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Abstract—The optimization of crop yield projections has 

arisen as a major problem in modern agriculture, due to the 

increasing demand for food supply and the necessity for effective 

resource management. Precision and scalability are hampered by 

the limits associated with conventional agricultural production 

prediction techniques, which mostly rely on observations and 

simple data sources. While methods like random forest (RF) and 

K-nearest neighbors (KNN) are widely used, their reliance on 

personal assessments and insufficient knowledge of crop 

attributes typically results in less accurate forecasts and makes 

them unsuitable for agricultural precision. The suggested method 

combines deep learning, spectral unmixing, and hyperspectral 

imaging methods to overcome these obstacles. With the use of 

hyperspectral imaging, which records a vast array of data that is 

not visible to the human eye, crop attributes may be thoroughly 

examined and can identify the unique spectral fingerprints of 

different agricultural constituents by using spectral unmixing 

approaches, which makes it easier to evaluate the health and 

growth phases of the crop. Then, using this augmented spectral 

data, deep learning algorithms create a solid, data-driven basis 

for precise crop production prediction. MATLAB has been used 

in the suggested workflow. The combination of deep learning, 

spectrum unmixing, and hyperspectral imaging provides a 

comprehensive, cutting-edge approach that goes beyond the 

constraints of conventional techniques were implemented in 

python. Some of the algorithms that were examined, this one with 

integration has the lowest Root Mean Square Error (RMSE) of 

0.15 and Mean Absolute Error (MAE) of 0.14, demonstrating 

higher prediction accuracy above other current models. This 

novel method represents a substantial breakthrough in precision 

agriculture while also improving crop production prediction. 

Keywords—Crop yield prediction; hyper spectral image; 

spectral unmixing; resource management; precision agriculture 

I. INTRODUCTION 

Demand for premium agricultural products will increase 
exponentially as people's standard of living rise. The amount of 
farmland has, regrettably, decreased due to environmental 
harm. Therefore, to meet increasing need for food, livestock 

and agricultural producing operations have become more 
importance. With the goal of reducing the financial and 
environmental costs associated with food production, precision 
agriculture is a technique for boosting productivity [1]. Crop 
conditions are measured using remote sensing, which is subject 
to large variation. In order to manage resources and make 
judgments on crop development, agriculturalists need to have 
equipment that is technologically advanced. By giving 
information on crop health and development phases, 
hyperspectral photography facilitates targeted farming by 
allowing for effective insect and herbicide treatments. 
Globally, there is a growing need for modern technology, 
namely multispectral and hyperspectral pictures, to increase 
farming precision and control [2]. The hyperspectral images 
are able to distinguish between artefacts and physicals in a 
wide range of application fields, including precise agriculture, 
minerals recognition, analysis of the environment, and urban 
development [3]. 

Agriculture and forestry are anticipated to hold the biggest 
market share among other end-user sectors in the hyperspectral 
imagery industries. Hyperspectral imaging is utilized in 
farming and forestry for a number of tasks, including weed 
mapping, plant recognition, seed yield analysis, and forest 
management [4]. In addition, over the past ten years, sensors 
have collected an increasing amount of data on farms. 
Therefore, offers for data optimization as well as apps for 
farmers have been coordinated by hyperspectral service 
providers [5]. Key elements of successful agriculture include 
the monitoring of nutrient crops, water stress, disease, pest 
infarction, and general plant health. By using conventional 
optical detection methods like imaging or spectroscopy, it is 
difficult to guarantee adequate spatial and spectrum data for the 
analysis of food and agriculture harvests [6]. The limitations of 
conventional imaging approaches for sorting vegetables and 
fruit include their inability to separate internal from exterior 
product structures and to collect spectral information. The 
commonly used systems imitate human vision using colour 
video cameras; nevertheless, these approaches are costly, time-
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consuming, and frequently result in sample obliteration. 
Furthermore time-consuming, costly, and sometimes 
obliterative, current procedures make it challenging to find 
product flaw [7]. 

