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Abstract—Traditional user interface (UI) testing methods in 

software development are time-consuming and prone to human 

error, requiring more efficient and accurate approaches. 

Moreover, deep learning requires extensive data training to 

develop accurate automated UI software testing. This paper 

proposes an efficient and accurate method for automating UI 

software testing using Deep learning with training data 

limitations. We propose a novel deep learning-based framework 

suitable for UI element analysis in data-scarce situations, 

focusing on Few-shot learning. Our framework initiates with 

several robust feature extraction modules that employ and 

compare sophisticated encoder models to be adept at capturing 

complex patterns from a sparse dataset. The methodology 

employs the Enrico and UI screen mistake datasets, overcoming 

training data limitations. Utilizing encoder models, including 

CNN, VGG-16, ResNet-50, MobileNet-V3, and EfficientNet-B1, 

the EfficientNet-B1 model excelled in the setting of Few-Shot 

learning with five-shot with an average accuracy of 76.05%. Our 

proposed model's accuracy was improved and compared to the 

state-of-the-art method. Our findings demonstrate the 

effectiveness of few-shot learning in UI screen classification, 

setting new benchmarks in software testing and usability 

evaluation, particularly in limited data scenarios. 

Keywords—Deep learning; efficientnet; few-shot; software 

testing; UI screen classification 

I. INTRODUCTION 

Evaluating a User Interface (UI) in computer science 
requires expertise and partnership to assess its practical 
benefits for the intended users [1]. Improved UI design 
enhances user satisfaction and contributes to increased 
retention and revenue [2]. Fundamental principles in UI design 
involve exploring solutions, identifying specific attributes, and 
actively engaging users in the design process [3]. Despite these 
principles, the manual testing of UIs remains cumbersome due 
to the hands-on verification of requirements [4]. Nowadays, 
computer vision based on neural networks is used to advance 
UI understanding and address this challenge [5]. 

This study's main contribution is applying the few-shot 
learning approach, a notable advancement in computer vision 
based on neural networks, to effectively classify UI screens. 
This approach becomes particularly relevant when dealing with 
limited dataset availability and a diverse range of classes. Our 

implementation involves applying the few-shot learning 
technique to the Enrico dataset, a dataset of UI screens, and 
curating a novel dataset encompassing ten classes that 
represent common UI mistakes. This strategic combination of 
few-shot learning and creating a dedicated dataset allows us to 
explore and enhance UI screen classification in a data-driven 
manner, especially in scenarios with limited data. 

A key advantage of few-shot learning is its ability to handle 
the constraints of limited sample sizes. This is crucial in fields 
like UI testing, where obtaining large, diverse datasets can be 
challenging. Few-shot learning techniques are designed to 
learn effectively from a few examples, making them ideal for 
situations where data scarcity is a critical issue. By leveraging 
this approach, our study aims to demonstrate how advanced 
computer vision based on neural network (see Fig. 1) 
techniques can overcome traditional data limitations, opening 
new avenues for efficient and accurate UI testing. 

II. RELATED WORK 

Deep learning models have brought numerous benefits to 
the software development industry, significantly enhancing 
various tasks, including UI testing [6]. Deep Residual 
Networks (ResNet) have improved considerably image 
classification, surpassing previous methods on ImageNet. The 
successful implementation of ResNet signifies a crucial 
advancement in utilizing deep learning for image classification 
tasks [7]. The success of deep learning frameworks extends to 
automating test case generation and repairing unstable tests in 
functional UI testing [8]. 

The application of deep learning in UI understanding, 
particularly addressing Graphical User Interface (GUI) 
complexity, has been demonstrated in studies such as OwlEye, 
which achieved an 85% precision and 84% recall. It uncovers 
previously-undetected UI display issues in popular Android 
apps [9]. The use of an enhanced dataset from Rico further 
illustrates the effectiveness of deep learning in UI topic 
modeling, achieving notable accuracy in screenshot 
representation [10]. Challenges in machine learning datasets 
for UI modeling, mainly due to manual collection limitations, 
have led to the introduction of large datasets like WebUI, 
emphasizing the need for enhanced visual UI understanding in 
domains with limited labeled data [11]. 
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Fig. 1. Proposed neural network framework. 

 
Fig. 2. Sample of the mistake dataset. 

