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Abstract—The drier bed adsorption processes remove 

moisture from gases and liquids by ensuring product quality, 

extending equipment lifespan, and enhancing safety in various 

applications. The longevity of adsorption beds is quantified by 

net loading capacity values that directly impact the effectiveness 

of the moisture removal process. Predictive modeling has 

emerged as a valuable tool to enhance drier bed adsorption 

systems. Despite the increasing significance of predictive 

modeling in enhancing the efficiency of drier bed adsorption 

processes, the existing methodologies frequently exhibit 

deficiencies in accuracy and flexibility, which are crucial for 

optimizing process performance. This research investigates the 

effectiveness of a hybrid approach combining Long Short-Term 

Memory and Particle Swarm Optimization (LSTM+PSO) as a 

proposed method to predict the net loading capacity of a drier 

bed. The train-test split ratios and rolling origin technique are 

explored to assess model performance. The findings reveal that 

LSTM+PSO with a 70:30 train-test split ratio outperform other 

methods with the lowest error. Bed 1 exhibits an RMSE of 1.31 

and an MSE of 0.91, while Bed 2 archives RMSE and MSE 

values of 0.81 and 0.72, respectively and Bed 3 with an RMSE of 

0.19 and an MSE of 0.13, followed by Bed 4 with an RMSE of 

0.67 and an MSE of 0.36. Bed 5 exhibits an RMSE of 0.42 and an 

MSE of 0.34. Furthermore, this research compares LSTM+PSO 

with LSTM and conventional predictive methods: Support 

Vector Regression, Seasonal Autoregressive Integrated Moving 

Average with Exogenous Variables, and Random Forest.  

Keywords—Adsorption; Long Short-Term Memory; net loading 

capacity; Particle Swarm Optimization; prediction 

I. INTRODUCTION 

Drying is used in various sectors, including agriculture, 
pharmaceuticals, energy, and other process industries, to 
transform liquid within a product into a solid [1], [2]. External 
energy, such as fossil fuel, generates high temperatures in a 
drying system's rotary bet, fluidized bed, spray, tray, impinging 
jet, and pulse combustion dryers [2]–[4]. This method involves 
drying wet goods at high temperatures [3], [4] to ensure the 
best possible performance. Drying techniques range from the 
sun to the oven, freezer, and microwave [3], [5]. Adsorption 

shows more promise than other drying methods when it comes 
to air drying [6]. 

The drier bed adsorption process is widely used across 
various industries [7], [8]. It is an essential parameter for 
estimating the remaining life of the drier bed and must coincide 
with the planned plant shutdown period. The overestimation of 
bed capacity will lead to unexpected moisture breakthroughs, 
resulting in production losses due to the drying out of 
equipment further down the line. In this research, Net Loading 
Capacity (NLC) measures the amount of moisture an 
adsorption bed can absorb before replacing or regenerating. An 
adsorption bed with a longer lifespan can extract more water 
before needing to be replaced or regenerated, which can 
maximize efficiency and save expenses. The challenge of 
accurately measuring dryer process system performance 
remains unaddressed despite its critical role in guaranteeing 
energy conservation, process dependability, and product 
quality [2, 4, and 9]. 

In recent years, Long Short-Term Memory (LSTM) neural 
networks are also known for their ability to model sequential 
data effectively, such as time series or text data. LSTM also 
has advanced potential for prediction modelling in various 
domains such as prediction of crude oil [10]–[12], financial 
[13], energy consumption [14]–[16], and medical [17]. Their 
capability to capture long-range dependencies and adapt to 
changing input patterns makes them a promising tool for 
modelling and predicting the dynamic behaviour of drier bed 
adsorption. However, performing well requires a large number 
of data and substantial computational resources. This makes 
them less suitable for small datasets due to overfitting. 
Furthermore, it can be sensitive to hyperparameter settings 
since finding the appropriate parameter can be time-
consuming. 

The optimization techniques are crucial in improving the 
prediction efficiency of the models. Particle Swarm 
Optimization (PSO) is a robust optimization algorithm inspired 
by birds flying for food, which has been widely applied to 
various optimization problems [18]. The combination and 
integration of PSO with LSTM aims to tackle the information 
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of particles to fine-tune the model parameters and optimize the 
prediction accuracy of the drier bed adsorption model of a 
small number of datasets. 