Due to the rapid development of information science, 
image analysis, and precision agriculture over the past few 
years, optical detectors have developed into scientific tools. 
Particularly, the incorporation of a strategy to produce a 
spectral variation spatial map has led to substantial study and 
development in imaging and spectroscopic techniques, which 
has contributed to several well-liked applications in agriculture 
[8]. Precision agricultural methods have expanded and been 
more widely used as a result of the development of airborne 
and ground-based hyperspectral and multispectral imagery 
equipment. Along with its predictive skills, this technology has 
made it possible to characterize soils and vegetative cover, 
evaluate crop pressures, identify bruises in fruits and 
vegetables and estimate yield [9]. Hyperspectral and 
multispectral images provide a number of benefits, including 
inexpensive prices (in comparison to traditional scouting), 
reliable, simple use, rapid, non-destructive, extremely precise 
assessments, and a wide range of usages. Typical spectral 
images are made up of a number of monochromatic images 
that represent various wavelengths [10]. In comparison to 
traditional computer vision as well as human perception, 
hyperspectral imaging systems offer a natural advantage. Using 
hyperspectral imaging systems, any appearance features that 
are challenging or difficult to extract with systems may be 
retrieved [11]. A significant use for hyperspectral imaging is 
the assessment of the overall quality of agricultural and food 
items. 

 
Fig. 1. Process in agriculture. 

Fig. 1 shows pre-harvest and post-harvest stages of crop-
growing and smart farming practices. The first step is planting, 
which is followed by direct sowing or transplanting. Water 
levels are maintained via smart irrigation according to 
development stages. To guarantee a sufficient supply of water 
and lessen the load of field weeds, weed control is essential. 
This strategy lowers the cost of agriculture [12]. The 
monitoring of soil fertility is a crucial for maximizing plant 
development. In order to minimize losses, prompt and accurate 
identification of crop diseases and pest management are 
crucial. For example, categorizing, identifying, and forecasting 

infestation patterns in fields are examples of operations 
included in the agricultural disease monitoring. 

Analyzing crop growth utilizing vegetation, remotely 
sensed data, and climate variables is known as crop growth 
monitoring. There is also mapping of crop-growing zones at 
the field level. Vegetation indices, remotely sensed data, and 
hyper spectral data are used to estimate agricultural production. 
Harvesting, managing, organizing, cleaning, and transporting 
are examples of post-production jobs. The quality of crops may 
be assessed using machine learning techniques [13]. Activities 
like evaluating the crop's quality or looking into how climate 
change may affect crop production are frequently included in 
determining the crop's quality. The crop will next be dried 
using conventional or mechanical methods in the following 
stage of the process. The milling procedure, which eliminates 
the husk, is the final step in the post-production stage. Using 
image processing and machine learning methods, classification 
is to distinguish and categorize crop sample objects based on 
color and texture properties. Key contributions of this research 
are, 

 Advanced Sensing Technology Integration: The 
research introduces a pioneering approach by utilizing 
Unmanned Aerial Vehicles (UAVs) equipped with 
hyper spectral sensors, showcasing the integration of 
cutting-edge sensing technologies for detailed spectral 
data collection in agricultural landscapes. 

 Precise Hyper spectral Data Processing: The study 
emphasizes meticulous data pre-processing techniques, 
including radiometric calibration and geometric 
corrections using the Hyperspace program. This ensures 
the accurate conversion of digital data into radiance 
data, enabling the separation of mixed spectral signals 
associated with crops, soil types, and other agricultural 
variables. 

 Innovative CNN Framework for Feature Extraction: 
The research employs a Convolutional Neural Network 
(CNN) framework to extract key features from hyper 
spectral data, such as NDVI, CCCI, CVI, contrast, and 
entropy indices. This innovative approach enhances 
insights into crop health and landscape dynamics, 
contributing to the field of precision agriculture. 

 Optimized CNN-LSTM Model for Crop Yield 
Prediction: The study introduces a novel Optimized 
CNN-LSTM model for accurate crop yield prediction. 
By integrating deep learning with Firefly Algorithm 
optimization, the model leverages hyper spectral feature 
extraction through multiple hidden layers, showcasing a 
sophisticated and effective methodology for yield 
estimation. 

 Robust Evaluation Metrics and Validation: Rigorous 
evaluation using metrics like R2, RMSE, MAE, and 
cosine similarity underscores the robustness and 
accuracy of the proposed Optimized CNN-LSTM 
model. The validation of the methodology's 
dependability provides confidence in the reliability of 
the findings, contributing to the advancement of 
agricultural remote sensing and predictive modelling. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 12, 2023 

588 | P a g e  

www.ijacsa.thesai.org 

Dataset In summary, the methodology combines advanced 
techniques from remote sensing, deep learning, and 
optimization to provide a comprehensive and effective 
approach for crop yield prediction and agricultural assessment. 
The contributions of this study have the potential to 
significantly impact precision agriculture by enabling farmers 
to make data-driven decisions for resource management and 
crop production. The remainder of this work is structured as 
follows: Section II offers a full analysis of these as well as 
related previous work. Details of the problem statement are 
included in Section III. In Section IV, the suggested Optimized 
CNN-LSTM architectures are covered in more depth. The 
results of the trials are discussed in Section V, and the 
proposed technique is thoroughly compared with existing best 
practices. Section VI concludes the paper. 

