
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

578 | P a g e

www.ijacsa.thesai.org

Enhancing Software User Interface Testing Through

Few Shot Deep Learning: A Novel Approach for

Automated Accuracy and Usability Evaluation

Aris Puji Widodo
1*

, Adi Wibowo
2
, Kabul Kurniawan

3

Dept. of Computer Science, Universitas Diponegoro, Semarang, Indonesia
1, 2

Dept. Information Systems and Operations Management, Vienna University of Economics and Business (WU), Vienna, Austria
3

Abstract—Traditional user interface (UI) testing methods in

software development are time-consuming and prone to human

error, requiring more efficient and accurate approaches.

Moreover, deep learning requires extensive data training to

develop accurate automated UI software testing. This paper

proposes an efficient and accurate method for automating UI

software testing using Deep learning with training data

limitations. We propose a novel deep learning-based framework

suitable for UI element analysis in data-scarce situations,

focusing on Few-shot learning. Our framework initiates with

several robust feature extraction modules that employ and

compare sophisticated encoder models to be adept at capturing

complex patterns from a sparse dataset. The methodology

employs the Enrico and UI screen mistake datasets, overcoming

training data limitations. Utilizing encoder models, including

CNN, VGG-16, ResNet-50, MobileNet-V3, and EfficientNet-B1,

the EfficientNet-B1 model excelled in the setting of Few-Shot

learning with five-shot with an average accuracy of 76.05%. Our

proposed model's accuracy was improved and compared to the

state-of-the-art method. Our findings demonstrate the

effectiveness of few-shot learning in UI screen classification,

setting new benchmarks in software testing and usability

evaluation, particularly in limited data scenarios.

Keywords—Deep learning; efficientnet; few-shot; software

testing; UI screen classification

I. INTRODUCTION

Evaluating a User Interface (UI) in computer science
requires expertise and partnership to assess its practical
benefits for the intended users [1]. Improved UI design
enhances user satisfaction and contributes to increased
retention and revenue [2]. Fundamental principles in UI design
involve exploring solutions, identifying specific attributes, and
actively engaging users in the design process [3]. Despite these
principles, the manual testing of UIs remains cumbersome due
to the hands-on verification of requirements [4]. Nowadays,
computer vision based on neural networks is used to advance
UI understanding and address this challenge [5].

This study's main contribution is applying the few-shot
learning approach, a notable advancement in computer vision
based on neural networks, to effectively classify UI screens.
This approach becomes particularly relevant when dealing with
limited dataset availability and a diverse range of classes. Our

implementation involves applying the few-shot learning
technique to the Enrico dataset, a dataset of UI screens, and
curating a novel dataset encompassing ten classes that
represent common UI mistakes. This strategic combination of
few-shot learning and creating a dedicated dataset allows us to
explore and enhance UI screen classification in a data-driven
manner, especially in scenarios with limited data.

A key advantage of few-shot learning is its ability to handle
the constraints of limited sample sizes. This is crucial in fields
like UI testing, where obtaining large, diverse datasets can be
challenging. Few-shot learning techniques are designed to
learn effectively from a few examples, making them ideal for
situations where data scarcity is a critical issue. By leveraging
this approach, our study aims to demonstrate how advanced
computer vision based on neural network (see Fig. 1)
techniques can overcome traditional data limitations, opening
new avenues for efficient and accurate UI testing.

II. RELATED WORK

Deep learning models have brought numerous benefits to
the software development industry, significantly enhancing
various tasks, including UI testing [6]. Deep Residual
Networks (ResNet) have improved considerably image
classification, surpassing previous methods on ImageNet. The
successful implementation of ResNet signifies a crucial
advancement in utilizing deep learning for image classification
tasks [7]. The success of deep learning frameworks extends to
automating test case generation and repairing unstable tests in
functional UI testing [8].