The contributions of this paper are in the following: 

1) A new particle representation is used for PSO 

implementation in an NLC drier bed performance-based 

molecular sieve. 

2) A novel idea of combining LSTM with a new particle 

representation strategy of a PSO for predicting drier bed 

adsorption capacity, namely LSTM+PSO. 

3) LSTM+PSO facilitates the analysis of temporal 

predictions, optimizing prediction models and improving 

prediction accuracy using a small number of adsorption bed 

life monitoring datasets. 

4) A comparison analysis of LSTM+PSO with LSTM and 

traditional machine learning and statistical methods was 

performed. 

The remainder of paper is organized by sections. Section II 
presents the related work. Section III delves into methodology 
detailing the architecture of the LSTM+PSO model and the 
optimization process. Section IV discusses the proposed 
solution, the model of LSTM+PSO performance with LSTM, 
SVR, and SARIMAX. Section V discusses the performance 
evaluation. Section VI gives the computational results. Section 
VII and Section VIII presents the discussion and conclusion 
respectively. 

II. RELATED WORK 

Adsorption drying reduces the amount of water vapor in 
humid air by passing it through the solid adsorbent level of 
dehydration, which influences the selection of an appropriate 
adsorbent [6], [19]. Adsorbent bed dryers come in various 
configurations, including packed beds, coated channels, and 
annular coated tubes [20]. The bed's efficiency is affected by 
design parameters such as bed length and adsorbent mass [7]. 
The design of the drops must allow for high transfer rates while 
also being appropriately sized accommodating the allowable 
pressure drop [21]. Furthermore, the dryer should be stable 
over long periods of operation, have low toxicity, be corrosion 
resistant, and be cost-effective. Molecular sieves are an 
example of an adsorbent commonly used in natural gas plants 
[19]. The ability of water molecules to diffuse into the pores of 
the adsorbent limits the overall adsorption rate [6]. 

The advantages of adsorption drying include a low impact 
of temperature and pressure on the adsorption process, the use 
of simple equipment, reduced spatial demands, efficient 
humidification capabilities, the ability to use various heat 
sources for adsorbent regeneration, and cost-effective operation 
[6], [21]. The short adsorption-desorption cycles and low-
temperature regeneration techniques are employed that can 
help achieve low operational costs [22]. Adsorption drying has 
several disadvantages, including increased heating costs, 
energy-intensive regeneration processes, and potential sorbent 
abrasion [9], [21]. Various approaches have been proposed to 

improve the limitations of estimating drying capacity to 
achieve optimal drying performance. These include the use of 
mathematical models, simulations of the drying apparatus, and 
machine learning techniques. 

The use of a mathematical model for the drier indicates that 
it causes an increase in drying capacity to optimize the energy 
consumption of an amount of heat [23]. Furthermore, both the 
dryer efficiency and sustainability index demonstrate a 
significant reliance on the extent of heat recovery in the case of 
a spray dryer [24]. On the other hand, the significance of 
materials' drying behavior highlights limitations to enhance 
accuracy and reliability in adopting capillary active insulation 
materials [25]. The mathematical modeling for a multistage 
phosphate pellet roasting process offers the potential for 
significant energy savings [26]. However, there still needs to 
be more research on adsorption dryer beds, especially in the 
prediction of the NLC. 

III. MATERIAL AND METHODS 

This section explains the steps to address the predictive 
analytics challenge in drier bed adsorption, specifically in 
predicting NLC. The research framework begins with data 
acquisition, which involves data collection from five different 
beds: Bed 1, Bed 2, Bed 3, Bed 4, and Bed 5. Next, the data 
undergoes a pre-processing stage where unnecessary or 
irrelevant information, such as bad input and intf shut are 
eliminated to ensure data quality. Additionally, noisy data is 
filtered out to enhance the reliability of the dataset. The next 
step is featuring selection guided by correlation coefficients 
[27], which aims to identify the most relevant features for the 
predictive modeling task. The dataset is divided into training 
and testing subsets, setting the model development stage. 

