorporate renewable energy sources like 
wind and solar electricity thanks to these learning algorithms 
[5]. RL agents are able to optimize the use of renewable 
resources, balance supply and demand, and manage energy 
storage systems. It can maximize the control of distributed 
energy resources (DERs), such as solar panels, batteries, and 
electric cars, in microgrid settings [6]. Within the microgrid, 
agents can learn to balance the production and consumption of 
energy, increasing overall efficiency. RL is ideal for managing 
energy storage systems in an optimal way. Agents are able to 
acquire the best battery charging and discharging techniques, 
accounting for user preferences, grid circumstances, and 
power pricing [7]. Additionally, algorithms can assist energy 
management systems in adhering to legal and policy 
requirements [8]. Agents can be trained to make choices that 
adhere to regulatory requirements, energy efficiency 
standards, and other environmental considerations. Because 
these models can learn and adapt continuously, intelligent 
energy management systems can get better over time as they 
interact with their surroundings and gather input [9]. 

The implementation of machine learning techniques has 
led to significant improvements in energy management in 
smart buildings. Machine learning algorithms, especially those 
that employ supervised and unsupervised learning, provide 
insightful information and prediction powers that improve 
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energy efficiency. To optimize lighting, other energy-
consuming devices, HVAC systems, and occupancy trends, 
predictive models may be trained to examine historical data, 
weather patterns, and other pertinent variables [10]. 
Furthermore, anomaly detection algorithms can spot 
anomalous patterns in energy use, which allows for early 
intervention in the event of possible inefficiencies. Real-time 
adaptability is provided via reinforcement learning 
approaches, which dynamically modify control strategies in 
response to changing situations. The necessity for sizable 
labeled datasets, the interpretability of intricate ML models, 
and the possibility of biases in training data remain obstacles 
in spite of recent developments [11]. In order to protect 
against possible vulnerabilities, the deployment of ML models 
necessitates comprehensive consideration of cyber security 
measures [12]. Despite the encouraging outcomes of ML 
integration in smart buildings, these issues must be resolved to 
guarantee the stability and dependability of these systems in 
practical settings. Ongoing research and development 
initiatives are crucial to overcoming these obstacles and 
realizing the full potential of machine learning in smart 
building energy management as the field develops [13]. The 
capability of managing the intricate, nonlinear interactions 
present in energy systems is one of DRL's main advantages in 
smart buildings. Through constant environmental interaction 
and feedback in the form of incentives or penalties, DRL 
algorithms can acquire the best control rules for energy-
intensive equipment such as lighting, HVAC systems, and 
other gadgets. Because of their adaptable nature, smart 
buildings can react quickly to changes in the weather, 
occupancy patterns, and energy prices, resulting in effective 
energy management. Deep learning integration makes it easier 
to uncover complex patterns from data, which leads to more 
precise forecasts and well-informed decision-making. 
Achieving a feasible deployment requires balancing 
the interpretability of the model with computing performance. 
The promise for significant gains in energy efficiency, cost 
savings, and sustainability continues to be a driving factor 
behind the development of intelligent building management 
systems as research into efficient DRL for smart buildings 
advances. 

In the modern energy landscape, integrating energy storage 
technologies with sophisticated energy management methods 
is a critical first step towards improving efficiency, 
dependability, and sustainability. Because it may be used to 
store extra energy during times of surplus and release it during 
times of low generation or high demand, energy storage is 
essential for mitigating the intermittent nature of renewable 
energy sources. Advanced energy management strategies use 
complex algorithms, which frequently include machine 
learning and optimization approaches, to automatically 
regulate the cycles of energy storage systems' charging and 
discharging. These solutions optimize energy storage use by 
analyzing weather forecasts, historical data, and real-time 
demand patterns. This ensures that stored energy is 
strategically deployed to balance peak demand, minimize grid 
stress, and improve overall system resilience. Moreover, grid 
stability is enhanced and the integration of decentralized 
renewable energy resources is supported by the incorporation 
of energy storage into the energy management system. Despite 

these benefits, broad use will need to address issues including 
high upfront costs, the current generation of storage 
technologies' low energy density, and regulatory barriers. The 
secret to opening the door to a more robust and sustainable 
energy future lies in the smooth integration of energy storage 
systems through sophisticated energy management tactics, 
which will be made possible by ongoing technological and 
scientific developments. The following are the research 
study's main contributions, 

 For the purpose of improving energy management in 
smart buildings, the study presents and uses Deep 
Reinforcement Learning algorithms. The study 
improves the system's capacity to make wise choices in 
a dynamic environment by utilizing DRL and taking 
into account variables like cost savings, peak demand 
reduction, and occupant comfort. 

 The research provides a contribution by integrating a 
sophisticated energy storage model into the 
infrastructure of smart buildings. Modern technologies 
like lithium-ion batteries and supercapacitors are 
integrated into this concept and are arranged to store 
and harvest extra energy from renewable sources, 
improving sustainability and the economy. 

 With the objective of minimizing overall energy 
consumption costs, the study presents a linear 
programming-based cost optimization model. This 
model offers a comprehensive approach to effective 
energy management by taking into account factors 
including electricity tariffs, operational costs, and 
potential fines for exceeding energy thresholds. 