The application of deep learning in UI understanding,
particularly addressing Graphical User Interface (GUI)
complexity, has been demonstrated in studies such as OwlEye,
which achieved an 85% precision and 84% recall. It uncovers
previously-undetected UI display issues in popular Android
apps [9]. The use of an enhanced dataset from Rico further
illustrates the effectiveness of deep learning in UI topic
modeling, achieving notable accuracy in screenshot
representation [10]. Challenges in machine learning datasets
for UI modeling, mainly due to manual collection limitations,
have led to the introduction of large datasets like WebUI,
emphasizing the need for enhanced visual UI understanding in
domains with limited labeled data [11].

*Corresponding Author.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

579 | P a g e

www.ijacsa.thesai.org

Fig. 1. Proposed neural network framework.

Fig. 2. Sample of the mistake dataset.

Furthermore, researchers thoroughly analyzed current few-
shot image classification techniques, categorizing algorithms
into transfer learning, meta-learning, data augmentation, and
multimodal approaches to address challenges posed by limited
sample data [12]. For example, the study introduced
GenericConv, a new few-shot learning model for scene
classification. Evaluation of benchmark datasets showed that
GenericConv successfully addressed imperfections in previous
attempts, outperforming benchmark models on three datasets
[13]. Another study focused on Few-shot Class Incremental

Learning (FSCIL) in real-world applications, introducing the
Efficient Prototype Replay and Calibration (EPRC) method.
EPRC significantly improved classification performance on
CIFAR-100 and miniImageNet compared to mainstream
FSCIL methods [14]. In medical imaging, a groundbreaking
study proposed a novel few-shot learning method for
classifying heart diseases, achieving high segmentation
performance and a remarkable 92% accuracy in classifying
cardiomyopathy patient groups, even without additional
clinical features [15].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

580 | P a g e

www.ijacsa.thesai.org

Fig. 3. Encoder Architecture

III. PROPOSED METHOD

A. Neural Network Architecture

Our method utilizes a neural network architecture
comprising an encoder and an adaptive classifier for few-shot

learning. We compare commonly used encoders, including
basic CNN, VGG-16, ResNet-50, MobileNet-V3, and
EfficientNet-B1, as illustrated in Fig. 3. This experiment marks
a novel chapter by leveraging these robust architectures to train
the Few-Shot Classification model. The output of these
encoders is fed into an adaptive classifier model configured for
a few-shot setting.

1) Basic CNN consists of alternating layers of convolution

and pooling. Convolutional layers detect local features in the

image, while pooling layers reduce the spatial size of the

representation, decreasing the number of parameters and

computation in the network, which helps prevent overfitting.

2) VGG-16 [16], developed by the Visual Geometry

Group at the University of Oxford, is a widely used

convolutional neural network (CNN) architecture for image

classification. With 16 layers, including 13 convolutional

layers and three fully connected layers, VGG-16 excels in

feature extraction. The convolutional layers employ small,

local filters, capturing hierarchical features as input

progresses. The subsequent pooling layers enhance

computational efficiency and translation invariance. The final

fully connected layers process high-level features, mapping

them to specific classes for classification. While VGG-16's

deep and intuitive design proves effective in various computer

vision tasks, its computational cost limits real-time

applications despite being a foundational model for advanced

CNN architectures.

3) ResNet-50 [17], developed by Microsoft Research, is a

deep convolutional neural network (CNN) renowned for

overcoming challenges in training intense networks. Utilizing

the concept of residual learning, it introduces skip connections

to mitigate the vanishing gradient problem, facilitating the

training of deeper networks. Its architecture, featuring residual

blocks with skip connections, allows the extraction of intricate

features. The initial convolutional layers detect low-level

features, while residual blocks, incorporating multiple

convolutional layers, use skip connections to learn residual

functions. Maximum-pooling layers aid computational

efficiency, and fully connected layers map the known features

for classification. ResNet-50's innovative architecture enables

the training of intense networks, proving highly effective in

various computer vision tasks, notably image classification

and object recognition.