In the research model development phase, various 
methodologies comparing conventional methods such as 
LSTM, SVR, SARIMAX, and Random Forest are compared 
with the proposed LSTM+PSO. Fig. 1 provides a research 
framework. The data acquisition process involves the 
implementation of an automated procedure. In this research, 
computational analysis has been conducted focuses on the 
process within the drier beds for Bed 1, Bed 2, Bed 3, Bed 4, 
and Bed 5. The components that involve automatic 
breakthrough time identification, the identification and 
checking of the regeneration efficiency, and the identification 
regeneration cycle are all components of this step for each drier 
bed. 

A. Data Pre-processing 

Data pre-processing involves data extraction. The process 
of filtering historical data is handled by data extraction. A few 
steps in data processing are removing unnecessary data such as 
bad input, intf shut, and removing noisy data. Removing 
unnecessary data involves identifying and eliminating columns 
or variables within the dataset that either do not contribute 
valuable information or contain redundant information. During 
data processing, noisy data points are identified and filtered 
out. 
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Fig. 1. Research framework.

B. Features Selection 

The features are chosen based on their correlation with beds 
1, 2, and 3 to identify the most relevant ones. The correlation 
can use two sets of correlation values: {0.1, 0.2, 0.3, 0.4, 0.5} 
and {-0.1, -0.2, -0.3, -0.4, -0.5}, calculated using the Pearson 
correlation coefficient. Eq. (1) presents the Pearson formulas 
for the correlation coefficient [27]. This coefficient ranges 
from -1 to 1. The coefficient value equal to -1 indicates a 
perfect negative correlation. Meanwhile, 1 indicates a perfect 
positive correlation. In addition, a zero value indicates no 
linear correlation between the variables. 

   
∑      ̅       ̅ 

√∑      ̅ 
 ∑      ̅ 

 

 
(1) 

where, in these equations,   represents the correlation 
coefficient,    signifies the values of the variable of   in a 
sample,   denotes the mean (average) of the   variable values, 
   stands for the values of the   variable in a sample, and   
represents the mean (average) of the   variable values. 

C. Establishment of NLC Data 

 NLC data is crucial for predicting drier bed adsorption 
capacity. The values of NLC are drier bed. Historical datasets 
on drier bed adsorption were employed to build predictive and 
validation models. The calculation of NLC includes historical 
data features, regeneration processes, and breakthrough times 
for adsorption. Following the processes, the final datasets for 
each bed are less than 30. The challenge is to achieve good 
prediction accuracy with a small dataset.  

IV. PROPOSED SOLUTION 

The proposed solution combines the strengths of LSTM 
and PSO for a more robust and practical approach for a small 

dataset. The LSTM network provides powerful sequence 
modeling capabilities. Meanwhile, PSO is used to fine-tune 
hyperparameters and optimize the performance of the LSTM 
model. This hybrid approach aims to utilize the strengths of 
both techniques to improve predictive accuracy and overall 
performance. Following are the details of the hybridization of 
LSTM+PSO. 

A. Particle Representation 

A real-value PSO implementation followed the initial PSO 
steps. This representation is new for PSO implementation, 
which supports a new strategy to be embedded in LSTM and a 
drier bed performance-based molecular sieve. Fig. 2 is the 

representation for the particle,   {                 } 
and Dropout (   ). This representation defines the 
characteristics; include a number of layers including DP 
structure, within the optimization process in the search space. 

         

Fig. 2. Particle representation. 

where, the parameters are defined as    represents hidden 
layer 1 with a range of [0.80, 1.28],    represents hidden layer 
2 with a range of [0.80, 2.56], and DP with a range of [0.05, 
0.50]. These parameter definitions specify the allowable values 
or ranges for each parameter within the optimization process of 
LSTM+PSO. Each particle component consists of layers and 
   is randomly initiated in a population. A real value for all 
layers is initiated as in Eq. (2) and Eq. (3). 

