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Abstract—Parkinson's disease (PD) is a neurodegenerative 

condition that impacts a significant global population. The timely 

and precise identification of PD plays a pivotal role in facilitating 

early intervention and the efficient management of the condition. 

Recently, speech analysis has emerged as a promising non-

invasive technique for the detection of PD due to its accessibility 

and ability to reveal subtle vocal biomarkers associated with the 

disease. This research introduces an innovative approach 

utilizing Short-Time Fourier Transform (STFT) to generate 

spectrograms, specifically Bark Spectrogram Cepstral 

Coefficients (BSCC) and Mel Spectrogram Cepstral Coefficients 

(MSCC). These coefficients are compared with traditional and 

well-known coefficients, namely Mel-Frequency Cepstral 

Coefficients (MFCC) and Bark Frequency Cepstral Coefficients 

(BFCC). To extract the most effective coefficients for Parkinson's 

disease detection, three robust classification techniques—Long 

Short-Term Memory neural networks (LSTM), Convolutional 

Neural Networks (CNN), and Artificial Neural Networks 

(ANN)—are employed. As a result, the BSCC and MSCC 

algorithms achieve a maximum accuracy rate of 90%, surpassing 

the accuracy of the traditional MFCC and BFCC coefficients. 

Therefore, these newly proposed coefficients prove to be more 

precise in diagnosing Parkinson's disease compared to the 

conventional MFCC and BFCC coefficients. 
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Cepstral Coefficients (BSCC); Mel Spectrogram Cepstral 

Coefficients (MSCC); Long-Term Memory Neural Networks 

(LSTM); Convolutional Neural Networks (CNN); Artificial Neural 

Networks (ANN) 

I. INTRODUCTION 

Parkinson's disease (PD) ranks among the most widespread 
and incapacitating neurodegenerative conditions, impacting 
millions of individuals across the globe. Named after the 
pioneering work of British physician James Parkinson, who 
first documented its clinical manifestations in 1817, 
Parkinson's disease has emerged as a profound challenge in 
modern medicine. Characterized by its progressive 
deterioration of motor function, PD also presents an intricate 
array of non-motor symptoms, encompassing sleep 
disturbances, cognitive impairments, emotional alterations, and 
autonomic dysfunctions. 

This neurological condition is mainly characterized by the 
deterioration of dopaminergic neurons located in the substantia 
nigra part of the brain, resulting in a significant reduction in 
dopamine production. The repercussions of this disruption 
within the central nervous system manifest through a range of 
distinctive clinical symptoms, including muscle rigidity, 
resting tremors, bradykinesia (slowness of voluntary 
movements), and postural instability. 

The timely and precise detection of PD is of paramount 
importance in providing timely and effective medical 
interventions. While current diagnostic methods primarily rely 
on clinical evaluation and specialized imaging techniques, an 
expanding body of research suggests that significant insights 
into the early detection of Parkinson's disease may be gleaned 
from analyzing the human voice. This hypothesis is rooted in 
the notion that subtle vocal changes, often imperceptible to the 
human ear, may serve as early indicators of the disease. 
Leveraging the advancements in machine learning and voice 
analysis technologies, researchers are increasingly exploring 
the potential of voice-based biomarkers for PD diagnosis. 

In the academic literature, there is increasing attention to 
the application of speech-based techniques using both machine 
learning and deep learning for the detection of Parkinson's 
disease. Numerous research papers have investigated the 
application of machine learning methodologies, including 
SVM [1] – [4], KNN [5], [6] , DT [7] , and genetic algorithms 
[26] in this context. Simultaneously, the PD identification has 
been addressed through the employment of established 
convolutional neural network (CNN) architectures such as 
AlexNet, DenseNet, LSTM, SqueezeNet, VGG19, and others, 
as well as custom-designed CNN architectures developed by 
researchers for deep learning investigations [8], [9]. Notably, 
CNN architectures have demonstrated enhanced performance 
in the domain of feature extraction [8]. 