4) MobileNet-V3 [18], developed by Google, is a

lightweight convolutional neural network (CNN) tailored for

efficient and accurate computer vision tasks on mobile and

edge devices. The model prioritizes high performance while

minimizing computational resources, introducing innovative

features like inverted residuals and linear bottlenecks to

optimize efficiency. Inverted residuals utilize lightweight

depthwise separable convolutions, reducing parameters and

computational load, while linear bottlenecks balance

representational capacity and computational cost. Integration

of Squeeze and Excitation (SE) blocks enhances feature

recalibration, focusing on crucial channels. MobileNetV3's

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

581 | P a g e

www.ijacsa.thesai.org

multiple building blocks collectively form a streamlined and

efficient architecture suitable for resource-constrained

environments. This design makes it ideal for applications on

devices with limited computational resources, offering a

commendable trade-off between accuracy and model size in

various computer vision tasks, particularly on mobile and edge

platforms.

5) EfficientNet-B1 [19], a member of the EfficientNet

family developed by Google, is a convolutional neural

network (CNN) designed to attain high accuracy with minimal

computational complexity. Characterized by balanced scaling

of depth, width, and resolution, it optimizes performance

across these dimensions. Employing a compound scaling

method, EfficientNet-B1 ensures efficient feature extraction at

various abstraction levels. Increasing depth, width, and

resolution enhances the model's capacity to capture complex

and diverse features. Compounding scaling achieves a

harmonious balance, maximizing computational resources and

performance. This enables EfficientNet-B1 to achieve state-

of-the-art accuracy on various computer vision tasks while

maintaining a low computational cost. Its adaptability in

handling different scaling factors makes it particularly

advantageous for resource-constrained environments, striking

an optimal balance between accuracy and model size.

B. Few Short Classification

The classification model was built using the few-shot
learning approach to deal with restricted data. In itself the
meta-learning mode, few-shot terminology is used to train
many samples during the training phase; an episode of was
made up of two types of sets: support

set {() ()} and query set
* +. The number of and was restricted for each
iteration based on -way, which specifies the number of
classes, and -short or -query, which denotes the number of
samples in each class. The few-shot model is divided into two
parts: encoder and classifier.

In this work, a dynamic classifier based on an adaptive

subspace [20] was applied. The subspace was used for

classification, as well as the shortest distance between the data

points and their projection into the subspace. A collection of

samples encoded by may be stated as ̃ [()

 ()] where

∑

() For

instance, is the query set, and the subspace classifier

computation is as follows:

 ()(())
  (1)

where,
 and signify the offset between the

data point and the subspace, is the truncated matrix of
matrix with an orthogonal basis for linear subspace

spanning * () + (
).

The chance of a query falling into class c may be calculated
using the SoftMax function, which is written as follows:

 ()
 (())

∑ (())
 (2)

Backpropagation through singular value decomposition can
be used to minimize the negative log from .

During training, the projection metric on Grassmannian
geometry was utilized as a discriminative approach to
maximize the margin between two subspaces and , and it

is defined as follows:

 () ||

 ||

  (3)

the projection metric was maximized by reducing

and then developing a loss function as stated in Eq. (4);

may then be used to update .

∑ () ∑

 (4)

IV. EMPIRICAL RESEARCH METHODOLOGY

A. Dataset

1) Enrico dataset [10], is a carefully selected subset

originating from Rico, an extensive mobile app dataset.

Enrico, a short form for Enhanced Rico, comprises 1,460 UIs

categorized into 20 specific design topics. Each category

delineates particular UI features, contributing to a detailed

comprehension of mobile app design. These topics encompass

diverse aspects such as Bare (largely unused area), Dialer

(number entry), Camera (camera functionality), Chat (chat

functionality), Editor (text/image editing), Form (form-filling

functionality), Gallery (grid-like layout with images), List

(elements organized in a column), Login (input fields for

logging), Maps (geographic display), MediaPlayer (music or

video player), Menu (items listed in an overlay or aside),

Modal (popup-like window), News (snippets list: image, title,

text), Other (everything else, considered as a rejection class),

Profile (information on a user profile or product), Search

(search engine functionality), Settings (controls to change app

settings), Terms (terms and conditions of service), and

Tutorial (onboarding screen).