                               (2) 

                (3) 
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Where, the variables are defined as x, y, and z represents 
indices used in layer calculations. x is a variable that takes 
values from the set {1, 2, 3, ..., m}. These indices are used for 
referencing through layers within a calculation. A particle 
update procedure was introduced, which is iteratively adjusted 
to identify the optimal model fit for the network. The dynamic 
range update is based on +8 or -8 for    and    values, and DP 
is an increased value of 0.01. Eq. (3) and Eq. (4) present the 
velocity and position formulas for the PSO, respectively. 

                        (         )      

        (              ) 
 (4) 

                          (5) 

where,          represents the updated velocity,     stands 

for the current velocity, Xid denotes the current position, and 
Xid(new) signifies the new position of a particle in a PSO. The 
parameters W represent the inertia weight, while C1 and C2 are 
the acceleration coefficients controlling the impact of personal 
and global best positions on particle movement.    and    are 
random functions or values used for stochastic behaviour. 
          represents the personal best position for a particle 

with the identifier     and           signifies the global best 

position for the same particle identifier within the PSO 
algorithm. 

B. LSTM+PSO Algorithm 

A novel approach is a hybrid model that integrates the PSO 
algorithm and the LSTM; this model is intended to serve the oil 
and gas industry. Algorithm 1 provides an overview of the 
LSTM+PSO method. The LSTM+PSO optimize LSTM 
hyperparameters for prediction. The algorithm begins by 
initialization of particle values in Steps 1-2. This is vital for the 
PSO optimization process. Next, Steps 3-4 are initializing the 
particles with random values. Determine the number of past 
future data points in the LSTM model for Step 5. 

Furthermore, Step 6 defines the objective function the PSO 
algorithm will optimize. This function measures the 
performance of the LSTM model on the given task. Initialize 
particles and iterations number in Steps 7-8. These steps 
specify the number of particles in the PSO optimization and set 
the maximum number of iterations for the PSO algorithm. Step 
9 is loading the dataset that contains the selected features 
relevant to the task from the selected features. Step 10 is 
performing the feature scaling on the dataset to ensure that the 
data is within a consistent range, which is typically important 
for LSTM models. Split the dataset into training and testing 
sets for model evaluation and train the LSTM neural network 
with the initialized particles, which represent different 
configurations of the LSTM model in Steps 11-12. 

Algorithm 1: LSTM+PSO 
1 Begin 

2 Initialize particles 

3 Initialize hidden layers and dropout-based particle values 

4 Initialize learning rate 

5 Set the number of lookbacks, number of future points 

6 Setting up the objective function 

  

7 Initialize particles number 

8 Initialize iterations number 

9 Load dataset from the selected features 

10 Features scaling for LSTM fitting 

11 Set the Train Test Split 

12 Execute LSTM 

13 Calculate Pbest and Gbest values for each particle 

14 Do 

15  For each particle  

16  Calculate the new velocity value, V(new) 

17  Calculate new position, D(new) 

18  Calculate Pbest (new) 

19  Calculate Gbest (new) 

20  For each particle dimension 

21  If current Pbest > current Gbest 

 Update new particle  

22  If current Pbest < current Gbest 

 Update new particle  
23 While (stopping condition is reached) 

24 End 

Moreover, evaluate the performance of each particle 
(LSTM configuration) using the objective function and 
determine the personal best (     ) and global best (     ). 
Step 14-Step 23 begins a loop. Iterate through each particle. 
The particle's velocity is updated based on its current Pbest and 
Gbest positions. The position of the particle is updated using 
the new velocity. Re-evaluate the performance of the particle 
with its new position and update Pbest if it improves in Step 
18. Step 29 is to update the global best (     ) if a particle of 
Pbest is better than the current Gbest. Iterate through each 
dimension of the particle by adjusting the particle dimension 
by subtracting and adding a particle change value in Step 20-
Step 22. Continue the loop until a stopping condition is met, 
such as reaching a maximum number of iterations in Step 23. It 
marks the endpoint when the stopping condition is met or when 
the maximum number of iterations is reached. 

In this research, LSTM is further enhanced by embedding 
the advantages of PSO. In this study, LSTM and PSO are 
combined. PSO can assist in finding an optimal solution, such 
as in obtaining a better architecture of LSTM. Fig. 1 
demonstrates LSTM + PSO architecture. The main steps are 
similar to LSTM, which defines the input size, hidden layer, 
and output size. Input size corresponds to the number of input 
sequences or several features. The hidden layer size specifies 
the number of hidden layers, and the output size is set to 1, 
which indicates the number of items in the output predicts the 
NLC. The PSO elements are embedded for LSTM architecture 
determination. 