Moreover, CNN techniques have exhibited success in 
various research domains, encompassing tasks like ocean noise 
detection [10], COVID-19 detection via X-ray images [11]–
[13], mammography image segmentation and classification 
[14], classification of environmental sounds [15], Alzheimer's 
disease detection [16], skin cancer diagnosis [17], 
identification of cartilage lesions [18], fatigue diagnosis based 
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on heart sounds [19], diagnosis of joint disorders [20], 
premature retinopathy assessment [21], and even the diagnosis 
of idiopathic Parkinson's disease [22]. 

In this research, we explore the use of spectrogram-based 
techniques, specifically BSCC (Bark Spectral Cepstral 
Coefficients) and MSCC (Mel Spectral Cepstral Coefficients), 
to extract pertinent vocal features for disease classification. 
Our dataset, sourced from the SAKAR database, comprises 38 
audio recordings, encompassing 18 patients diagnosed with PD 
and 20 healthy individuals. The stratification of the dataset 
allows for a comprehensive examination of the proposed 
methodologies in distinguishing between healthy and affected 
individuals. 

This paper is structured as follows: Section I presents an 
extensive review of the background, contextualizing the 
significance of voice analysis in Parkinson's disease diagnosis. 
Section II delves into related work. Section III is about 
database. Section IV outlines the proposed methodology, 
elucidating the intricacies of the BSCC and MSCC techniques 
and their application in our study. Section V and Section VI 
encompasses the discussion of results, presenting findings, and 
insights derived from our experiments. Lastly, we summarize 
our main findings and their implications for further research 
and clinical applications in Section VII. 

II. RELATED WORK 

The study of Mehmet Bilal et al. outlines a new approach 
for detecting PD based on voice signals using LSTM and pre-
trained deep networks. The process involves four steps: noise 
reduction, mel-spectrogram extraction, deep feature extraction 
using pre-trained ResNet models, and classification with an 
LSTM model. Experiments conducted with the PC-GITA 
dataset, a widely used dataset, demonstrate superior 
classification performance compared to existing methods, 
emphasizing the importance of early diagnosis for speech-
related Parkinson's symptoms, an accuracy of 98.61% was 
attained [23], for Gaffari selik et al. In their study, the research 
leverages advanced deep learning and machine learning 
techniques to diagnose PD using voice signal datasets from 
both PD patients and healthy individuals (PDO_Dataset and 
PD_Dataset). The study examines existing machine learning 
and CNN algorithms for PD diagnosis, conducting a 
comparative performance analysis. Furthermore, a novel 
approach named SkipConNet + RF, combining RF and CNN, 
is introduced for PD detection. SkipConNet extracts crucial 
features from voice signals and then employs the RF algorithm 
for estimation. This approach significantly enhances RF 
algorithm performance, achieving an improvement ranging 
from 3% to 17.19%. Remarkably, the SkipConNet + RF 
method achieves remarkable accuracy, with a 98.30% on the 
PDO_Dataset dataset and 99.11% success rate on the 
PD_Dataset dataset, showcasing its potential as a highly 
effective tool for PD diagnosis [24] .  

The article of Quan et al.  presents a novel deep learning 
approach for detecting PD through voice signals. The approach 
utilizes time-distributed 2D-CNNs to extract dynamic time 
series features and employs a 1D-CNN to capture 
dependencies between these features. The model's performance 
was evaluated on two databases. On Database-1, it 