 A number of quantitative parameters are used in the 
study to evaluate the degree to which the suggested 
technique performs. These measures include the 
accuracy of the reinforcement learning model, cost 
savings, and percentage reductions in peak demand. 

 The study emphasizes that the suggested tactics affect 
the lowering of peak demand. The results show that 
demand charges are significantly lower during peak 
hours, proving that the DRL strategy is effective in 
optimizing and modifying energy usage patterns. 

 A comparative examination of the suggested DRL 
technique and a Genetic Algorithm (GA) approach is 
included in the paper. This comparison analysis shows 
that the DRL technique performs better in terms of 
peak load control and cost savings. 

The paper's summary is given in Section I. Reviewing 
previous research, Section II highlights the gaps in the field's 
understanding of energy storage and management. The 
primary research question about the intricacies of smart 
building management is defined in Section III. Section IV 
presents the suggested technique. By comparing classifier 
performance, presenting empirical data in Section V, and 
examining conclusions and future research goals, Section VI 
demonstrates the importance of this research for smart 
building energy management. 
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II. RELATED WORKS 

Elsisi et al. [14] presents a fresh and creative solution to 
the major problems associated with reducing energy usage and 
utilization in smart buildings, especially in the residential and 
commercial sectors. An impressive endeavor that places deep 
learning and the Internet of Things at the center of Industry 
4.0 is the combination of these two technologies. A forward-
thinking approach to effective energy management is 
demonstrated by the use of artificial intelligence tools in 
conjunction with the Internet of Things to share signals across 
machines and equipment. The paper's main contribution is the 
introduction of a people identification method based on deep 
learning that uses the YOLOv3 algorithm to maximize air 
conditioner performance and thereby cut energy usage. This 
method, which is based on precisely counting the people in a 
given space, allows for creative choices to be made for real-
time air conditioner operational management in the context of 
smart buildings. The incorporation of the suggested system 
with an Internet of Things platform is also highlighted in the 
research. A dashboard receives internet-based updates on the 
number of people spotted and the condition of the air 
conditioners. This integration improves energy-related 
decision-making by offering insightful data on utilization 
trends and air conditioning usage. The simulation results that 
are reported in the research offer strong proof of the suggested 
approach's usefulness and effectiveness. The capacity of the 
deep learning-based identification algorithm to model 
extremely non-linear connections in data is demonstrated by 
its effective and accurate detection of the number of people in 
the designated region. The smooth broadcast of identification 
status on the dashboard of the IoT platform validates the 
system's usefulness. In conclusion, by utilizing deep learning 
and Internet of Things technology, the article significantly 
advances the subject of smart building power management. In 
addition to addressing the issues associated with energy 
consumption, the suggested method has potential uses in the 
remote control of a variety of controllable equipment. This 
study is positioned as a useful and innovative addition to the 
convergence of artificial intelligence, IoT, and energy 
conservation in smart buildings due to its integration of state-
of-the-art technology and its encouraging simulation findings. 

Shivam, Tzou, and Wu [15] presents a thorough machine 
learning-based multi-objective forecasting energy 
management plan for home grid-connected PV-battery hybrid 
systems. The hybrid approach under discussion combines an 
electric load in the form of a residential building, a bank of 
batteries for storing electricity, and a solar array. The 
suggested approach makes use of a three-tiered control 
framework: a dual forecasting framework based on residual 
causal dilation convolutional networks for generating 
electricity and electric load; a logical level for managing 
computational load and accuracy; and a multi-objective 
optimization for effective energy trade with the utility grid by 
means of battery charge scheduling. The prediction model 
exhibits precise one-step forward estimates for solar energy 
output and load, having been developed via a sliding window 
approach. The suggested energy management strategy is to 
minimize energy acquired through the utility grid, maximize 
the state of charge of the battery bank, and lower carbon 
dioxide emissions. Limits are placed on the highest amount of 

carbon dioxide that can be produced and the state of charge of 
battery banks. Using hourly power and load data, the approach 
is assessed under static as well as dynamic electricity pricing 
scenarios. The suggested dual prediction model has a high 
coefficient of predictability (93.08% for energy output and 
97.25% for electrical load) according to simulation findings. 
The suggested prediction model shows substantial advances in 
accuracy when compared to naïve estimation, support vector 
machine, and artificial neural network (ANN) models. When 
combined with the sophisticated prediction model, the all-
encompassing approach effectively controls more than half of 
the annual load demand, leading to notable decreases in 
carbon dioxide emissions and electricity costs when compared 
to residential structures with no hybrid energy systems or 
hybrid energy systems without an energy management plan. 
The research presents an organized and meticulous 
methodology, supported by comprehensive simulations, 
demonstrating its usefulness in incorporating machine learning 
into the predictive management of energy for home grid-
connected PV-battery hybrid power systems. 