V. PERFORMANCE EVALUATION 

The next step is to train the data and define the epochs 
number using the train-test split and rolling origin. RMSE 
measures the average error between predicted and actual 
values, with lower values indicating better model accuracy. 
MAE represents the average absolute error, whereas lower 
values also suggest better model accuracy. Three types of 
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splitting are used: 70:30, 80:20, and 90:10, dividing between 
training and testing data. The model's performance will be 
evaluated by analyzing its ability to predict NLC. 

The RMSE acceptance criteria [28]–[30] are categorized as 
follows: RMSE values falling within the range of   0.75 are 
considered very Good, while those between 0.75 and 1.0 are 
deemed Good. RMSE values ranging from 1.0 to 2.0 are 
labeled as satisfactory, and any RMSE exceeding 2.0 is 
categorized as unsatisfactory. These criteria provide a 
standardized assessment for evaluating the accuracy and 
quality of RMSE values in various applications or studies. 
RMSE equation is a mathematical expression used to quantify 
the average deviation between predicted values ( ̂   and actual 
values (  ) within a regression model, as shown in Eq. (6). 

      √∑
  ̂      

 

 

 

   

 (6) 

The LSTM model also has the best performance based on 
the results of evaluation metrics MAE. The MAE acceptance 
criteria [31], [32], as referenced, are categorized as follows: 
MAE values between 0 and 3 are considered very good. Those 
falling within the range of 3 to 6 are labelled as good. MAE 
values between 6 and 9 are categorized as average, and if the 
MAE falls within the range of 9 to 12, it is referred to as 
variable data. Any MAE exceeding 12 is designated as higher 
variability. These criteria offer a standardized framework for 
assessing the quality and suitability of MAE values in different 
contexts or studies. The MAE equation is a mathematical 
formula used to quantify the variance between the prediction 
(  ) and the real value (  ) by dividing this variance by the 
square root of the number of data points in the observations 
( ), as shown in Eq. (7). 

     
∑ |     |

 
   

 
 (7) 

VI. COMPUTATIONAL RESULTS  

 The computational results involve using root-mean-
squared error (RMSE) and mean-squared error (MAE) metrics. 
These metrics are applied and compared to conventional 
methods using the setting of parameters to assess the 
effectiveness and suitability of the algorithm. 

A. Parameter Setting 

Table I outlines the parameter settings for the LSTM+PSO 
model. It specifies the values assigned to different parameters 
for training and evaluating the model. The train-test split 
parameter determines how the dataset is divided for training 
and testing with options of 90% training and 10% testing, 80% 
training and 20% testing, or 70% training and 30% testing. 

The rolling origin parameter indicates the number of time 
steps considered when making predictions with 1, 2, or 3 
options. The epoch parameter sets the number of times it is 
passed forward and backward through the LSTM network 
during training, which is set at 30. The learning rate parameter 

defines the step size at which the model adjusts its weights 
during optimization, set to 0.1. Finally, the batch size 
parameter determines the number of data points used in each 
iteration of the training process and is set to 256. 

TABLE I.  PARAMETER SETTING OF LSTM+PSO 

Parameter Value 

Train-Test Split 90:10, 80:20, 70:30 

Rolling Origin 1,2,3 

Epoch 30 

Learning Rate 0.1 

Batch Size 256 

Population 30 

B. Computational Results using LSTM+PSO 

The comparison computational results achieved through the 
LSTM+PSO approach are presented in Table II. The data was 
split using a 90:10, 80:20, and 70:30 ratio, which utilized a 
lookback of three for Bed 1, a lookback of two for Bed 2, and a 
lookback of four for Bed 3 for prediction. The LSTM+PSO 
that utilize a Train-Test Split ratio of 70:30 has demonstrated 
its effectiveness across Bed 1, Bed 2, Bed 3, Bed 4, and Bed 5, 
as indicated by both RMSE and MAE evaluations. 