outperformed traditional machine learning models, achieving 
accuracies of 81.6% for sustained vowel /a/ and 75.3% for a 
short Chinese sentence. On Database-2, the model attained up 
to 92% accuracy across various speech tasks, including reading 
sentences in Spanish. The model's learned time series features 
effectively captured variability and the reduced frequency 
range in PD sounds, crucial for diagnosis. Furthermore, the 
study highlights the significance of the low-frequency region in 
Mel-spectrograms for PD recognition from voice, surpassing 
the influence of the high-frequency region [25], For Karan et 
al. Their study addresses the use of speech as an early marker 
for PD detection, given its impact on several speech 
components. To overcome challenges related to non-
stationarity and discontinuity in speech signals, the researchers 
introduce a novel feature called IMFCC based on empirical 
mode decomposition. The performance of these proposed 
IMFCC features is evaluated using two datasets, each 
comprising 25 Parkinson-affected individuals and 20 normal. 
The findings demonstrate that IMFCC features offer 
significantly improved classification accuracy in both datasets, 
with an impressive increase of 10–20% compared to MFCC 
features. This suggests the potential of IMFCC as a highly 
effective tool for PD identification through voice analysis [26]. 
Chen et al. employed an architecture that utilized the HHT and 
KNN algorithms. They extracted a total of 21 characteristics, 
consisting of 12 from each sound sample using the HHT 
algorithm and nine using the LPCC algorithm. Subsequently, 
these extracted characteristics were individually classified 
using KNN, DT and RF algorithms. The authors reported the 
best performance using the KNN, achieving an accuracy of 
93.3% [27].  

The study of Tasnas et al. Investigate the connection 
between speech dysfunction and PD, particularly focusing on 
novel dysphonia measures aimed at predicting PD symptom 
severity through speech signals. A sum of 132 dysphonia 
metrics was calculated based on sustained vowel sounds. These 
measures were then reduced to four parsimonious subsets using 
feature selection algorithms. These subsets were utilized for 
binary classification, employing both RF and SVM as 
statistical classifiers. The research leveraged a database with 
263 samples from 43 subjects and demonstrated that these 
novel dysphonia measures can achieve remarkable results, with 
an overall classification accuracy of nearly 99% using only ten 
dysphonia features. The study highlights the complementarity 
of these newly proposed measures with existing algorithms, 
enhancing the classifiers' ability to distinguish PD subjects 
from healthy controls. These findings represent a significant 
advancement towards non-invasive diagnostic decision support 
for PD [28]. Yaman et al. utilized a freely accessible dataset 
from the UCI dataset platform, comprising 240 speech 
samples, with 40 from PD patients and 40 from healthy ones. 
Their approach involved augmenting the dataset's attributes 
through the application of a statistical pooling method. 
Subsequently, they derived weighted features employing the 
ReliefF technique. These weighted feature vectors were then 
subjected to classification using both SVM and KNN 
techniques, yielding a commendable 91.25% success rate with 
the SVM algorithm and 91.23% with the KNN method [29]. 
The paper of Kavita Bhatt et al. Highlights the significance of 
early PD detection in the elderly, emphasizing common 
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symptoms such as dysarthria, tremors, cognitive changes, and 
muscle stiffness. The study proposes a Deep Neural Network 
algorithm using spectrograms generated by the Superlet 
Transform for PD detection from speech signals. The method 
achieved an impressive 96% on the ItalianPVS dataset and 
92% overall accuracy on the PC-GITA dataset, outperforming 
state-of-the-art methods in PD detection from diverse speech 
data sources [30].  

The research conducted by Mahboobeh and colleagues 
focuses on the demanding task of diagnosing PD earlier, 
particularly focusing on gender-specific differences in speech 
characteristics. A hybrid method is proposed, leveraging 
features' scores based on a two-dimensional projection. After 
removing gender-specific features, the approach employs 
Classification-Based Feature Score (CBFS) and Statistical-
Based Feature Score (SBFS) to rank the remaining features. 
Resampling enhances feature selection stability. Various 
classifiers (KNN, NSVM, LSVM, RF, and NB) are applied, 
achieving 84% and 86% accuracy rates for women and men, 
respectively, with fewer selected features compared to prior 
studies. The results highlight feature commonalities despite 
gender differences and validate using an independent dataset 
for added robustness [31]. The proposed model comprises three 
key stages. Firstly, noise is eliminated from the signals using 
the DWT-EMD and EMD-DWT methods. Secondly, MFCC 
and GTCC features are extracted from the enhanced audio 
signals. The final step involves classification, where these 
features are input into CNN and LSTM models designed to 
capture sequential information from the extracted features. In 
the experimental phase, the study employs the PC-GITA and 
Sakar datasets, applying a ten-fold cross-validation method. 
Impressively, the highest classification accuracy for the PC-
GITA dataset, the accuracy reaches 100% for EMD-DWT-
GTCC-CNN and 96.55% for DWT-EMD-GTCC-CNN. For 
the Sakar dataset reaches 100% for both the EMD-DWT-
GTCC-CNN and DWT-EMD-GTCC-CNN combinations. 
These findings underscore the effectiveness of GTCC features 
over MFCC in Parkinson's disease assessment. This research 
showcases a promising avenue for accurate and timely 
detection of PD through speech analysis, potentially improving 
the effectiveness of telemedicine-based diagnosis and 
monitoring systems [32]. 