Lan et al. [16] outlines a novel machine learning-based 
strategy for renewable microgrid energy management, with a 
special emphasis on a changeable structure made possible by 
remote tie and sectionalizing switches. The study notably uses 
sophisticated support vector machines (SVM) to model and 
estimate the hybrid electric vehicle (HEV) charging needs 
within the micro grid. To tackle the possible effects of HEV 
charge on the network, the study presents two discrete 
scenarios: intelligent and coordinated charging. A 
revolutionary modified optimization approach based on 
dragonflies addresses the complex nature of the issue 
formulation and provides a customized solution to the 
complicated problem. Also, a self-adaptive modification is 
suggested, which enables solutions to choose the modification 
strategy that best fits their particular situation. The 
effectiveness and suitability of the suggested strategy are 
shown by simulation findings on an IEEE microgrid 
evaluation system in both synchronized and autonomous 
charging scenarios. A high degree of precision is indicated by 
the mean absolute % inaccuracy of 0.978 for the anticipated 
total charge demand of HEVs. Moreover, the outcomes 
demonstrate a significant 2.5% decrease in the micro grid’s 
overall operating expenses when using the intelligent charging 
strategy in contrast to the coordinated method. The study 
advances the area by providing a thorough solution to the 
complex problems associated with controlling energy in 
renewable microgrids taking into account the needs of HEV 
charging. The relevance of the research is highlighted by the 
revolutionary reconfigurable structure, the personalized 
optimization strategy, and the use of modern machine learning 
techniques. The simulation findings validate the suggested 
approach's realistic deployment in renewable microgrid 
networks and offer compelling proof of its efficacy.  

Syed et al. [17] focuses on the crucial component of 
dynamism estimating at the home level in smart constructions 
inside the larger framework of smart grid management of 
energy. Precise forecasts of energy usage in smart 
constructions are required for effective power generation and 
administration. The two primary phases of the suggested 
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hybrid deep learning approach are model construction and 
data cleansing. Pre-processing techniques, such as adding lag 
values as extra features, are applied to raw data during the 
data-cleaning step. A hybrid deep learning architecture, 
comprising fully linked layers, unidirectional long-term short-
term memory, and bidirectional LSTMs, is employed 
throughout the model-building stage. The objective of the 
model is to efficiently capture temporal relationships while 
maintaining high forecasting accuracy, low training time, and 
computing economy. The suggested model performs better 
than popular hybrid models like Convolutional Neural 
Networks, ConvLSTM, LSTM encoder-decoder frameworks, 
and stacking models, according to the evaluation of two 
benchmark energy consumption datasets. The suggested 
model achieves a mean percentage error in absolute terms of 
2.00% for Case Study 1 and 3.71% for Case Study 2, 
indicating significant improvements. On the other hand, for 
the corresponding datasets, LSTM-based models produced 
greater MAPE readings of 7.80% and 5.099%. Furthermore, 
for the used energy consumption datasets, the suggested 
model shows promise in multi-step week-ahead everyday 
projections, exhibiting improvements in MAPE of 8.368% and 
20.99% when compared to LSTM-based models. By 
presenting a unique hybrid deep learning model designed for 
household-level energy forecasts in Smart Buildings, the 
research makes a substantial contribution to the area. The 
thorough testing of the suggested method against well-known 
models and the documented increases in predicting accuracy 
highlight its possible applicability. This study offers useful 
insights for researchers and practitioners working in the fields 
of Smart Grid management of energy and Smart Buildings, 
especially about improving accuracy in forecasting household-
level energy usage.  

Han et al. [18] focuses on the potential of edge intelligence 
in the Internet of Things for green energy management, filling 
a major gap in the literature. The main goal is to provide a 
system based on deep learning for intelligent management of 
energy that can meet the needs of modern homes, businesses, 
and smart grids. The system attempts to forecast future short-
term energy convention and enable effective statement among 
customers and energy providers. The paper's main 
contributions are the following: an innovative sequences 
learning-based energy forecasting mechanism, optimum 
normalization technique selection, and real-time energy 
management via devices at the edge interacting with a shared 
cloud-based data supervisory server. The lowest mistake rates 
and less temporal complexity are features of this forecasting 
system. According to the suggested architecture, edge devices 
connect in real time to a shared cloud server inside an IoT 
network, enabling efficient interactions across related smart 
grids and energy demand and response. To address the 
heterogeneous nature of electrical data, the study employs a 
number of preprocessing approaches. Next, an effective 
algorithm for decision-making is implemented for 
forecasting the immediate future on devices with limited 
resources. The efficiency of the suggested framework is 
demonstrated by extensive tests, which indicate a considerable 
decrease of 3.77 units for root MSE (RMSE) and 0.15 units 
for mean-square error (MSE) for commercial and residential 
datasets, respectively. The paper provides a significant 

addition to green energy conservation in the Internet of Things 
networks, especially when discussing edge intelligence. The 
suggested framework is a notable development in the field 
because of its useful applications in forecasting energy usage, 
improving communication, and lowering forecasting mistakes.  

The reviewed studies collectively advance the field of 
energy management across diverse domains. According to one 
study, a novel solution to smart building energy management 
combines deep learning and IoT to maximize air conditioner 
efficiency by identifying individuals. A multi-objective 
forecasting strategy for residential grid-connected PV-battery 
hybrid systems is presented in another research. It uses a 
three-tiered control framework and achieves significant 
savings in power prices and carbon emissions. Within the field 
of renewable microgrid energy management, a study 
employing a modified optimization technique with support 
vector machines demonstrates efficacy in lowering total 
operating costs. Another study presents a hybrid deep learning 
approach with improved accuracy over conventional models, 
focusing on home-level energy forecasting in smart buildings. 
Finally, a study highlights the potential of edge intelligence in 
green energy management by putting forth a deep learning-
based system that significantly lowers predicting errors and 
intelligently manages energy in Internet of Things networks. 
When taken as a whole, these research help to bridge the gap 
between cutting edge technologies such as IoT, machine 
learning, and deep learning by providing more effective and 
sustainable energy management techniques for a variety of 
applications. 