2) The Mistake Dataset is a dataset proposed by this paper

as shown in Fig. 2. This dataset consists of 200 user interfaces

(UI) categorized into 10 specific design topics. Each category

describes specific UI features that contribute to a detailed

understanding of mobile device UI design. These topics

encompass various aspects such as pointless inconsistency

design, inapproriate use of shadows, lack of text hierarchy,

bad iconnography, unaligned elements, low contrast, poor

typography choices, tiny touch targets, text overlap, and error

message clarity. For detailed explanations regarding the 10

design topics, (see Table I).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

582 | P a g e

www.ijacsa.thesai.org

TABLE I. DESCRIPTION MISTAKE DATASET

No UI Component Description

1 Pointless inconsistency design Identifying inconsistencies in layout across different screens or resolutions

2 Inapproriate use of shadows Pay attention to the depth of the shadow, they should create a sense of realism and hierarchy

3 Lack of text hierarchy The text format must have a contract between each text style and the title style

4 Bad iconnography Ensuring icons are correctly displayed and recognizable

5 Unaligned elements Detecting misaligned text, buttons, image or other

6 Low contrast Identifying poor contrast between text and background, affecting readability

7 Poor typography choices Font selection, font size, spacing and alignment must be taken into account to facilitate readability

8 Tiny touch targets The size of the touch target must be taken into account with the size of the screen

9 Text overlap Spotting instances where text overlaps with UI elements

10 Error message clarity Ensuring that error message are clear, concise, and appropriately placed

B. UI Understanding and Methodology

The initial technologies developed for understanding app
user interfaces operate at either the application or screen level,
aiming to inspire new designs by exploring existing relevant
ones. For instance, [21] creates a searchable gallery of UI
element ideas based on app pictures. Enrico [10] draws
inspiration from extensive datasets that are too vast to browse
effectively, showcasing the evolving landscape of UI
exploration.

To enhance design analysis and automation, screen type or
functionality classification from a screenshot proves beneficial.
Enrico [10], a dataset with 1460 samples (a subset of Rico
[22]), categorizes each screenshot into one of 20 design
categories. However, the limited dataset size poses challenges
for training deep learning classification models. Despite having
a vast online dataset, it lacks screen type annotations,
preventing the utilization of the pre-training method employed
for element recognition.

In the methods section of our research, we present a
strategic solution to overcome the limitations of small datasets
in training deep learning models for UI screen classification.
By integrating a Few-Shot Learning Approach for UI Screen
Classification, we enable our models to perform effectively
with the Enrico [10] dataset, which comprises a modest
collection of 1460 samples. This approach is tailored to
efficiently learn from a constrained number of data points, thus
allowing accurate classification of each screenshot into one of
the proposed 20 design categories. The few-shot learning
technique is pivotal in our methodology, as it addresses the
challenge of dataset scarcity, a common obstacle in the realm
of UI design analysis.

Further augmenting our methodological framework, we
have developed a dataset named “Mistake of UI Screen”,
encompassing 10 classes of prevalent UI design errors,
alongside the use of the Enrico dataset. This dataset is crafted
to refine our models' ability to not only discern various UI
elements but also to detect and classify typical design flaws
systematically. The development of this dataset, alongside the
application of few-shot learning, constitutes a robust approach
to enhancing the precision of screen classification, thereby
contributing significantly to the field of UI design and
evaluation.