III. DATABASE 

The study utilizes a dataset from a prior investigation, 
comprising 38 voice recordings. This dataset includes 20 
individuals diagnosed with Parkinson's disease (PD) and 18 
individuals classified as healthy controls. During these 
recording sessions, participants were specifically instructed to 
articulate the vowel 'a' using a standard microphone with a 
sampling frequency of 44,100 Hz, and the recordings were 
conducted on a desktop computer equipped with a 16-bit sound 
card. These voice recordings form the foundation of our 
analysis [33]. 

The proposed methodology involves the utilization of 
advanced feature extraction techniques as shown Fig. 1, 
including MFCC, MSCC, and BSCC, BFCC which will be 
detailed subsequently. These extracted acoustic features are 
then fed into powerful classification models, such as ANN, 

CNN and LSTM. The integration of these cutting-edge feature 
extraction methods and state-of-the-art classification 
algorithms forms the core of our approach, ultimately 
facilitating the accurate differentiation between individuals 
affected by PD and those in a healthy control group. The 
subsequent sections will provide a comprehensive explanation 
of each method and its role in our classification framework. 

IV. PROPOSED METHOD 

 
Fig. 1. The schematic for the proposed method. 

A. MFCC 

MFCC stands as a commonly employed method for 
extracting features in the realm of speech and audio signal 
processing, Fig. 2 depicts the different steps to follow in order 
to obtain the MFCC coefficients. 

Pre-emphasis: The audio signal is pre-emphasized by 
applying a high-pass filter to amplify high-frequency 
components, as described this equation with k = 0.97. 

 ( )           (1) 

 

Fig. 2. The steps for calculating MFCC coefficients. 
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Framing: The signal with pre-emphasis undergoes 
segmentation into short, overlapping frames to capture 
temporal attributes. 

Windowing: Each frame is windowed using the Hamming 
window function to prepare it for Fourier analysis. 

 ( )              (
   

   
)  (2) 

FFT (Fast Fourier Transform): The FFT is applied to each 
frame to convert it into the frequency domain. 

   ∑    
    

  

    
     (3) 

Mel Scale: The resulting spectrum is transformed onto the 
Mel scale, which simulates human auditory perception. 

Mel          (  
 

   
)  (4) 

Discrete Cosine Transform (DCT): The DCT is used to 
decorrelate the Mel-scaled spectrum, reducing redundancy. 

   √
 

 
∑      (

  

 
(     )) 

     (5) 

MFCC Calculation: Finally, a subset of the DCT 
coefficients is selected as Mel-Frequency Cepstral 
Coefficients, which indicate the spectral properties of the audio 
signal. 

B. BFCC 

BFCC is similar to MFCC, but it uses the Bark scale 
instead of the Mel scale. In Fig. 3, the various stages required 
to acquire the BFCC coefficients are illustrated. 

Pre-emphasis, Framing, Windowing, FFT: These initial 
steps are identical to those in MFCC. 

Bark Scale: Instead of the Mel scale, the FFT results are 
transformed onto the Bark scale, which is another 
representation of auditory frequency perception. 