III. PROBLEM STATEMENT 

The effective management of energy in smart buildings is 
the issue that the literature addresses, with a special emphasis 
on the integration of energy storage systems using 
sophisticated energy management techniques. One of the 
current issues is making decisions effectively in a changing 
environment in order to maximize the utilization of energy, 
cut expenses, and improve overall operational efficiency. The 
research highlights the importance of using the Deep Q-
Networks algorithm—a type of deep reinforcement learning 
(DRL)—as a solution to these problems. Emphasis is placed 
on the DQN algorithm's capacity to estimate and optimize the 
action-value function in a network of deep neural networks, 
demonstrating its efficacy in teaching appropriate energy 
management tactics. The suggested approach is to use DQN to 
help smart building managers make defensible choices about 
lighting, HVAC, and energy storage. Reducing peak demand, 
occupant discomfort, and costs significantly depends on the 
DQN algorithm's ability to manage intricate and dynamic 
interactions in the smart building environment. According to 
the literature, combining DQN with cost optimization methods 
and complex energy storage models results in a more effective 
and sophisticated method of managing energy in smart 
buildings [19]. 

IV. PROPOSED EMDQN FRAMEWORK FOR ENERGY 

MANAGEMENT IN SMART BUILDING 

The proposed energy management methodology for smart 
buildings follows a systematic sequence, beginning with the 
collection of a diverse dataset. Through Min-Max 
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normalization, the dataset is pre-processed to ensure consistent 
scaling. The application of reinforcement learning evaluates 
the effects of centralized and decentralized model predictive 
controllers on peak demand and operational expenses. 
Simultaneously, an advanced energy storage model is 
introduced, utilizing lithium-ion batteries and supercapacitors 
to strategically capture and use excess energy. A cost 
optimization model, employing linear programming, aims to 
minimize overall energy consumption costs. The results and 
discussion section then analyzes the methodology's 

performance, focusing on metrics like peak demand reduction 
and cost-effectiveness. Deep Q-Networks (DQN) play a 
pivotal role in optimizing energy management, aligning 
decisions with objectives such as cost reduction, peak demand 
reduction, and occupant comfort. The entire process is 
illustrated through a flowchart, providing a comprehensive 
overview of the methodology's implementation from 
preprocessing to performance assessment. The entire 
methodology process is represented in Fig. 1. 

 

Fig. 1. Proposed framework for energy management in smart building. 

A. Data Collection 

The valuable tool for study and advancement in the area of 
smart building energy management is the dataset gathered 
from Kaggle. This comprehensive dataset, which comes from 
a seven-story office building in Bangkok, Thailand, includes 
one-minute interval records of power usage and interior 
environmental measures. It covers the period from July 1, 
2018, to December 31, 2019. The data on power use covers 
each of the building's 33 zones for plug loads, lights, and air 
conditioning systems. The collection is further enhanced by 
complementary interior environmental sensor data, which 
includes ambient light, relative humidity, and temperature 
readings for the same zones. The CU-BEMS dataset is distinct 
because it provides a thorough analysis of the electricity 
consumption at the building level, broken down by zone and 
floor, and it captures the functioning of important loads in 
commercial buildings. Numerous applications benefit greatly 
from such a dataset, such as multiple-level load forecasting, 
the development of indoor thermal models, the validation of 
building simulation models, the creation of demand response 
algorithms based on load types, and the application of 
reinforcement learning algorithms for multiple AC unit 
control. This dataset provides a solid foundation for 
optimizing energy consumption and storage techniques in 
smart buildings, which is in line with the goals of our planned 
study on smart buildings [20]. 

B. Data Pre-processing using Min-Max Normalization 

The distributional properties of the original data are 
maintained by using Min-Max normalization. It provides a 
normalized representation that keeps the crucial data for 
training the model while scaling the values and preserving the 
connections and trends within the feature. All of the data 
points inside a feature are guaranteed to be scaled to a 
common range between 0 and 1 as a consequence of the 

normalization procedure. Outliers, which are data points 
significantly deviating from the majority, can distort the 
effectiveness of the subsequent analysis and modeling. 
Outliers can distort the uniform scaling intended by Min-Max 
normalization, leading to suboptimal model performance. By 
addressing outliers effectively during pre-processing, the 
dataset's integrity is preserved, ensuring that the subsequent 
energy management model is robust and reflective of the true 
underlying patterns in the smart building data. This uniform 
scaling is essential for preventing certain features from 
dominating the learning process due to their larger magnitudes 
is represented in Eq. (1). 