TABLE II.  COMPUTATIONAL RESULT USING TRAIN-TEST SPLIT 

Beds Train-Test Split RMSE MAE 

Bed 1 

90:10 1.68 1.39 

80:20 1.53 1.16 

70:30 1.31 0.91 

Bed 2 

90:10 1.07 1.00 

80:20 0.97 0.90 

70:30 0.81 0.72 

Bed 3 

90:10 0.28 0.21 

80:20 0.21 0.15 

70:30 0.19 0.13 

Bed 4 

90:10 0.71 0.54 

80:20 0.70 0.56 

70:30 0.67 0.36 

Bed 5 

90:10 0.46 0.38 

80:20 0.45 0.37 

70:30 0.42 0.34 

For Bed 1, an RMSE score of 1.31 falls within the 
satisfactory range, indicating that the predictive model provides 
reasonably accurate results for this bed. Furthermore, the MAE 
value of 0.91 is categorized as very good, signifying that the 
model's prediction closely aligns with the actual values. It 
demonstrates a high level of accuracy as compared to other 
percentages of Train-Test Split. Moving on to Bed 2, the 
RMSE score of 0.81 is good, implying that the model delivers 
accurate predictions with a relatively low margin of error. 

Similarly, the MAE value of 0.72 is labeled as very good, 
indicating that the model's performance is highly accurate for 
Bed 2. In addition, for Bed 3, an RMSE score of 0.19 is 
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considered satisfactory. This suggests that the accuracy of the 
model is acceptable. It is worth noting that the MAE value of 
0.13 is once again classified as very good by underscoring the 
model's capability to make highly accurate predictions for Bed 
3. Furthermore, in the case of Bed 4, the RMSE score of 0.67 is 
categorized as good. This indicates that the predictive model 
provides accurate predictions with a relatively small margin of 
error for Bed 4. Additionally, the MAE value of 0.36 is labeled 
as very good and highlights that the model's performance is 
highly accurate when predicting outcomes for Bed 4. Lastly, 
for Bed 5, the RMSE shows a good value, which is 0.42, along 
with the MAE obtained of about 0.34, which indicates good 
performance to the predictive model. 

Table III presents an analysis of performance metrics, 
specifically RMSE and MAE, for various bed types (Bed 1, 
Bed 2, Bed 3) across rolling origin values of 1, 2, and 3. The 
LSTM+PSO approach applied rolling origin has consistently 
proven its effectiveness in predicting outcomes for Bed 1 until 
bed 3, as evidenced by the RMSE and MAE assessments. 
Notably, for Bed 1, the RMSE of 1.78 falls within the 
satisfactory range, while the MAE of 1.62 is categorized as 
very good. Similarly, for Bed 2, the RMSE of 0.82 is deemed 
suitable, and the MAE of 1.08 is labeled very good. For Bed 3, 
the RMSE of 0.70 is considered satisfactory, and the MAE of 
0.14 is classified as very good. 

TABLE III.  COMPUTATIONAL RESULT USING ROLLING ORIGINS 

Types of Beds Rolling Origin RMSE MAE 

Bed 1 

1 1.78 1.62 

2 2.00 1.79 

3 2.46 2.19 

Bed 2 

1 0.82 1.08 

2 0.93 1.18 

3 1.17 1.28 

Bed 3 

1 0.70 0.14 

2 1.21 0.80 

3 1.42 0.38 

C. Computational Results with LSTM and Conventional 

Methods 

The comparison experimental results of conventional 
methods of LSTM, SVR, SARIMAX, Random Forest (RF), 
and LSTM+PSO are shown in Table IV. The choice of 
parameter settings for the split percentage of 70:30 is similar to 
the LSTM+PSO approach. A lower RMSE and MAE suggest 
superior predictive performance and indicate that the model's 
prediction is closer and aligned to the actual values. 

In the case of Bed 1, the SARIMAX and RF models 
showed better results than the LSTM, SVR, and LSTM+PSO 
models. It was evident through their lower values of RMSE 
and MAE. Moreover, it can be observed that LSTM+PSO 
exhibits the highest predictive accuracy in terms of both RMSE 
and MAE metrics for Bed 2, Bed 3, Bed 4, and Bed 5. 
Regardless of SARIMAX and RF demonstrating lower values 
of RMSE and MAE, they are not suitable for forecasting due to 
their inability to accommodate the lookback value, resulting in 
unviable forecast points. 