Bark( )  
      

      
       (6) 

DCT: The DCT is applied to the Bark-scaled spectrum to 
reduce redundancy and extract cepstral coefficients. 

 

Fig. 3. The steps for calculating BFCC coefficients. 

C. MSCC 

MSCC is a variant of MFCC that directly uses the STFT 
instead of the FFT. The different procedures for obtaining the 
MSCC coefficients are presented in Fig. 4. 

Pre-emphasis, Framing, Windowing: These steps remain 
the same as in MFCC. 

STFT: Instead of the FFT, the STFT is used to attain a 
time-varying spectral representation for each frame. 

Mel Scale and DCT: The Mel scale is implemented to the 
STFT results, followed by DCT, to calculate Mel Spectral 
Cepstral Coefficients. 

 

Fig. 4. The steps for calculating MSCC coefficients. 

D. BSCC 

BSCC is similar to MSCC, but it uses the Bark scale 
instead of the Mel scale in the final step. Fig. 5 outlines the 
sequential steps for deriving the BSCC coefficients. 

Pre-emphasis, Framing, Windowing and STFT: These 
initial steps are identical to those in MSCC. 

Bark Scale: Instead of the Mel scale, the STFT results are 
transformed onto the Bark scale, and then DCT is applied to 
extract Bark Spectral Cepstral Coefficients. 

 

Fig. 5. The steps for calculating BSCC coefficients. 

E. ANN 

An Artificial Neural Network (ANN), modeled on the 
structure of biological neural networks, is a computational 
model composed of interconnected processing units, or 
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neurons, organized into layers. These neurons process and 
transmit information through weighted connections. ANNs are 
designed for supervised learning and have the capacity to 
memorize complicated patterns and relationships within data. 
They include an input layer, one or more hidden layers, and an 
output layer. ANNs are widely employed for diversity of 
applications, including classification, regression, and function 
approximation. 

F. LSTM 

An LSTM is a form of RNN specifically created to tackle 
the challenge of the vanishing gradient issue encountered in 
conventional RNNs. LSTMs are notably effective for tasks that 
encompass sequential data. Time series data, or natural 
language processing. They incorporate specialized memory 
cells that can capture long-range dependencies in data, making 
them capable of retaining information over extended time 
intervals. LSTMs are crucial in applications such as speech 
recognition, and sentiment analysis, where understanding and 
modeling sequential patterns are essential. 

G. CNN 

A CNN is a deep learning structure mainly utilized for the 
analysis of images and spatial data. CNNs excel at 
automatically extracting hierarchical and spatial features from 
input data using convolutional layers, pooling layers, and fully 
connected layers. Convolutional layers apply convolutional 
operations to scan and detect local patterns within the input, 
making CNNs highly effective in image classification, object 
detection, and image generation tasks. They have also found 
applications beyond image processing, including in natural 
language processing and reinforcement learning. 

V. RESULT  

In this section, the experimental outcomes are presented 
and the performance of the new approaches is assessed, MSCC 
and BSCC, alongside the BFCC and MFCC, in the context of 
PD detection through speech analysis. We also discuss the 
outcomes obtained using ANN, LSTM, and CNN for 
classification. Fig. 6 to Fig. 9 sequentially display the MFCC, 
MSCC, BFCC, and BSCC coefficients obtained for an 
individual diagnosed with Parkinson's disease. 

The Fig. 6, 7, 8, and 9 displays the initial twelve coefficient 
values of MFCC, MSCC, BFCC, and BSCC, respectively. 
These coefficients encompass numerous frames that demand 
significant processing time for classification, hindering the 
accurate diagnostic decision-making process. To address this 
issue, the average value of these frames is computed to obtain 
the voiceprint and mitigate the processing burden. 