  
  

  
      

 

    
      

    (1) 

where,   
  is any value of a variable  ;     

 and     
   are 

the maximum and the minimum values of that variable; 
         

  is the value after scaling. By utilizing the Min-Max 

Scaler to normalize the input data, it is possible to prevent the 
issue where one characteristic overwhelms the others because 
of its larger range of values. If features are not normalized, the 
model could overweight the characteristics with higher values, 
thereby resulting in less than-ideal model performance. By 
scaling all characteristics to the same range, the Min-Max 
Scaler ensures that every feature has an equal impact on the 
model predictions. 

C. Utilization of Reinforcement Learning in Dynamic 

Environment 

The objective of Reinforcement Learning (RL), a machine 
learning technique, is to maximize a numerical reward while 
solving certain challenges in a predetermined environment. 
Numerous common and specialized engineering problems 
may be solved with this technology. Within the reinforcement 
learning paradigm, an agent engages in iterative interactions 
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with its surroundings, picking up and applying certain 
behaviors based on the state of the environment. After that, the 
environment offers a reward in addition to its most recent 
condition, and so on, until the agent maximizes the total 
rewards obtained. The policy is often defined as the method 

by which an agent operates from a specific state. Finding the 
best course of action for the agent to maximize cumulative 
rewards in the given environment is the main objective. The 
reinforcement learning structure in Smart building is 
represented in Fig. 2. 

 

Fig. 2. Decision and control framework for reinforcement learning in smart energy management. 

The environment in our research is assumed to be a 
Markov decision procedure, in which the agent's next state is 
determined only by its present state and the action it has 
selected, ignoring all other states and actions. The chosen 
value function for the inquiry is the Q-value, which is 
represented as         . The pairing of a state    and an 

action    at discrete time x is represented by this Q-value. The 
main goal of the agent is to maximize the Q-value at each time 
step. To find the best policy p in scenarios involving decision-
making, Q-learning, a basic RL technique, is utilized. The 
Bellman equation is used in the Q-learning procedure to 
calculate and update the Q-value      ) is depicted in Eq. (2): 

                                      (2) 

In this case, the maximum discount future reward 
                and the current reward         add 
up to the ideal Q-value         . The relative relevance of 

present and future benefits is usually ascertained using a 
discounting factor           a smaller   results in a more 
shortsighted agent that prioritizes immediate gains, whereas a 
bigger   supports a more forward-looking strategy. To balance 
incentives for now and the future, the system operator can 
change the value of  . 

D. Deep Q-Networks (DQN) Algorithm for Energy 

Management Strategy 

Deep Q-Networks is a reinforcement learning algorithm 
that combines deep learning with Q-learning to approximate 
and optimize the action-value function in a deep neural 

network. To determine the best practices for energy 
management in smart buildings, DQN is employed. In order to 
accomplish certain goals like cost reduction, peak demand 
reduction, and occupant comfort, it assists the system in 
making decisions about HVAC settings, lighting control, and 
energy storage measures. The Q-value represents the expected 
cumulative reward of taking a particular action in a given state 
is represented in Eq. (3) 

                                 

                  (3) 

          is the Q-value for state    and action  . α is 

the learning rate, r is the immediate reward after taking action 
   in state   , γ is the discount factor,     is the next state,     
is the next action. With parameters θ, a deep neural network 
approximates the Q-value. The Mean Squared Error between 
the goal Q-value and the predicted Q-value is the loss function 
used to train the network is presented in Eq. (4): 

        
                                          

  (4) 

In this case, θ− stands for the parameters of a target 
network, which are updated with the online network's 
parameters, θ, on a regular basis. The input of deep neural 
network architecture is usually the state representation, and 
the architecture consists of fully linked layers. Each unit in the 
output layer represents the expected Q-value for a particular 
action, and there are as many units as there are potential 
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actions. DQN frequently employs an epsilon-greedy strategy, 
in which the agent chooses an action (exploration) at 
probability ϵ and an action (exploitation) at probability 1−ϵ 
based on the maximum projected Q-value. 

E. Energy Storage Model in Smart Building 

For the purpose of maximizing cost-effectiveness, 
sustainability, and energy efficiency, an improved energy 
storage model is essential. In order to effectively store and 
manage energy and meet the changing demands of the 
building and its occupants, the model incorporates Super 
capacitors, lithium-ion batteries, when it comes to smart 
building energy management, this combination delivers clear 
benefits. Supercapacitors perform very well in cycles of fast 
charge and discharge, offering brief bursts of energy at times 
of peak demand and well balancing the intermittent nature of 
renewable energy sources. However, over longer periods of 
time, sustained and effective energy storage is guaranteed by 
lithium-ion batteries, which are renowned for their high 
energy density and dependability. Super capacitors, lithium-
ion batteries, are the cutting-edge energy storage technologies 
are cleverly positioned to harvest extra energy produced from 
solar panels or other renewable energy sources during times of 
low demand. In order to ensure a steady and dependable 
power supply, this stored energy may subsequently be 
effectively used during periods of high demand or when 
renewable sources are insufficient. Predictive analytics and 
clever algorithms improve the system's responsiveness, 
allowing it to adjust to changing grid circumstances and 
energy needs. Smart building infrastructure is represented in 
Fig. 3. 