Furthermore, researchers thoroughly analyzed current few-
shot image classification techniques, categorizing algorithms 
into transfer learning, meta-learning, data augmentation, and 
multimodal approaches to address challenges posed by limited 
sample data [12]. For example, the study introduced 
GenericConv, a new few-shot learning model for scene 
classification. Evaluation of benchmark datasets showed that 
GenericConv successfully addressed imperfections in previous 
attempts, outperforming benchmark models on three datasets 
[13]. Another study focused on Few-shot Class Incremental 

Learning (FSCIL) in real-world applications, introducing the 
Efficient Prototype Replay and Calibration (EPRC) method. 
EPRC significantly improved classification performance on 
CIFAR-100 and miniImageNet compared to mainstream 
FSCIL methods [14]. In medical imaging, a groundbreaking 
study proposed a novel few-shot learning method for 
classifying heart diseases, achieving high segmentation 
performance and a remarkable 92% accuracy in classifying 
cardiomyopathy patient groups, even without additional 
clinical features [15]. 
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Fig. 3. Encoder Architecture 

III. PROPOSED METHOD 

A. Neural Network Architecture 

Our method utilizes a neural network architecture 
comprising an encoder and an adaptive classifier for few-shot 

learning. We compare commonly used encoders, including 
basic CNN, VGG-16, ResNet-50, MobileNet-V3, and 
EfficientNet-B1, as illustrated in Fig. 3. This experiment marks 
a novel chapter by leveraging these robust architectures to train 
the Few-Shot Classification model. The output of these 
encoders is fed into an adaptive classifier model configured for 
a few-shot setting. 

1) Basic CNN consists of alternating layers of convolution 

and pooling. Convolutional layers detect local features in the 

image, while pooling layers reduce the spatial size of the 

representation, decreasing the number of parameters and 

computation in the network, which helps prevent overfitting. 

2) VGG-16 [16], developed by the Visual Geometry 

Group at the University of Oxford, is a widely used 

convolutional neural network (CNN) architecture for image 

classification. With 16 layers, including 13 convolutional 

layers and three fully connected layers, VGG-16 excels in 

feature extraction. The convolutional layers employ small, 

local filters, capturing hierarchical features as input 

progresses. The subsequent pooling layers enhance 

computational efficiency and translation invariance. The final 

fully connected layers process high-level features, mapping 

them to specific classes for classification. While VGG-16's 

deep and intuitive design proves effective in various computer 

vision tasks, its computational cost limits real-time 

applications despite being a foundational model for advanced 

CNN architectures. 

3) ResNet-50 [17], developed by Microsoft Research, is a 

deep convolutional neural network (CNN) renowned for 

overcoming challenges in training intense networks. Utilizing 

the concept of residual learning, it introduces skip connections 

to mitigate the vanishing gradient problem, facilitating the 

training of deeper networks. Its architecture, featuring residual 

blocks with skip connections, allows the extraction of intricate 

features. The initial convolutional layers detect low-level 

features, while residual blocks, incorporating multiple 

convolutional layers, use skip connections to learn residual 

functions. Maximum-pooling layers aid computational 

efficiency, and fully connected layers map the known features 

for classification. ResNet-50's innovative architecture enables 

the training of intense networks, proving highly effective in 

various computer vision tasks, notably image classification 

and object recognition. 

4) MobileNet-V3 [18], developed by Google, is a 

lightweight convolutional neural network (CNN) tailored for 

efficient and accurate computer vision tasks on mobile and 

edge devices. The model prioritizes high performance while 

minimizing computational resources, introducing innovative 

features like inverted residuals and linear bottlenecks to 

optimize efficiency. Inverted residuals utilize lightweight 

depthwise separable convolutions, reducing parameters and 

computational load, while linear bottlenecks balance 

representational capacity and computational cost. Integration 

of Squeeze and Excitation (SE) blocks enhances feature 

recalibration, focusing on crucial channels. MobileNetV3's 
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multiple building blocks collectively form a streamlined and 

efficient architecture suitable for resource-constrained 

environments. This design makes it ideal for applications on 

devices with limited computational resources, offering a 

commendable trade-off between accuracy and model size in 

various computer vision tasks, particularly on mobile and edge 

platforms. 