TABLE IV.  COMPUTATIONAL RESULT WITH CONVENTIONAL METHOD 

Types 

of 

Beds 

Metrics LSTM SVR SARIMAX RF LSTM+PSO 

Bed 1 
RMSE 1.45 2.81 1.18 1.10 1.31 

MAE 1.33 2.79 0.76 0.99 0.91 

Bed 2 
RMSE 0.69 1.08 4.68 1.12 0.61 

MAE 0.53 1.03 3.59 1.04 0.45 

Bed 3 
RMSE 0.55 3.93 3.96 1.26 0.19 

MAE 0.46 3.71 3.50 1.21 0.13 

Bed 4 
RMSE 0.83 1.36 4.68 1.36 0.67 

MAE 0.55 0.99 3.59 1.27 0.36 

Bed 5 
RMSE 0.49 3.94 2.69 1.08 0.42 

MAE 0.32 3.71 2.18 0.85 0.34 

VII. DISCUSSIONS 

LSTM+PSO model, especially when utilizing a train-test 
split ratio of 70:30, is highly effective in predicting results for a 
difference of beds, namely, Bed 1, Bed 2, Bed 3, Bed 4, and 
Bed 5. The model can perform well. The prediction result of 
LSTM+PSO using rolling origin highlights the reliability of the 
LSTM+PSO approach in achieving precise predictions across 
different bed types. However, it is worth noting that the rolling 
origin method, while promising, may utilize only some of the 
dataset as effectively as a fixed train-test split of 70:30, as it 
involves random cross-validation that may exclude some data 
observations [33]. 

The most notable outcome of this study is that the 
LSTM+PSO model outperformed other models such as LSTM, 
SVR, Random Forest, and SARIMAX, as evident by lower 
RMSE and MAE values. It highlights the effectiveness of the 
LSTM+PSO model in making predictions on the dataset. The 
LSTM+PSO can be advantageous in terms of exploration, 
exploitation [34], [35], stochastic search, optimal capability, 
and the ability to handle global and local optima [36], [37]. 
PSO is known for its ability to explore the search space 
effectively. When combined with LSTM, which tends to 
converge quickly to local optima, PSO helps explore different 
regions of the parameter space, potentially leading to better 
global solutions. 

While LSTM is good at fine-tuning, the PSO algorithm 
attracts other particles toward the region. The stochastic 
behaviour helps to escape local optima, which can be 
especially beneficial when combined with LSTM, which tends 
to be deterministic [38]–[40]. LSTM+PSO can harness the 
optimal capability of PSO to find the best set of 
hyperparameters of weights for the LSTM that can lead to 
improved overall model performance. It also allows for a more 
robust optimization process to improve model performance, 
especially in complex and high-dimensional search spaces. 
Thus, PSO is designed to handle both global and local optima 
that complement LSTM's ability to fine-tune models to local 
patterns in small datasets. 

VIII. CONCLUSION 

The LSTM+PSO method is proposed for NLC prediction 
of a drier bed, which can assist manual moisture adsorption 
capacity test. LSTM+PSO utilized a new particle 
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representation to obtain a robust model for predicting outcomes 
for different bed types. Compared with LSTM, SVR RF, and 
SARIMAX, the proposed LSTM+PSO performs better, 
achieving significantly lower RMSE and MAE values for a 
small dataset. Additionally, a new particle representation 
LSTM+PSO, an efficient model, is achieved for predicting 
outcomes on different bed types. This achievement provides 
significant possibilities for improving future investigations 
within this domain. In future research efforts, it is suggested to 
incorporate additional data from alternative sources, such as 
other beds, together with experimental data collected over a 
period. This approach will facilitate the analysis of temporal 
predictions, allowing for the refinement of prediction models 
and the enhancement of prediction accuracy. Additional 
techniques, such as cuckoo search and firefly algorithm will be 
employed in future research to reduce the error and obtain an 
optimal solution. 
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