The process for generating equations that represent the 
dynamics of energy storage, including the charging and 
discharging processes, is necessary to develop an energy 
storage model for a smart building. There is a single basic 
equation that determines the charge state (  ) of the energy 
storage system over time can be expressed in Eq. (5): 

        

         
     

        
        

          

  
  

              
        

              (5) 

where,         
          and         

             indicates the 

charging power and discharging power,         
            ≥ 0 

and         
            ≤ 0;     and       represents the discharging 

and charging effectiveness of the energy storage model ; The 
energy storage capacity and the time step duration are denoted 
by ∆x. This formula is an example of a simplistic model; more 
intricate models may be developed by adding variables 
like round-trip efficiency, ageing effects, and temperature's 
effect on battery performance. These formulas enable 
the effective use of energy storage supplies while taking the 
dynamic nature of energy needs and external factors into 
account. They are crucial parts of a larger smart building 
energy management system. 

F. Cost Optimization Model 

The utilization of cost optimization models in smart 
building energy management often entails minimizing the 
total cost of energy consumption, taking into account variables 
such as power rates, operating expenses, and possible fines for 
over-energy thresholds. The following is an example of a 
popular formulation for this kind of model that uses linear 
programming is represented in Eq. (6): 

   (
     

 
|  |  

     

 
  )       (6) 

where, the energy purchasing and selling prices are 
represented by    and   .  It is commonly recognised that the 
ESS's lifespan would be harmed by repeated charging or 
discharging. The Energy Storage System depreciation cost at 
time interval x is defined as follows to observe in Eq. (7), 

     |  |  |  |   (7) 

where,    and    are charging and discharging power, and 
  indicates the depreciation coefficient. 

 

Fig. 3. Energy management system. 
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G. Reward 

The reward function in a reinforcement learning setting 
typically represents the immediate benefit or cost associated 
with taking a particular action in a given state. In the context 
of energy management in smart buildings, the reward function 
can be designed to reflect the system's objectives. For 
instance, it might consider factors such as energy cost 
reduction, peak demand reduction, and occupant comfort. 
Here is a general form of the reward function, denoted as R in 
Eq. (8), 

                                         (8) 

   and    represent the state and action at discrete time x. 
         is the immediate reward after taking action    in 
state ax. γ is the discount factor, determining the relative 
importance of present and future rewards. It is typically in the 
range [0, 1], where a smaller γ makes the agent more 
shortsighted, prioritizing immediate gains, while a larger γ 
supports a more forward-looking strategy. 

Algorithm 1: EMDQN (Energy Management Deep-Q-Learning) 

Input: 
Raw dataset with power usage and environmental measures 

Energy storage parameters:    ,       ,         , ∆x, φ 

Linear programming parameters:   ,    
Output: 
Trained DQN model 
Optimized energy storage model 
Cost-optimized smart building energy management system 
def min max normalization(data): # Data Pre-processing: 
        

 = min(data) 
        

  = max(data) 
    Normalize data using (1) 
    Return normalized data 
        for t in range (max steps per episode): 
            action = epsilon greedy(Q-network, state, ϵ) 
            Next state, reward = execute action(action) 
            Store experience(state, action, reward, next state) 
            Mini batch = sample mini batch() 
            Update Q network(Q-network, target Q-network, mini batch) 
            if t % τ == 0: 
                Update target Q network(Q-network, target Q-network) 
def DQN algorithm(Q-network, α, γ): # Deep Q-Network (DQN) Algorithm 
    for each episode: 
        for each step: 
            action = epsilon greedy(Q-network, state, ϵ) 
            execute action and observe reward and next state 
            update Q-value using Eq. (3) and loss function Eq. (4) 
def energy storage model(  ,   ,   ): # Energy Storage Model 
    Evaluate using (5) 
def cost optimization model(  ,   ,   ,   , φ): # Cost Optimization Model 
     Evaluate using (6) 
def reward function(r, γ, Q-value): # Reward Computation 
    return r + γ * max(Q-value) 
Raw data = load dataset() # Main 
Normalized data = min max normalization(raw data) 
Q-network = initialize Q network() 
Target Q-network = initialize Q network() 
Reinforcement learning(Q-network, target Q-network) 
Optimized energy storage model = energy storage model(parameters) 
Optimized cost optimization model = cost optimization model(parameters) 
 

V. RESULTS AND DISCUSSION 

The results section of the study focuses on evaluating the 
effectiveness and performance of the proposed methodology 
for efficient deep reinforcement learning in smart buildings, 
particularly concerning the integration of energy storage 
systems through advanced energy management strategies. Key 
metrics are employed to assess various aspects of the system's 

functionality, including cost optimization, peak demand 
reduction, occupant comfort, and overall energy efficiency. 
Quantitative measures, such as cost savings, peak demand 
reduction percentages, and the accuracy of the reinforcement 
learning model, will be reported. The results and discussion 
section receives inputs from the reinforcement learning model, 
energy storage model, and cost optimization model. The grid 
peak demand reduction performance and cost reduction 
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performance analyses are part of the Results and Discussion 
section, providing insights into the effectiveness of the 
proposed methodology. 