II. RELATED WORKS 

A predicted scientific approach is the integration of self-
governing computing and artificial intelligence technology for 
agricultural ideas. With its extensive coverage, great spectral 
resolution, and wide range of narrow-band selection, the aerial 
hyperspectral system is a fantastic instrument for predicting 
crop physiological parameters and yield. It has been difficult to 
spread awareness of this technology due to the substantial and 
redundant three-dimensional analysis and computing. Based on 
three crop classifications with multi-functional cultivation, this 
research included two significant publicly available systems (R 
and Python), automatic hyperspectral narrow-band vegetation 
index estimation, and the most advanced machine learning 

(ML) modern equipment to calculate yield. Li et al.[14] 
demonstrated that AutoML regression model's predicted 
capacity was considerable. For single variety planting wheat, 
the best determination coefficient and normalized root mean 
square error (NRMSE) were 0.96 and 0.12, correspondingly; 
The restriction of the Auto-Sklearn approach, which prevents 
the investigation of the relevance ranking of individual feature, 
limits the capacity to retrace all regressors in this study, which 
may have an influence on the choice of appropriate vegetation 
indices. 

Alfalfa is an important farmed feed crop. Due to 
effectiveness in data collecting, unmanned aerial vehicles 
(UAVs) are attracting in precision agriculture. hyperspectral 
data can provide a better level of spectral fidelity compared to 
other imaging techniques. Feng et al. [15] used UAV-based 
hyperspectral images, a feature selection is conducted to 
diminish the size of the data and retrieved a significant number 
of hyperspectral indices of the original image. Then, by 
merging three frequently used base learners, namely, support 
vector regression (SVR), K-nearest neighbors (KNN) and 
random forest (RF), an ensemble machine learning model was 
created. It demonstrated that ensemble model outperforms all 
base learners, and when employing the chosen features, an R2 
of 0.874 was obtained. The outcomes further support the 
effectiveness of the suggested ensemble model. The 
performance of the model might be affected by variables that 
were not taken into account for this research, such shifting field 
conditions, climatic variations, or insect infestations. 

Artificial intelligence has easily migrated into a number of 
economic sectors, particularly for surveillance and control in 

agriculture. One of the main factors reducing crop output is 
biotic stress. Albanese, Nardello, and Brunelli [16] proposed 
Automatic recognition of hassle using images has emerged as a 
key study area for timely crop disease diagnosis by the advent 
of deep learning technologies. In order to continuously identify 
infestations of pests inside fruit orchards. The embedded 
approach is built on sensor device. The platform's capabilities 
have been shown through the training and deployment of three 
distinct ML algorithms. Furthermore, the incorporation of 
energy-harvesting functions into the suggested system 
guarantees extended battery lifetime. One drawback of this 
research is that the energy harvesting system's effectiveness 
heavily relies on the availability of sufficient sunlight, making 
it less practical in regions with limited sunlight or during 
extended periods of overcast weather. 

Weed growth out of control has a negative impact on crop 
quality and productivity. Herbicide usage to eradicate weeds 
changes biodiversity and pollutes the environment. Instead, 
pinpointing weed-infested areas can help with targeted 
chemical remediation of these areas. There are now ways to 
detect weed plants due to improvements in agricultural image 
analysis. Supervised learning techniques needs a massive 
volume of human annotated images. Because there are so many 
different plant species being grown, these supervised systems 
are therefore economically unviable for the small-scale farmer. 
In this research, Shore Wala et al. [17] present a semi-
supervised deep learning method. This weed quantity and 
distribution may be helpful in autonomous robot-assisted 
targeted treatment of diseased regions. Convolutional Neural 
Network (CNN) is used to identify the foreground vegetation 
indices including crops and weeds. The requirement for 
manually developing features is therefore removed by utilising 
a fine-tuned CNN to identify the weed-infected areas. The 
method is tested on two datasets (1) images of carrot plants, 
and (2) the Sugar Beets dataset. The suggested approach has an 
optimal recall of 0.99 and an average accuracy of 82.13% for 
estimating weed density in weed-infested areas. The limitation 
of this work is time consuming. 