V. EXPERIMENTAL RESULT

In this study, a few-shot learning approach was applied
using Enrico dataset with 20 class and Mistake dataset with 10
class. Randomly selects 40 data per class and splits them to
50% training and 50% validation phase with balanced class
distribution. During testing phase, we randomly sampled
query images along with the support set from the validation
phase, repeating this process twenty-five times and ultimately
applying majority voting in a few-shot setting. Settings used
were five-way for all phases, five-shot on support and query
sets, and 200 episodes for each epoch. Training iteration using
10 epochs for Enrico dataset referring to original paper and 25
epochs for Mistake dataset with learning rate of 1 x 10

-3

optimized by Adam and lambda of 0.03. Few-shot model ran
on an i7 processor with RTX 2060 SUPER.

A. Model Implementation

1) Model and shot setting in enrico dataset: Our
assessment of model performance involved a sequence of
experiments using the validation subset of the Enrico dataset.
Table II compiles the accuracy figures for five models: CNN,
VGG-16, ResNet-50, MobileNet-V3, and EfficientNet-B1,
across five separate experiments. The table outlines each
model's individual experiment results, along with their
respective average accuracies and standard deviations.
EfficientNet-B1 emerged as the top performer, boasting an
average accuracy of 76.05% with a standard deviation of
1.1618%. The findings suggest that models, particularly those
with depth and designed for efficiency that leverage pre-
trained networks, have the potential to enhance
generalizability.

The comparison across models were proposed to further
investigated the influence of training variation on the
performance of EfficientNet-B1. Table III shows the accuracy
results for EfficientNet-B1 when trained with varying shots
numbers on validation subset of the Enrico dataset. These
conditions ranged from 1 to 5-shot training, with each tested
over five experimental runs. The data indicates that increasing
the number of shots enhances both the accuracy and stability
of the model's performance. Definitely, the five-shot trained
EfficientNet-B1 achieved a highest average accuracy,
prominence that a greater number of shots correlate with
improved model performance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

583 | P a g e

www.ijacsa.thesai.org

TABLE II. ACCURACY RESULT FOR DIFFERENT MODELS APPLIED TO THE ENRICO DATASET ON THE VALIDATION SUBSET

Model Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Average
Standard

Deviation

CNN 0.4020 0.4219 0.4108 0.3976 0.4008 0.4066 0.009843

VGG-16 0.3120 0.4020 0.3506 0.3013 0.3702 0.3472 0.041501

ResNet-50 0.4800 0.4480 0.4373 0.5164 0.5004 0.4764 0.033632

MobileNet-V3 0.7012 0.7230 0.7012 0.7148 0.7119 0.7104 0.009349

EfficientNet-B1 0.7650 0.7432 0.7506 0.7703 0.7732 0.7605 0.011618

TABLE III. ACCURACY RESULT FOR EFFICIENTNET-B1 WITH VARIOUS SHOTS APPLIED TO THE ENRICO DATASET ON THE VALIDATION SET

Number of

Shots
Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Average

Standard

Deviation

1-shot 0.5078 0.6800 0.5509 0.5509 0.5860 0.5751 0.064853

2-shot 0.6800 0.6530 0.6230 0.6002 0.6230 0.6358 0.031002

3-shot 0.6800 0.7100 0.6980 0.6800 0.7098 0.6956 0.015012

4-shot 0.7011 0.7130 0.7266 0.6980 0.7100 0.7097 0.011263

5-shot 0.7650 0.7432 0.7506 0.7703 0.7732 0.7605 0.011618

TABLE IV. ACCURACY RESULT FOR EFFICIENTNET-B1 WITH 5- SHOT

APPLIED TO THE MISTAKE DATASET ON THE VALIDATION SET

Experiment Accuracy

Experiment 1 0.3737

Experiment 2 0.4800

Experiment 3 0.3820

Experiment 4 0.4670

Experiment 5 0.4302

Average 0.4266

Standard Deviation 0.0431

2) Model and shot setting in mistake dataset: The

assessment of the performance EfficientNet-B1 model with

five-shot by testing were applied on the validation subset of

the Mistake Dataset. The results of this investigation are

shows in Table IV about details the model's accuracy across

five experiments. These experiments were designed to

evaluate the model's ability to predict accurately under

different conditions. The overall performance is summarized

by the mean accuracy, calculated to be 42.66%. Additionally,

the standard deviation of the accuracy, at 0.0431, indicates a

relatively small variability in the model's performance

throughout the trials, suggesting a stable accuracy profile for

the EfficientNet-B1 on this dataset.