5) EfficientNet-B1 [19], a member of the EfficientNet 

family developed by Google, is a convolutional neural 

network (CNN) designed to attain high accuracy with minimal 

computational complexity. Characterized by balanced scaling 

of depth, width, and resolution, it optimizes performance 

across these dimensions. Employing a compound scaling 

method, EfficientNet-B1 ensures efficient feature extraction at 

various abstraction levels. Increasing depth, width, and 

resolution enhances the model's capacity to capture complex 

and diverse features. Compounding scaling achieves a 

harmonious balance, maximizing computational resources and 

performance. This enables EfficientNet-B1 to achieve state-

of-the-art accuracy on various computer vision tasks while 

maintaining a low computational cost. Its adaptability in 

handling different scaling factors makes it particularly 

advantageous for resource-constrained environments, striking 

an optimal balance between accuracy and model size. 

B. Few Short Classification 

The classification model was built using the few-shot 
learning approach to deal with restricted data. In itself the 
meta-learning mode, few-shot terminology is used to train 
many samples during the training phase; an episode of    was 
made up of two types of sets: support 

set   {(         )   (         )}  and query set   
*         +. The number of   and   was restricted for each 
iteration based on  -way, which specifies the number of 
classes, and  -short or  -query, which denotes the number of 
samples in each class. The few-shot model is divided into two 
parts: encoder and classifier. 

In this work, a dynamic classifier based on an adaptive 

subspace [20] was applied. The subspace was used for 

classification, as well as the shortest distance between the data 

points and their projection into the subspace. A collection of 

samples encoded by may be stated as  ̃   [  (    )  

       (    )    ]  where    
 

 
∑        

(  )  For 

instance,   is the query set, and the subspace classifier 

computation is as follows: 

      (    )(  ( )    )  
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where,        
  and     signify the offset between the 

data point and the subspace,    is the truncated matrix of 
matrix    with an orthogonal basis for linear subspace 

spanning    *  (  )     + (        
     ). 

The chance of a query falling into class c may be calculated 
using the SoftMax function, which is written as follows: 
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Backpropagation through singular value decomposition can 
be used to minimize the negative log from     . 

During training, the projection metric on Grassmannian 
geometry was utilized as a discriminative approach to 
maximize the margin between two subspaces    and   , and it 

is defined as follows: 
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the projection metric was maximized by reducing     
      

  

and then developing a loss function as stated in Eq. (4);    

may then be used to update  . 
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IV. EMPIRICAL RESEARCH METHODOLOGY 

A. Dataset 

1) Enrico dataset [10], is a carefully selected subset 

originating from Rico, an extensive mobile app dataset. 

Enrico, a short form for Enhanced Rico, comprises 1,460 UIs 

categorized into 20 specific design topics. Each category 

delineates particular UI features, contributing to a detailed 

comprehension of mobile app design. These topics encompass 

diverse aspects such as Bare (largely unused area), Dialer 

(number entry), Camera (camera functionality), Chat (chat 

functionality), Editor (text/image editing), Form (form-filling 

functionality), Gallery (grid-like layout with images), List 

(elements organized in a column), Login (input fields for 

logging), Maps (geographic display), MediaPlayer (music or 

video player), Menu (items listed in an overlay or aside), 

Modal (popup-like window), News (snippets list: image, title, 

text), Other (everything else, considered as a rejection class), 

Profile (information on a user profile or product), Search 

(search engine functionality), Settings (controls to change app 

settings), Terms (terms and conditions of service), and 

Tutorial (onboarding screen). 

2) The Mistake Dataset is a dataset proposed by this paper 

as shown in Fig. 2. This dataset consists of 200 user interfaces 

(UI) categorized into 10 specific design topics. Each category 

describes specific UI features that contribute to a detailed 

understanding of mobile device UI design. These topics 

encompass various aspects such as pointless inconsistency 

design, inapproriate use of shadows, lack of text hierarchy, 

bad iconnography, unaligned elements, low contrast, poor 

typography choices, tiny touch targets, text overlap, and error 

message clarity. For detailed explanations regarding the 10 

design topics, (see Table I). 
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TABLE I.  DESCRIPTION MISTAKE DATASET 