Techniques for proximal sensing may be used to examine 
soil and crop factors that affect agricultural output. By 
combining this precision agricultural technology with cutting-
edge data processing techniques like machine learning (ML) 
algorithms, it is possible to fully realize their promise for 
managing crop productivity. In order to forecast potato tuber 
yield, four machine learning (ML) algorithms, namely elastic 
net (EN), linear regression (LR), and support vector regression 
(SVR), k-nearest neighbor (k-NN) were employed by Abbas et 
al. [18]. Data of soil were sampled for soil chemistry, moisture 
content of the soil and normalized-difference vegetative index 
(NDVI). At the conclusion of the growing season, manual data 
collection and yield sample collection took place. The data 
from three fields were then combined to create four datasets, 
PE-2017, NB-2018, NB-2017 and PE-2018which reflect the 
provincial data for the corresponding years. To develop yield 
projections evaluated using various statistical factors, 
modelling approaches were used. SVR models excelled all 
other models. The performance can be improved by using deep 
learning methods. 
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Crop supervision is changing as a result of neural networks 
and self-driving computers being integrated into agriculture. 
Crop production predictions are more accurately made thanks 
to overhead hyperspectral sensors and sophisticated predictive 
methods like combined models and AutoML regression. The 
accuracy of farming is improved by drones that operate using 
hyperspectral data; lucerne cultivation is one example of this. 
Using picture recognition and sensor devices, deep learning 
technologies facilitate the prompt identification of agricultural 
diseases. Promising results have been obtained using a semi-
supervised deep learning approach to detect weeds, and 
machine learning methods are used to predict the yield of 
potato tubers depending on crop and soil characteristics. Even 
though these developments solve important issues, issues like 
consuming time and dependent on the climate energy 
collecting systems are still recognized. 

III. PROBLEM STATEMENT 

The existing methods may face limitations in feature 
ranking, energy availability for sensor devices [16], economic 
viability for small-scale farmers, time-consuming processes 
[17] and inefficient. To address these challenges, the proposed 
approach combines self-governing computing, hyperspectral 
feature extraction via Convolutional Neural Networks (CNN), 
and machine learning optimization techniques. Optimized 
CNN-LSTM model is introduced, integrating hyperspectral 
data analysis and yield prediction through multiple hidden 
layers. The model enhances performance through Firefly 
Algorithm optimization. This comprehensive approach 
contributes to accurate crop yield prediction, thereby 
improving precision agriculture practices. 

IV. METHODOLOGY 

This research capitalizes on Unmanned Aerial Vehicles 
(UAVs) equipped with hyperspectral sensors to meticulously 
capture intricate spectral data across agricultural terrains. The 
reliability and usability of the created models in actual 
agricultural contexts are ensured by modifying testing 
techniques to account for temperature, humidity, precipitation, 
and other meteorological parameters. Data preprocessing 
encompasses radiometric calibration and geometric corrections 
via the HyperSpec program, ensuring the precise conversion of 
original digital data into radiance data. Using NFINDR 
algorithm, mixed spectral signals in hyperspectral images are 
separated, revealing distinct fingerprints associated with crops, 
soil types, and agricultural variables. Integral to precision 
agriculture, a Convolutional Neural Network (CNN) 
framework extracts key features from hyperspectral data, 
including NDVI, CCCI, CVI, contrast, and entropy indices, 
heightening insights into crop health and landscape. A 
pioneering Optimized CNN-LSTM model is introduced for 
accurate crop yield prediction. Fusing deep learning employed 
with Firefly Algorithm optimization, the model integrates 
hyperspectral feature extraction, enabling precise yield 
estimation through multiple hidden layers. Rigorous 
evaluation, incorporating metrics like R

2
, RMSE, MAE, and 

cosine similarity, underscores the Optimized CNN-LSTM 
model's robustness and accuracy, thus validating the proposed 
methodology's dependability. It is illustrated in Fig. 2. 

 
Fig. 2. Proposed model CNN-LSTM. 

A. Data Collection and Preprocessing 

Sensors attached on UAV flying over the countryside take 
hyperspectral images. Each pixel in the images has specific 
spectral characteristics [19]. The maker of the sensor used the 
HyperSpec program to perform radiometric calibrating and 
geometrical corrections on the UAV hyperspectral imagery. 
The sensor's laboratories evaluation factors, which may be 
represented as in Eq. (1), were used to convert the original 
digital number data into radiance data for the radiometric 
evaluation. 