B. Comparison with other Method

Table V shows a brief accuracy comparison of various
models on Enrico dataset. It contrasts the performance of a
model trained on the Screenshot data from the Enrico dataset,
achieving 75.8% accuracy, with that of the VGG-16 and
Noisy ResNet-50 models trained on the Enrico dataset, which
have accuracies of 47.4% and 46.5% respectively. Our
adaptation of the EfficientNet-B1 model also performed
notably well, with an accuracy close to the top-performing

Screenshot model at 76.1%. These outcomes demonstrate the
strong performance of our EfficientNet-B1 model, which
nearly matches the leading model and substantially exceeds
the performance of established architectures like VGG-16 and
Noisy ResNet-50. EfficientNet-B1 achieves higher accuracy
than CNN, VGG-16, ResNet-50, and MobileNet-V3 due to its
optimized balance of depth, width, and resolution in the
network architecture. It is designed using a compound scaling
method to scale these three dimensions efficiently and in
harmony. This results in more effective and efficient use of
computational resources and better performance on limited
data, as in Few Shot learning scenarios, making it particularly
suitable for the complex task of UI screen classification.

TABLE V. ACCURACY COMPARISON ON OTHER METHOD

Model Configuration Accuracy

Screenshot [10] 75.8%

VGG-16 [23] 47.4%

Noisy ResNet-50 [23] 46.5%

EfficientNet-B1 (our) 76.1%

VI. DISCUSSION

In the discussion section of our analysis, we delve into the
substances and insights derived from our research findings. We
initiate by examining our model's impact on the Enrico and
Mistake datasets, scrutinizing how the few-shot learning
approach adapts to each dataset's unique characteristics. The
transition was used to discuss the broader implications of our
model on UI screen classification, highlighting the
advancements and the potential it unlocks for future
applications. Finally, we address the limitations encountered
during our research and offer suggestions for future studies to
build upon our work.

A. Model Impact on each Dataset

The application of our neural network model to the Enrico
dataset demonstrated remarkable adaptability, as evidenced by

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

584 | P a g e

www.ijacsa.thesai.org

the high accuracy rates achieved across diverse UI screen
types. This success is attributed to the model's ability to learn
from limited examples, a testament to the efficacy of few-shot
learning. Conversely, when applied to the Mistake dataset,
which contained a different array of UI screen errors, the
model faced distinct challenges, reflecting the nuances and
complexity of classifying a wider variety of mistakes. These
observations underscore the need for tailored approaches when
dealing with datasets of varying natures.

B. Improved UI Screen Classification

Our model represents a significant step forward in the
realm of UI screen classification. By leveraging few-shot
learning, we have shown that it is possible to achieve high
levels of precision with limited training data, a scenario
common in real-world settings. This advancement is
particularly promising for the development sector, where rapid
and accurate UI assessment can streamline the design process,
reduce costs, and enhance the end-user experience.

C. Limitation and Suggestion

Our primary constraint was the size and diversity of the
datasets, which may affect the model's ability to generalize
across a broader range of UI designs. For future work, we
suggest expanding the datasets to include a more varied set of
UI screens and errors. Further, investigating other few-shot
learning configurations and incorporating user feedback in the
training loop could refine the model's performance and
applicability.