No UI Component Description 

1 Pointless inconsistency design Identifying inconsistencies in layout across different screens or resolutions 

2 Inapproriate use of shadows Pay attention to the depth of the shadow, they should create a sense of realism and hierarchy 

3 Lack of text hierarchy The text format must have a contract between each text style and the title style 

4 Bad iconnography Ensuring icons are correctly displayed and recognizable 

5 Unaligned elements Detecting misaligned text, buttons, image or other 

6 Low contrast Identifying poor contrast between text and background, affecting readability 

7 Poor typography choices Font selection, font size, spacing and alignment must be taken into account to facilitate readability 

8 Tiny touch targets The size of the touch target must be taken into account with the size of the screen 

9 Text overlap Spotting instances where text overlaps with UI elements 

10 Error message clarity Ensuring that error message are clear, concise, and appropriately placed 

B. UI Understanding and Methodology 

The initial technologies developed for understanding app 
user interfaces operate at either the application or screen level, 
aiming to inspire new designs by exploring existing relevant 
ones. For instance, [21] creates a searchable gallery of UI 
element ideas based on app pictures. Enrico [10] draws 
inspiration from extensive datasets that are too vast to browse 
effectively, showcasing the evolving landscape of UI 
exploration. 

To enhance design analysis and automation, screen type or 
functionality classification from a screenshot proves beneficial. 
Enrico [10], a dataset with 1460 samples (a subset of Rico 
[22]), categorizes each screenshot into one of 20 design 
categories. However, the limited dataset size poses challenges 
for training deep learning classification models. Despite having 
a vast online dataset, it lacks screen type annotations, 
preventing the utilization of the pre-training method employed 
for element recognition. 

In the methods section of our research, we present a 
strategic solution to overcome the limitations of small datasets 
in training deep learning models for UI screen classification. 
By integrating a Few-Shot Learning Approach for UI Screen 
Classification, we enable our models to perform effectively 
with the Enrico [10] dataset, which comprises a modest 
collection of 1460 samples. This approach is tailored to 
efficiently learn from a constrained number of data points, thus 
allowing accurate classification of each screenshot into one of 
the proposed 20 design categories. The few-shot learning 
technique is pivotal in our methodology, as it addresses the 
challenge of dataset scarcity, a common obstacle in the realm 
of UI design analysis. 

Further augmenting our methodological framework, we 
have developed a dataset named “Mistake of UI Screen”, 
encompassing 10 classes of prevalent UI design errors, 
alongside the use of the Enrico dataset. This dataset is crafted 
to refine our models' ability to not only discern various UI 
elements but also to detect and classify typical design flaws 
systematically. The development of this dataset, alongside the 
application of few-shot learning, constitutes a robust approach 
to enhancing the precision of screen classification, thereby 
contributing significantly to the field of UI design and 
evaluation. 

V. EXPERIMENTAL RESULT 

In this study, a few-shot learning approach was applied 
using Enrico dataset with 20 class and Mistake dataset with 10 
class. Randomly selects 40 data per class and splits them to 
50% training and 50% validation phase with balanced class 
distribution. During testing phase, we randomly sampled 
query images along with the support set from the validation 
phase, repeating this process twenty-five times and ultimately 
applying majority voting in a few-shot setting. Settings used 
were five-way for all phases, five-shot on support and query 
sets, and 200 episodes for each epoch. Training iteration using 
10 epochs for Enrico dataset referring to original paper and 25 
epochs for Mistake dataset with learning rate of 1 x 10

-3
 

optimized by Adam and lambda of 0.03. Few-shot model ran 
on an i7 processor with RTX 2060 SUPER. 

A. Model Implementation 

1) Model and shot setting in enrico dataset: Our 
assessment of model performance involved a sequence of 
experiments using the validation subset of the Enrico dataset. 
Table II compiles the accuracy figures for five models: CNN, 
VGG-16, ResNet-50, MobileNet-V3, and EfficientNet-B1, 
across five separate experiments. The table outlines each 
model's individual experiment results, along with their 
respective average accuracies and standard deviations. 
EfficientNet-B1 emerged as the top performer, boasting an 
average accuracy of 76.05% with a standard deviation of 
1.1618%. The findings suggest that models, particularly those 
with depth and designed for efficiency that leverage pre-
trained networks, have the potential to enhance 
generalizability. 