   (         )         (1) 

where, R1 is the anticipated radiometric standard radiance 
for the first-order reflected image, R2 is the radiometric 
standard radiance for the second-order reflected image, R1 and 
R2's system gains are G1 and G2, while the sensor's exposure 
time TE is and the darkness of field measurement is FD. Since 
the R2 strength is so poor, a spectral filter may be used to filter 
it. In most cases, the calibration variables are determined by the 
producer using an integrated sphere in the lab, and they are 
then stored in the calibration program. According to a 
correlated equation, GPS (Global Positioning System) and also 
inertia measuring units (IMU) modules' location and 
orientation data, and other data, the geometric correction can 
be carried out. The input parameters for the HyperSpec 
program include the original hyperspectral information, its 
frame indices, timestamps, digital surface model (DSM) 
information, and the GNSS/IMU files containing yaw, pitch, 
roll, latitude, and longitude [20]. Further enhancing the 
precision of the geometric correction may be done by using 
ground control points (GCPs). 

B. Spectral Unmixing using NFINDR Algorithm 

The process of "spectral unmixing" is employed to separate 
the mixed spectrum signals generated by hyperspectral images 
to its constituent parts. This entails recognizing and isolating 
the spectral fingerprints of numerous factors in relation to 
farming, such as distinct crops, different kinds of soil, and 
sometimes even pests or illnesses that may be detected in the 
fields. The landscape's structure will benefit from knowing that 
data. Five distinct groups, containing soil, shadows, spikes, 
crop leaves and gray panels, were present in hyperspectral 
imagine data. Thus, each of these five groups can all contribute 
to the spectral sensitivity of a pixel to varying degrees and with 
somewhat different spectral signatures. Five endmembers, 
every indicating one group, were found from the images taken 
at five-meter height to show the large number of these 
categories of each pixel found in the images obtained at 20-
meter height. When these images are made, the ensuing dataset 
mimics one that can be logically collected anyway. The 
NFINDR technique is used to execute spectral unmixing at the 
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subsequent step. The NFINDR approach is essentially an 
automated method for locating the cleanest pixels in a picture. 
The primary goal of this approach is to precisely replicate the 
effective (non-automated) method of locating the highest and 
lowest points of scatter chart. The convex structure of the 
available hyperspectral data makes it possible to use the 
NFINDR methodology in a reasonably simple and rapid 
manner. Endmembers = nfindr (inputData, numEndmembers, 
Name, Value) is a built-in MATLAB code that has been used 
in the suggested workflow. This function uses the NFINDR 
technique to obtain endmember signals out of hyperspectral 
data. The amount of endmember signatures to be retrieved with 
the NFINDR technique is denoted by numEndmembers. This 
form is employed when both reduction of dimensionality and 
parameters for the number of cycles are necessary. The 
extracted endmembers relate to certain soil constituents at 
specified wavelengths. For a variety of uses, such as crop 
detection and tracking in agriculture utilizing UAV-based 
hyperspectral imaging, the NFINDR technique has shown to be 
excellent for unmixing hyperspectral data efficiently on the 
computer [21]. 

C. NFINDR Algorithm 

1) Minimize the incoming data's spectral dimensionality 

and estimate the primary component bands. Decide the 

quantity of PC wavelengths and endmembers will be 

extracted, and then extract that amount. 

2) As a first group of endmembers, randomly select n 

pixel spectrum out of the minimized data. 

3) Initialize iteration 1 and first collection of endmembers 

to determine the volume using   ( ( ))       ( ( ))  

where,  ( )  [
  

  
( )

  
( )

  

   
( )] 

4) Choose a new pixel spectrum s, for this second cycle., 

such that:  )1()1(

2

)1(

1 ,, pmmms  . 

5) Calculate the area of the resultant simplex )( )2(MV  

after replacing all endmember of the collection with r. 

6)  If the calculated volume )( )2(MV  is higher than 

)( )1(MV , update the i
th

 endmember of the collection with r. A 

revised list of endmembers generated. 

7) Choose a different pixel spectrum for each subsequent 

iteration, then repeat steps 5 and 6 with that new spectrum. 

Once the overall level of iterations reaches the desired 

number, the iterations come to an end. 

D. Accuracy Prediction using Cosine Similarity 

The accuracy for the spectral unmixing is assessed using 
cosine similarity as in Eq. (2), as well as it is also determined if 
the endmember frequencies acquired can be coincided with to 
the wavelengths originally utilized to create the hyperspectral 
images. 