The results of our experiments reveal varying levels of 
accuracy across different feature extraction methods and 
classification algorithms. For Mel Spectrogram-based Cepstral 
Coefficients (MSCC), we observed high accuracy rates, with 
ANN achieving 90% accuracy and CNN also reaching 90%, 
underscoring their effectiveness. LSTM, while slightly lower at 
81%, still performed well with MSCC. Similarly, Bark 
Spectrogram-based Cepstral Coefficients (BSCC) exhibited 

strong accuracy, with ANN achieving 81% accuracy and 
LSTM and CNN both reaching 90%. In contrast, conventional 
BFCC and MFCC yielded comparatively lower accuracy rates, 
with ANN achieving 54% and 64%, respectively, and LSTM 
and CNN hovering around 80%. These findings suggest that 
MSCC and BSCC may offer superior feature extraction 
capabilities in the field of diagnosing PD, potentially 
revolutionizing the field with their higher accuracy rates when 
coupled with advanced classification techniques like CNN and 
LSTM. 

 
Fig. 6. The 12 MFCC coefficients for an individual with Parkinson's disease. 

 
Fig. 7. The 12 MSCC coefficients for an individual with Parkinson's disease. 

 
Fig. 8. The 12 BFCC coefficients for an individual with Parkinson's disease. 
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Fig. 9. The 12 BSCC coefficients for an individual with Parkinson's disease. 

The achieved accuracy rates with MSCC and BSCC in 
combination with ANN, LSTM, and CNN are notable and 
indicate their promise as powerful features for PD detection. 
The consistent high accuracy rates of 90% with MSCC and 
BSCC when coupled with CNN highlight their efficacy in 
feature extraction. MSCC and BSCC capture spectral 
characteristics more effectively than traditional MFCC and 
BFCC, which may account for their superior performance. 
These findings suggest that MSCC and BSCC hold potential as 
valuable additions to the arsenal of voice-based PD detection 
methodologies. 

In contrast, the results obtained using MFCC and BFCC, 
particularly with ANN, show comparatively lower accuracy 
rates of 54% and 64%, respectively. While these traditional 
coefficients have been widely used in voice analysis, our 
findings suggest that MSCC and BSCC surpass them in the 
context of PD detection. The improved accuracy achieved with 
MSCC and BSCC underscores their ability to capture nuanced 
vocal characteristics associated with PD more effectively. 

TABLE I. RESULTS OBTAINED WITH THESE METHODS 
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MSCC 90 60 87 81 50 50 90 50 100 

BSCC 81 55 100 90 55 100 90 50 100 

MFCC 54 100 100 81 66 100 81 71 100 

BFCC 64 100 100 81 50 55 81 80 100 

The accuracy rates obtained in this study are promising for 
the development of reliable voice-based PD detection systems. 
The utilization of MSCC and BSCC, combined with advanced 
deep learning techniques like CNN, offers a potential 
breakthrough in early PD diagnosis. These discoveries could 
hold noteworthy consequences for the development of non-

invasive, cost-effective, and accessible PD screening tools, 
ultimately aiding in the timely intervention and management of 
this debilitating disease. Table I presents the results obtained 
for each of the MFCC, BFCC, MSCC, and BSCC coefficients 
using ANN, LSTM, and CNN. 

In conclusion, our results suggest that MSCC and BSCC, in 
conjunction with CNN, represent a promising avenue for 
enhancing the accuracy of voice-based PD detection systems, 
potentially revolutionizing the way we diagnose and manage 
Parkinson's disease. Additional investigation and validation on 
larger datasets are warranted to confirm these findings and 
pave the way for practical clinical applications. 

Three measures of performance were used in this study to 
evaluate the efficiency of classifiers on data sets: accuracy (see 
Eq. 7), sensitivity (see Eq. 8) and specificity (see Eq. 9). 
Accuracy is considered to be the percentage of precise results. 
Their definitions are as below: 

         
     

           
  (7) 

            
  

     
  (8) 

            
  

     
  (9) 

With: 

Subjects without Parkinson's disease correctly categorized 
are True Negatives (TP). 

Subjects with Parkinson's disease correctly categorized are 
True Positives (TN). 

Subjects with Parkinson's disease incorrectly categorized 
are False Positives (FP). 