The comparison across models were proposed to further 
investigated the influence of training variation on the 
performance of EfficientNet-B1. Table III shows the accuracy 
results for EfficientNet-B1 when trained with varying shots 
numbers on validation subset of the Enrico dataset. These 
conditions ranged from 1 to 5-shot training, with each tested 
over five experimental runs. The data indicates that increasing 
the number of shots enhances both the accuracy and stability 
of the model's performance. Definitely, the five-shot trained 
EfficientNet-B1 achieved a highest average accuracy, 
prominence that a greater number of shots correlate with 
improved model performance. 
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TABLE II.  ACCURACY RESULT FOR DIFFERENT MODELS APPLIED TO THE ENRICO DATASET ON THE VALIDATION SUBSET  

Model Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Average 
Standard 

Deviation 

CNN 0.4020 0.4219 0.4108 0.3976 0.4008 0.4066 0.009843 

VGG-16 0.3120 0.4020 0.3506 0.3013 0.3702 0.3472 0.041501 

ResNet-50 0.4800 0.4480 0.4373 0.5164 0.5004 0.4764 0.033632 

MobileNet-V3 0.7012 0.7230 0.7012 0.7148 0.7119 0.7104 0.009349 

EfficientNet-B1 0.7650 0.7432 0.7506 0.7703 0.7732 0.7605 0.011618 

TABLE III.  ACCURACY RESULT FOR EFFICIENTNET-B1 WITH VARIOUS SHOTS APPLIED TO THE ENRICO DATASET ON THE VALIDATION SET  

Number of 

Shots 
Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Average 

Standard 

Deviation 

1-shot 0.5078 0.6800 0.5509 0.5509 0.5860 0.5751 0.064853 

2-shot 0.6800 0.6530 0.6230 0.6002 0.6230 0.6358 0.031002 

3-shot 0.6800 0.7100 0.6980 0.6800 0.7098 0.6956 0.015012 

4-shot 0.7011 0.7130 0.7266 0.6980 0.7100 0.7097 0.011263 

5-shot 0.7650 0.7432 0.7506 0.7703 0.7732 0.7605 0.011618 
 

TABLE IV.  ACCURACY RESULT FOR EFFICIENTNET-B1 WITH 5- SHOT 

APPLIED TO THE MISTAKE DATASET ON THE VALIDATION SET 

Experiment Accuracy 

Experiment 1 0.3737 

Experiment 2 0.4800 

Experiment 3 0.3820 

Experiment 4 0.4670 

Experiment 5 0.4302 

Average 0.4266 

Standard Deviation 0.0431 

2) Model and shot setting in mistake dataset: The 

assessment of the performance EfficientNet-B1 model with 

five-shot by testing were applied on the validation subset of 

the Mistake Dataset. The results of this investigation are 

shows in Table IV about details the model's accuracy across 

five experiments. These experiments were designed to 

evaluate the model's ability to predict accurately under 

different conditions. The overall performance is summarized 

by the mean accuracy, calculated to be 42.66%. Additionally, 

the standard deviation of the accuracy, at 0.0431, indicates a 

relatively small variability in the model's performance 

throughout the trials, suggesting a stable accuracy profile for 

the EfficientNet-B1 on this dataset. 

B. Comparison with other Method 

Table V shows a brief accuracy comparison of various 
models on Enrico dataset. It contrasts the performance of a 
model trained on the Screenshot data from the Enrico dataset, 
achieving 75.8% accuracy, with that of the VGG-16 and 
Noisy ResNet-50 models trained on the Enrico dataset, which 
have accuracies of 47.4% and 46.5% respectively. Our 
adaptation of the EfficientNet-B1 model also performed 
notably well, with an accuracy close to the top-performing 

Screenshot model at 76.1%. These outcomes demonstrate the 
strong performance of our EfficientNet-B1 model, which 
nearly matches the leading model and substantially exceeds 
the performance of established architectures like VGG-16 and 
Noisy ResNet-50. EfficientNet-B1 achieves higher accuracy 
than CNN, VGG-16, ResNet-50, and MobileNet-V3 due to its 
optimized balance of depth, width, and resolution in the 
network architecture. It is designed using a compound scaling 
method to scale these three dimensions efficiently and in 
harmony. This results in more effective and efficient use of 
computational resources and better performance on limited 
data, as in Few Shot learning scenarios, making it particularly 
suitable for the complex task of UI screen classification. 