Similarity=
||))P|| * ||E(|| / P) * ((E)cos( 

 (2) 

where, || || stands for the vector's magnitude (Euclidean 
norm), P is the vector representing each pixel's spectrum 
signature, and E is the chosen endmember option vector. 

E. Extracted Features of Hyper Spectral Images using 

Convolutional Neural Network (CNN) 

Precision agriculture, which applies resources like water, 
fertilizer, and pesticides especially when and where they are 
required, depends on the ability to extract features of 
hyperspectral crop images. Farmers may use resources more 
efficiently, cut down on waste, and boost crop output by 
having a better grasp of the variation in crop nutritional 
demands throughout a field. The features were extracted using 
CNN. 

1) Normalized Difference Vegetation Index (NDVI): 

NDVI represents the health and vigor of plants in an area. It is 

estimated as of the reflectance of two bands, typically the 

near-infrared (IRN) and the red (R) bands, using the following 

Eq. (3). 

RIR

RIR
NDVI

N

N






   (3) 

NDVI values range from -1 to +1, where positive values 
point to healthy vegetation, zero represents non-vegetated areas 
(e.g., water bodies), and negative values (closer to -1) typically 
represent cloud cover or man-made surfaces. 

2) Canopy Chlorophyll Content Index (CCCI): CCCI is 

another vegetation index used to estimate the chlorophyll 

content in vegetation canopies. It is particularly useful for 

monitoring the greenness and health of vegetation. The CCCI 

involves the red-edge band (RE) is given in Eq. (4). 

NDVI

RIR

RIR
CCCI

EN

EN






   (4) 

Higher CCCI values indicate higher chlorophyll content 
and healthier vegetation. 

a) Chlorophyll VI (CVI): Chlorophyll VI is an index 

designed to provide a more accurate estimation of chlorophyll 

content in vegetation as in Eq. (5). It utilizes the red band (R), 

and the green band (G). 

2G

R
IRCVI N 

   (5) 

CVI values are positively correlated with higher 
chlorophyll content. 

b) Contrast: Contrast is a statistical measure used to 

describe the difference in pixel intensities within an image or a 

specific region. In hyperspectral imagery, contrast refers to the 

variation in spectral values across different bands. Higher 

contrast indicates more pronounced differences between 

spectral signatures, which can be useful for discriminating 

between different materials or classes as shown in Eq. (6). 





N

lk

lk lkPcontrast
1,

2

, )(

  (6) 
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c) Entropy: Entropy is another statistical measure that 

quantifies the amount of uncertainty or disorder in an image or 

a specific region as in Eq. (7). In hyperspectral images, 

entropy can be used to assess the complexity and variability of 

spectral signatures. High entropy values indicate greater 

spectral diversity and complexity, which can be helpful for 

identifying diverse land cover types. 

2

,

1,

, )(ln lk

N

lk

lk PPEntropy 




  (7) 

NDVI, CCCI, and CVI are all vegetation indices that 
provide information about the health and vigor of crops. By 
calculating these indices from hyperspectral data, it becomes 
possible to monitor the growth status, stress levels, and overall 
health of crops [22]. 

F. Yield Estimation using LSTM 

LSTM [23] By including a gradient superhighway in the 
structure of a state of a cell c as well to the hidden state h, a 
unique type of RNN was developed to address this problem. 
The LSTM architecture features gates that allow both the 
addition and removal of data from the cell state. The forget 
gate determines whether data should be eliminated from the 
current state of the cell and is described as follows: 

  
   (  

  
 

*  
      

 
+   

 )                 
           (8) 

The definition of the input gate that chooses the data to be 
fed to the state of the cell is in Eq. (9). 

  
   (  

  
 

 
*  

      
 
+   

  )
            (9) 

Utilizing both and it, the cell state     is derived in the way 
shown in Eq. (10). 

 ̇ 
      (  

  
 

*  
      

 
+   

 )  
          (10) 

         (   
          

   ̇         (11) 

The concealed and outgoing state     of the LSTM, 
respectively, are specified as. 

  
   (  

 
 
*  

      
 
+   

 )
        (12) 

      
  tanh(  )                (13) 

Fig. 3 depicts the architecture of proposed CNN-LSTM 
model. Due to a more efficient gradient flow during back 
propagation, LSTM is more successful at simulating lengthy 
sequences than a straightforward RNN. 