A. Cost Reduction Performance Analysis 

Fig. 4 illustrates the breakdown of summertime electrical 
demand charges for the scenarios Without DQN, DQN-
Temperature, DQN-Battery, and With DQN. It highlights 
interesting trends in peak demand management. August 
demand charges for the typical technique Without DQN are 
1897 units; however, when the entire DQN strategy is 
integrated, these demand charges are significantly reduced to 
1234 units, which is an outstanding decrease of almost 
35.01%. Reductions are also achieved via the DQN-Battery 
and DQN-Temperature techniques, which have demand 
charges of 1698 and 1687 units, respectively. June and July 

reveal that DQN tactics work as well, with demand charges 
reduced by around 33.13% and 30.82%, respectively. On the 
other hand, September offers a special case with an 
unanticipated rise in demand fees for all DQN methods in 
contrast to the conventional model. 

In Fig. 5, the DQN method produces the largest energy 
charge decrease in the winter, totaling 3897 units as opposed 
to 6785 units in the conventional Without DQN scenario, or a 
significant reduction of almost 42.61%. With a decrease in 
demand charges from 4587 units to 3298 units, or around 
28.16% less, the reduction in demand charges is likewise 
noteworthy. The drop in cost is similarly notable in the 
summer. Compared to the conventional method, the With 
DQN technique helps to save around 16.99% in demand 
charges and 6.07% in energy charges. 

 

Fig. 4. Analysis of summertime electricity demand charges. 

 

Fig. 5. Total annual cost reduction analysis. 
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The DQN techniques, especially the all-inclusive With 
DQN model, demonstrate how well they work to maximize 
energy use, tactically control peak demand, and eventually 
lower total operating expenses. This report highlights the 
potential financial benefits of using advanced energy 
management strategies and highlights DQN's contribution to 
the facility's large summer and winter cost savings. 

 

Fig. 6. Peak demand reduction evaluation. 

Fig. 6 describes the observed peak demand reduction of 
26.32% in May indicates a noteworthy beneficial impact of 
the adopted techniques, namely the DQN strategy, in the 
context of smart buildings. This significant decrease indicates 
that energy consumption habits were successfully adjusted and 
optimized during a month when demand is usually higher. The 
DQN strategy's ability to strategically manage and reallocate 
energy resources is demonstrated by its efficacy in May, 
which greatly enhances the building's total energy efficiency. 

In Fig. 7, the rewards are received at various times when a 
reinforcement learning model is being trained or assessed. The 
rewards corresponding to each episode's progressive 
numbering show how well the model performed at each level. 
In this particular case, the incentives exhibit an increasing 
tendency as the number of episodes rises, going from an initial 
reward of -7.1 to -5 at episode 12,000 in this particular 
situation. The objective is to train the model to maximize its 
cumulative reward over episodes; the negative values indicate 
that the model is penalized for specific states or behaviors. 

Table I compares the performance metrics of a proposed 
Deep Q-Network strategy with a Genetic Algorithm method 
for various situations of home energy management strategies. 
The peak load, power added to the grid, and power taken out 
of the grid are all represented by the Power figures. 

The overall energy consumption and revenue/cost 
throughout time are tracked by cumulative energy and 
cumulative revenue/cost. The daily net cost is shown by the 
Net Cost. Comparing the Proposed DQN method to the GA 
approach, the percentage changes show that there is a 
reduction in peak load of 0.8918%, a fall in cumulative 
income of 3.4972%, a reduction in daily cost of 0.7647%, and 
an overall decrease in net cost of 6.7887%. These findings 
demonstrate the potential of the Proposed DQN method as an 
efficient home energy management strategy by indicating that 
it performs well in terms of peak load control and cost 
reduction. 

B. Error Rate Evaluation 

The mean square error (MSE) is a non-negative quantity, 
and its units are often the squared units of the original data. In 
regression analysis and other modeling tasks, it is commonly 
employed as an unbiased measure to assess how well a model 
with predictions or estimator is working. It is expressed in Eq. 
(9). 

    
 

 
∑ (     ̂)

  
      (9) 

 

Fig. 7. Reward for proposed DQN algorithm. 
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Energy Management 

Strategy 

Power (kW) Cumulative Energy (kWh) Cumulative Revenue/Cost (USD) Net Cost (USD) 

Peak Load Injected to Grid 
Drawn from 

Grid 
Revenue Cost Daily Cost 

GA [21] 6.7894 53.0567 58.3765 2.7863 3.1243 0.3987 

Proposed DQN 5.8976 53.0567 54.8793 2.7863 3.0596 0.3100 

Increment (%) - - - - - - 

Reduction (%) 0.8918 - 3.4972 - 0.7647 6.7887 
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where, m is the total amount of data points,    is the actual 

values and   ̂ is the estimated values. MAE is used to indicate 
the quality of a prediction approach or estimator and is 
frequently given in the same units as the original data. It is 
expressed in Eq. (10). 

    
 

 
∑ |     ̂|

 
     (10) 

where, m is the total amount of data points,    is the actual 

values and   ̂ is the estimated values. 