Subjects without Parkinson's disease incorrectly 
categorized are False Negatives (FN). 

VI. DISCUSSION 

In the domain of diagnosing PD through vocal analysis, 
several methods have been proposed in the literature. This 
paper stands out, utilizing a combination of BFCC, MFCC, 
MSCC, and BSCC, combined with LSTM, ANN and CNN 
classifiers. Notably, the CNN-based method with MSCC ET 
BSCC achieved the highest accuracy of 90%, suggesting 
promising results for PD detection. Table II provides a 
comparison of this study with recently published articles. 

TABLE II. COMPARISON WITH RECENT RESEARCH 

Study Dataset Method Accuracy 

El-Hasnony et 

al.[34] 
Sakar dataset ANFIS + PSOGWO 87,5 % 

Vasquez-Correa 
et al. [35] 

Spanish datasets CNN 89 % 

Gunduz [36] Sakar dataset CNN 86,9 % 

Sakar et al. [37] Sakar dataset SVM 86 % 

Belhoussine et 

al. [38] 
Sakar dataset DWT-MFCC 86,84 % 

Zayrit et al. [39] Sakar dataset 
SVM rbf 

SVM lin 

81 % 

79 % 
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In the domain of diagnosing PD through vocal analysis, 
several methods have been proposed in the literature. This 
paper stands out, utilizing a combination of BFCC, MFCC, 
MSCC, and BSCC, combined with LSTM, ANN and CNN 
classifiers. Notably, the CNN-based method with MSCC et 
BSCC achieved the highest accuracy of 90%, suggesting 
promising results for PD detection. Table II provides a 
comparison of this study with recently published articles. 

Comparatively, previous research has explored various 
techniques for PD diagnosis through vocal analysis. El-
Hasnony et al. [34] introduced a fog-based ANFIS+PSOGWO 
model, achieving an accuracy of 87.5% and outperforming 
other optimization methods Vasquez-Correa et al. [35] 
employed a CNN approach using STFT and continuous 
wavelet transform, achieving an accuracy of up to 89% in 
distinguishing PD patients from healthy speakers. Gunduz [36] 
proposed two CNN frameworks with deep feature extraction 
and achieved an accuracy of up to 86.90%. Sakar et al. [37] 
utilized tunable Q-factor wavelet transform for feature 
extraction and obtained an accuracy of up to 86%. Belhoussine 
et al. [38] focused on optimized wavelet selection in 
combination with MFCC features and SVM classification, 
achieving an accuracy of 86.84%. Finally, Zayrit et al. [39] 
used SVM classification with RBF kernel with Daubechies 
wavelet transform and MFCC features, obtaining an accuracy 
of 81%, but an accuracy of 79% by using SVM with linear 
Kernel. 

Comparing these methods to the novel approach, which 
leverages MSCC, and BSCC with CNN classification to reach 
a 90% accuracy rate, it is evident that these methods 
outperform most of the previously mentioned techniques. This 
suggests that the combination of these advanced cepstral 
coefficients and CNN classification represent a significant 
advancement in the field of PD diagnosis through vocal 
analysis, potentially offering more accurate and reliable results. 
Further research and validation are necessary to confirm these 
findings and assess the practicality of implementing the 
proposed method in clinical settings. 

VII. CONCLUSION 

In summary, this document has delved into the exploration 
of Parkinson's disease through the lens of voice analysis, 
employing various feature extraction methods MFCC, MSCC, 
BFCC, and BSCC, coupled with a classification approach 
employing ANN, CNN, and LSTM. Notably, our findings 
consistently demonstrate that MFCC and BFCC methods 
consistently outperform others, achieving an impressive 
accuracy rate of 90%. These results underscore the potential of 
voice-based diagnostic tools in advancing our understanding 
and early identification of PD, highlighting the promising 
avenues for future research and clinical applications in this 
critical domaine. Subsequent investigations into the diagnosis 
of PD ailment aim to employ diverse neural network 
architectures and algorithms for feature selection on an 
expanded dataset. 
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