G. Optimization using Firefly Algorithm 

An optimization approach was utilized to determine the 
parameters for which the cost function was minimized 

throughout the training procedure. The variation in light 
intensity and the evolution of attraction serves as the two 
pillars of the firefly optimization approach. A measure of 
attraction is the intensity, which is connected to the objective 
function. The relative attractiveness (α) as judged by other 
fireflies fluctuates when the distance dij between fireflies i and j 
shifts. Light loses intensity as it moves farther away from its 
source due to air absorption. Additionally, as shown in Eq. 
(14), the attractiveness varies according to the degree of 
absorption and the brightness I(d) varies in accordance with the 
inverse square law. 

 ( )  
  

     (14) 

 

Fig. 3. The architecture of proposed CNN-LSTM model. 

where, d is the distance between the source and the light, δ 
is the absorption coefficient of light, and Is is the source 
intensity. Eq. (15) states that the light's intensity (I), which is 
dependent on its coefficient of absorption, varies with distance 
d. 

     
    

   (15) 

where,,   is the initial brightness of the light, and      
 is 

the sum of the intensities at the source and at a distance. The 
chosen attributes that each firefly location represents are used 
to assess the effectiveness of the crop Yield detecting model. 
Each firefly's attractiveness (α) in comparison to others is 
determined based on the fitness values received during the 
evaluation, as stated in Eq. (16). 

     
    

   (16) 

Higher fitness values make fireflies attractive. After that, 
transport the firefly in that direction so they can explore the 
search area. To strike a balance between exploration and 
exploitation, adjust the Firefly Optimization algorithm's control 
parameters, such as the attraction coefficient, absorption 
coefficient, and iterations. Decide on the termination criteria, 
which govern when the optimization process should be 
stopped. Reaching a predetermined number of iterations or 
obtaining a good fitness value are frequent reasons for 
termination [24]. 
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Algorithm 1: Firefly Algorithm 

Initialize fireflies randomly 

Set control parameters (alpha, delta, iterations) 

Repeat for a predefined number of iterations: 

 Calculate fitness values for each firefly 

 Update the attractiveness (alpha) based on fitness and distance 

 Move fireflies towards more attractive ones 

 Explore the search space 

Until termination criteria met 

V. RESULT AND DISCUSSION 

Following is an explanation of how to test the accuracy of 
the CNN-LSTM model using the coefficient of determination 
(R2), mean absolute deviation (MAE), and root mean square 
error (RMSE): 

A. Model Accuracy Assessment Parameters 

To assess the accuracy of the yield prediction approach, the 
coefficient of determination (R

2
), mean absolute deviation 

(MAE), and root mean square error (RMSE) were utilized. R
2
, 

MAE, and RMSE are calculated as in Eq. (17), Eq. (18) and 
Eq. (19). 

     
∑ ( ̂    )

  
   

∑ (    ̅)  
   

  (17) 

     √∑ ( ̂    )
  

   

 
  (18) 

    
 

 
∑       ̂ 

 
     (19) 

where,  ̅ is the mean for the detected crop yield,    and  ̂  
are the observed and estimated crop yields, respectively; N 
represents the number of evaluation samples. A greater 
prediction performance of the model is shown by an increased 
R

2
 and a decreased RMSE [25]. 

The assessment parameters for the Optimized CNN-LSTM 
model in Table I demonstrate its exceptional performance. The 
hyperspectral image dataset's underlying patterns are very well 
captured and understood by the model, as seen by the 
Coefficient of Determination (R2) value of 0.893, 
demonstrating the model's capacity to explain variations in 
observed data. Furthermore, the model's accuracy and 
dependability in predicting crop yields are shown by the low 
Root Mean Square Error (RMSE) of 0.13 and Mean Absolute 
Error (MAE) of 0.14. These findings demonstrate Optimized 
CNN-LSTM potential as a formidable tool for hyperspectral 
image-based yield forecasting, providing insightful information 
for remote sensing and precision agricultural applications. Fig. 
4 depicts the Assessment parameter of Optimized CNN-LSTM. 

B. Statistical Analysis 

To investigate the impact of variation in breeds, irrigation 
methods, and their relations on the observed and anticipated 
crop yield, a mixture of linear model was used. The model's 
equation is given in Eq. (16). 

eZXY  
  (16) 

where, X and Z stand for static effects and random effects 
accordingly, Y is the response shown by fixed effect ( ) as 

well as random effect ( ) by a random error (e). With an 

interval from zero to one, broad-sense heritability measures the 
proportion of genetic variance to all phenotypic variation. The 
variance in phenotype is totally influenced by genetic and 
environmental variables, respectively, as indicated by the 
heritability of 0 and 1. The following Eq. (17) was used to 
compute the heritability. 