VII. CONCLUSION

In this paper, we propose an efficient and accurate method
for automating user interface (UI) testing using Deep learning
with training data limitations. This research proposes a novel
deep learning-based framework that marks a pivotal
advancement in user interface (UI) testing, demonstrating the
powerful capabilities of few-shot learning in UI screen
classification. The framework initiates with several robust
feature extraction modules that employ and compare
sophisticated encoder models (CNN, VGG-16, ResNet-50,
MobileNet-V3, and EfficientNet-B1) to be adept at capturing
complex patterns from a sparse dataset. EfficientNet-B1
achieves higher accuracy than CNN, VGG-16, ResNet-50, and
MobileNet-V3 due to its optimized balance of depth, width,
and resolution in the network architecture. It is designed using
a compound scaling method to scale these three dimensions
efficiently and in harmony. This results in more effective and
efficient use of computational resources and better
performance on limited data, as in Few Shots learning
scenarios, making it particularly suitable for the complex task
of UI screen classification. Moreover, our proposed model's
accuracy was improved and compared to the state-of-the-art
method using the Enrico dataset. Our utilization of the Enrico
and Mistake datasets confirmed the model's ability to
accurately classify a broad spectrum of UI screens with limited
training data, illuminating its proficiency in detecting and
categorizing intricate UI errors. For the rapidly evolving
domain of software development, our model offers a scalable
and efficient solution to the perennial challenge of UI testing.
This is crucial for the development sector, where quick,
reliable UI assessments can significantly expedite the design

process, cut costs, and elevate the end-user experience.
Moreover, this study paves the way for future research
endeavors. The challenges we encountered due to our datasets
limited size and diversity underline the need for more
expansive and varied data in further investigations. Such
efforts could refine the model's applicability and accuracy,
integrating user feedback and diverse learning configurations
into the development process.

ACKNOWLEDGMENT

This work was supported by the Research for International
Publication (RKI) NonAPBN Universitas Diponegoro
Indonesia under Grant 609-78/UN7.D2/PP/VIII/2023.

REFERENCES

[1] N. Samrgandi, “User Interface Design & Evaluation of Mobile
Applications User Interface Design & Evaluation of Mobile
Applications,” no. February, 2021.

[2] K. Edson et al., “An Evaluation Framework for User Experience Using
Eye Tracking , Mouse Tracking , Keyboard Input , and Artificial
Intelligence : A Case Study,” International Journal of Human–Computer
Interaction, vol. 00, no. 00, pp. 1–15, 2021, doi:
10.1080/10447318.2021.1960092.

[3] M. Bakaev, M. Speicher, J. Jagow, S. Heil, and M. Gaedke, “We Don’t
Need No Real Users?! Surveying the Adoption of User-less Automation
Tools by UI Design Practitioners,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 13362 LNCS, no. July, pp. 406–414,
2022, doi: 10.1007/978-3-031-09917-5_28.

[4] Z. Khaliq, D. A. Khan, and S. U. Farooq, “Using deep learning for
selenium web UI functional tests: A case-study with e-commerce
applications,” Engineering Applications of Artificial Intelligence, vol.
117, no. August 2022, p. 105446, 2023, doi:
10.1016/j.engappai.2022.105446.

[5] G. Ang and E. P. Lim, “Learning User Interface Semantics from
Heterogeneous Networks with Multimodal and Positional Attributes,”
International Conference on Intelligent User Interfaces, Proceedings IUI,
pp. 433–446, 2022, doi: 10.1145/3490099.3511143.

[6] F. H. Alshammari, “Trends in Intelligent and AI-Based Software
Engineering Processes: A Deep Learning-Based Software Process
Model Recommendation Method,” Computational Intelligence and
Neuroscience, vol. 2022, 2022, doi: 10.1155/2022/1960684.

[7] M. Shafiq and Z. Gu, “Deep Residual Learning for Image Recognition:
A Survey,” Applied Sciences (Switzerland), vol. 12, no. 18, pp. 1–43,
2022, doi: 10.3390/app12188972.

[8] Z. Khaliq, S. U. Farooq, and D. A. Khan, “A deep learning-based
automated framework for functional User Interface testing,” Information
and Software Technology, vol. 150, no. December 2021, p. 106969,
2022, doi: 10.1016/j.infsof.2022.106969.