TABLE V.  ACCURACY COMPARISON ON OTHER METHOD  

Model Configuration Accuracy 

Screenshot [10] 75.8% 

VGG-16 [23] 47.4% 

Noisy ResNet-50 [23] 46.5% 

EfficientNet-B1 (our) 76.1% 

VI. DISCUSSION 

In the discussion section of our analysis, we delve into the 
substances and insights derived from our research findings. We 
initiate by examining our model's impact on the Enrico and 
Mistake datasets, scrutinizing how the few-shot learning 
approach adapts to each dataset's unique characteristics. The 
transition was used to discuss the broader implications of our 
model on UI screen classification, highlighting the 
advancements and the potential it unlocks for future 
applications. Finally, we address the limitations encountered 
during our research and offer suggestions for future studies to 
build upon our work. 

A. Model Impact on each Dataset 

The application of our neural network model to the Enrico 
dataset demonstrated remarkable adaptability, as evidenced by 
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the high accuracy rates achieved across diverse UI screen 
types. This success is attributed to the model's ability to learn 
from limited examples, a testament to the efficacy of few-shot 
learning. Conversely, when applied to the Mistake dataset, 
which contained a different array of UI screen errors, the 
model faced distinct challenges, reflecting the nuances and 
complexity of classifying a wider variety of mistakes. These 
observations underscore the need for tailored approaches when 
dealing with datasets of varying natures. 

B. Improved UI Screen Classification 

Our model represents a significant step forward in the 
realm of UI screen classification. By leveraging few-shot 
learning, we have shown that it is possible to achieve high 
levels of precision with limited training data, a scenario 
common in real-world settings. This advancement is 
particularly promising for the development sector, where rapid 
and accurate UI assessment can streamline the design process, 
reduce costs, and enhance the end-user experience. 

C. Limitation and Suggestion 

Our primary constraint was the size and diversity of the 
datasets, which may affect the model's ability to generalize 
across a broader range of UI designs. For future work, we 
suggest expanding the datasets to include a more varied set of 
UI screens and errors. Further, investigating other few-shot 
learning configurations and incorporating user feedback in the 
training loop could refine the model's performance and 
applicability. 

VII. CONCLUSION 

In this paper, we propose an efficient and accurate method 
for automating user interface (UI) testing using Deep learning 
with training data limitations. This research proposes a novel 
deep learning-based framework that marks a pivotal 
advancement in user interface (UI) testing, demonstrating the 
powerful capabilities of few-shot learning in UI screen 
classification. The framework initiates with several robust 
feature extraction modules that employ and compare 
sophisticated encoder models (CNN, VGG-16, ResNet-50, 
MobileNet-V3, and EfficientNet-B1) to be adept at capturing 
complex patterns from a sparse dataset. EfficientNet-B1 
achieves higher accuracy than CNN, VGG-16, ResNet-50, and 
MobileNet-V3 due to its optimized balance of depth, width, 
and resolution in the network architecture. It is designed using 
a compound scaling method to scale these three dimensions 
efficiently and in harmony. This results in more effective and 
efficient use of computational resources and better 
performance on limited data, as in Few Shots learning 
scenarios, making it particularly suitable for the complex task 
of UI screen classification. Moreover, our proposed model's 
accuracy was improved and compared to the state-of-the-art 
method using the Enrico dataset. Our utilization of the Enrico 
and Mistake datasets confirmed the model's ability to 
accurately classify a broad spectrum of UI screens with limited 
training data, illuminating its proficiency in detecting and 
categorizing intricate UI errors. For the rapidly evolving 
domain of software development, our model offers a scalable 
and efficient solution to the perennial challenge of UI testing. 
This is crucial for the development sector, where quick, 
reliable UI assessments can significantly expedite the design 

process, cut costs, and elevate the end-user experience. 
Moreover, this study paves the way for future research 
endeavors. The challenges we encountered due to our datasets 
limited size and diversity underline the need for more 
expansive and varied data in further investigations. Such 
efforts could refine the model's applicability and accuracy, 
integrating user feedback and diverse learning configurations 
into the development process. 
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