TABLE II. COMPARISON OF ERROR RATE 

Energy Management 

Strategic Methods 

Mean Square Error 

(%) 

Mean Absolute Error 

(%) 

Fuzzy Algorithm 14.5 15.87 

Genetic Algorithm 12.6 14.43 

Proposed DQN 8.6 6.4 

The performance evaluation of three distinct energy 
management strategy methods—the Genetic Algorithm, the 
Proposed Deep Q-Network, and the Fuzzy Algorithm—is 
shown in Table II. Mean Absolute Error and Mean Square 
Error, both expressed in percentage terms, are the metrics used 
for evaluation. With a Mean Square Error of 14.5% and a 
Mean Absolute Error of 15.87%, the Fuzzy Algorithm exhibits 
a comparatively elevated degree of prediction mistakes. With 
a Mean Absolute Error of 14.43% and a Mean Square Error of 
12.6%, the Genetic Algorithm performs more effectively. The 
proposed DQN performs much more effectively than both 
algorithms, with a Mean Square Error of 8.6% and a 
significantly lower Mean Absolute Error of 6.4%. Based on 
these findings, it appears that the Proposed DQN is a more 
promising method for optimizing energy systems than the 
Fuzzy and Genetic Algorithms in terms of prediction accuracy 
in energy management. 

C. Discussion 

The study's findings center on assessing the effectiveness 
and performance of the suggested approach for effective deep 
reinforcement learning in smart buildings, with a special 
emphasis on how improved energy management techniques 
integrate energy storage systems. Key performance indicators 
that are included in the evaluation include overall energy 
efficiency, peak demand reduction, cost optimization, and 
occupant comfort. Quantitative metrics are presented, 
including cost savings, percentages of peak demand decrease, 
and the accuracy of the reinforcement learning model. The 
results present the cost reduction study, which shows notable 
decreases in demand charges, energy charges, and overall 
operating expenditures in the summer and winter. The peak 
demand reduction evaluation shows a significant improvement 
in May due to the implemented approaches, with a decrease of 
26.32%. 

Furthermore, Methodology illustrates the incentives 
attained at various episodes throughout the model's training or 
assessment, exhibiting a progressive upward trend over time. 
The Proposed Deep Q-Network (DQN) method and the 
Genetic Algorithm  [21] technique are thoroughly compared in 
Table I, which also highlights the benefits of the DQN 

strategy, which include a decrease in peak load, cumulative 
income, and total net cost. Taken as a whole, these measures 
highlight how well the suggested technique works to 
maximize energy consumption, cut expenses, and improve the 
overall performance of smart buildings. The study 
demonstrates the effectiveness of a systematic DRL 
framework for energy management in smart buildings. The 
proposed methodology integrates Min-Max normalization, 
reinforcement learning, and Deep Q-Networks to optimize 
decision-making processes. The integration of supercapacitors 
and lithium-ion batteries in the energy storage model is 
highlighted. This model aims to maximize cost-effectiveness, 
sustainability, and energy efficiency by strategically capturing 
and utilizing excess energy, addressing the intermittent nature 
of renewable energy sources.The study employs linear 
programming to develop a cost optimization model, aiming to 
minimize overall energy consumption costs. This model 
considers variables such as power rates, operating expenses, 
and potential fines for exceeding energy thresholds, providing 
a holistic approach to cost-effective energy management. 

VI. CONCLUSION AND FUTURE WORKS 

The energy management approach for smart buildings that 
is being presented demonstrates promise in terms of 
improving energy efficiency, cutting expenses, and efficiently 
controlling peak demand. It incorporates energy storage 
models, a Deep Q-network algorithm, and cost optimization 
techniques. Reinforcement learning is integrated into the 
system to enable dynamic adaptation to changing 
environmental circumstances and occupant demands. This 
optimizes decision-making processes related to energy storage 
measures, lighting management, and HVAC settings. When 
compared to conventional algorithms like fuzzy and genetic 
algorithms, the suggested DQN algorithm demonstrated 
notable improvements in cost reduction, peak demand 
management, and overall energy efficiency. The algorithm 
was developed on an extensive dataset from a seven-story 
office building in Bangkok, Thailand. Furthermore, the energy 
storage model improves the smart building's capacity for 
effective energy management and storage by cleverly using 
cutting-edge technology like lithium-ion batteries and 
supercapacitors. The linear programming-based cost 
optimization methodology helps to further reduce the overall 
cost of energy consumption. The effectiveness of the DRL 
technique may also be sensitive to the quality and 
representativeness of the dataset. Furthermore, the proposed 
energy storage model, while incorporating advanced 
technologies, simplifies the dynamics by using a basic 
equation, omitting factors such as round-trip efficiency and 
aging effects. 

There are a number of directions to pursue in order to 
expand and enhance the suggested technique in future 
research. Initially, the flexibility and performance of the DQN 
algorithm might be improved by fine-tuning its 
hyperparameters and architecture to better fit the unique 
features of various smart buildings. Further optimizing the 
sustainability of the system might involve investigating the 
integration of renewable energy sources and implementing 
more sophisticated energy storage technology. Furthermore, 
given the dynamic nature of smart buildings, examining how 
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online learning methods may be used to continually adjust to 
shifting circumstances and occupant behavior may help 
develop more adaptable and responsive energy management 
strategies. Moreover, broadening the scope of the cost 
optimization model to incorporate other variables like weather 
predictions, grid conditions, and dynamic pricing models may 
offer a more thorough method of reducing energy 
expenditures. All things considered, the approach that has 
been described provides a strong basis for smart building 
energy management. Research projects in the future can build 
on this foundation to tackle new problems and possibilities 
that arise in the quickly developing field of sustainable and 
energy-efficient building technology. 
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