[9] Z. Liu, C. Chen, J. Wang, Y. Huang, J. Hu, and Q. Wang, “Owl Eyes:
Spotting UI Display Issues via Visual Understanding,” Proceedings -
2020 35th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2020, pp. 398–409, 2020, doi:
10.1145/3324884.3416547.

[10] L. A. Leiva, A. Hota, and A. Oulasvirta, “Enrico: A Dataset for Topic
Modeling of Mobile UI Designs,” Extended Abstracts - 22nd
International Conference on Human-Computer Interaction with Mobile
Devices and Services: Expanding the Horizon of Mobile Interaction,
MobileHCI 2020, 2020, doi: 10.1145/3406324.3410710.

[11] J. Wu, S. Wang, S. Shen, Y. H. Peng, J. Nichols, and J. P. Bigham,
“WebUI: A Dataset for Enhancing Visual UI Understanding with Web
Semantics,” Conference on Human Factors in Computing Systems -
Proceedings, 2023, doi: 10.1145/3544548.3581158.

[12] Y. Liu, H. Zhang, W. Zhang, G. Lu, Q. Tian, and N. Ling, “Few-Shot
Image Classification : Current Status and Research Trends,” 2022.

[13] M. Soudy and Y. M. Afify, “GenericConv : A Generic Model for Image
Scene Classification Using Few-Shot Learning,” pp. 1–13, 2022.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

585 | P a g e

www.ijacsa.thesai.org

[14] W. Zhang and X. Gu, “Few Shot Class Incremental Learning via
Efficient Prototype,” 2023.

[15] A. Wibowo et al., “Cardiac Disease Classification Using Two-
Dimensional Thickness and Few-Shot Learning Based on Magnetic
Resonance Imaging Image Segmentation,” Journal of Imaging, vol. 8,
no. 7, 2022, doi: 10.3390/jimaging8070194.

[16] M. Ye et al., “A Lightweight Model of VGG-16 for Remote Sensing
Image Classification,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 14, pp. 6916–6922, 2021, doi:
10.1109/JSTARS.2021.3090085.

[17] B. Koonce, “ResNet 50,” Convolutional Neural Networks with Swift for
Tensorflow, pp. 63–72, 2021, doi: 10.1007/978-1-4842-6168-2_6.

[18] J. Huang et al., “BM-Net: CNN-Based MobileNet-V3 and Bilinear
Structure for Breast Cancer Detection in Whole Slide Images,”
Bioengineering, vol. 9, no. 6, 2022, doi: 10.3390/bioengineering9060
261.

[19] C. Wang and Y. Li, “Motion Prediction for Autonomous Vehicles Based
on EfficientNet-B1,” 2022 4th International Conference on

Communications, Information System and Computer Engineering,
CISCE 2022, pp. 648–651, 2022, doi: 10.1109/CISCE55963.2022
.9851007.

[20] C. Simon, P. Koniusz, R. Nock, and M. Harandi, “Adaptive subspaces
for few-shot learning,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 4135–
4144, 2020, doi: 10.1109/CVPR42600.2020.00419.

[21] C. Chen, S. Feng, Z. Xing, L. Liu, S. Zhao, and J. Wang, “Gallery D.C.:
Design search and knowledge discovery through auto-created GUI
component gallery,” Proceedings of the ACM on Human-Computer
Interaction, vol. 3, no. CSCW, 2019, doi: 10.1145/3359282.

[22] B. Deka et al., “Rico: A mobile app dataset for building data-driven
design applications,” UIST 2017 - Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology, pp. 845–854,
2017, doi: 10.1145/3126594.3126651.

[23] J. Wu, S. Wang, S. Shen, Y. H. Peng, J. Nichols, and J. P. Bigham,
WebUI: A Dataset for Enhancing Visual UI Understanding with Web
Semantics, vol. 1, no. 1. Association for Computing Machinery, 2023.