   
  

(   
  

 ⁄ )
⁄   (17) 

where,    and    stand for the genetic and erroneous 

variances, correspondingly, and r stands for the number of 
reproductions per treatment. 

Table II presents the Coefficient of determination (R
2
) 

performance metrics for different predictive models. Random 
Forest (RF) achieved an R

2
 value of 0.882, indicating a strong 

ability to explain the variance in the data. Support Vector 
Regression (SVR) performed well with an R

2
 of 0.824, 

capturing a substantial portion of the data's variability. 
Optimized CNN-LSTM model exhibited the highest 
performance, attaining an R

2
 of 0.893, signifying its superior 

capability in predicting and understanding the underlying 
patterns within the dataset. Fig. 5 shows comparison of various 
models with R

2
. 

TABLE I.  ASSESSMENT PARAMETER OF OPTIMIZED CNN-LSTM 

Assessment Parameters Values 

R2 0.893 

RMSE 0.15 

MAE 0.14 

 
Fig. 4. Assessment parameter of optimized CNN-LSTM. 

TABLE II.  ACCURACY ASSESSMENT PARAMETER 

Model R2 

RF 0.882 

SVR 0.824 

Optimized CNN-LSTM 0.893 
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Fig. 5. Comparison of R2 for various models. 

Fig. 6 which depicts the training accuracy of proposed 
Optimized CNN-LSTM model. The accuracy model is plotted 
based on the value of R

2
. It clearly shows that the proposed 

method outperforms other algorithms. 

 
Fig. 6. Training accuracy with existing model. 

This research used a dataset obtained from Unmanned 
Aerial Vehicles (UAVs) to analyze hyper spectral images in 
agricultural areas. The dataset was divided into two subsets for 
model development and evaluation. 80% of the dataset was 
allocated for the training phase, where the model learns 
patterns and relationships from the hyper spectral data. The 
remaining 20% was used for the testing phase, where the 
model encounters new data and evaluates its performance. This 
division is a standard practice in machine learning to gauge 
performance, prevent over fitting, and ensure reliability in real-
world applications. The careful consideration of dataset 
partitioning is crucial for establishing the effectiveness and 
generalization of the developed models in agricultural hyper 
spectral image analysis. The training and test dataset were 
illustrated in Fig. 7. 

The NFINDR algorithm is utilized to perform spectral 
unmixing on hyperspectral images. This technique separates 
mixed spectral signals into their constituent parts, identifying 
and isolating spectral fingerprints associated with different 
crops, soil types, and other factors relevant to agriculture. End 
members were selected as shown in Fig. 8. 

 
Fig. 7. Training and test dataset. 

 
Fig. 8. Spectral unmixing using end members selection in NFINDR. 

 

Fig. 9. The relation between observed and predicted yield with R2. 

Fig. 9 depicts the relationship between observed and 
predicted yields with a coefficient of determination (R

2
) value 

of 0.89. The data points closely follow a linear trend, indicating 
a link between the predicted and actual yields. The high R

2
 

value suggests that approximately 89% of the variability in the 
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observed yield can be explained by the predictive model, 
affirming its accuracy and reliability in forecasting agricultural 
yields. This alignment between predicted and observed values 
underscores the model's effectiveness in capturing the 
underlying patterns and factors influencing crop production. 

Table III presents Root Mean Square Error (RMSE) values 
for different predictive models. The Random Forest (RF) 
model yielded an RMSE of 0.22, reflecting the average 
magnitude of prediction errors in relation to the observed 
values. The Support Vector Regression (SVR) model produced 
a slightly higher RMSE of 0.23, indicating a slightly greater 
overall error compared to RF. In contrast, the Optimized CNN-
LSTM model demonstrated the lowest RMSE at 0.13, 
signifying its superior accuracy in predicting outcomes and 
minimizing prediction errors. These RMSE values provide 
insights into the precision and effectiveness of each model, 
with Optimized CNN-LSTM model. model emerging as the 
most precise in this analysis. The Training and testing loss is 
plotted based on RMSE value. 

One of the most important aspects of this study's model 
evaluation is the training and validation loss analysis. The 
model's learning process and its capacity to generalize to new 
data are revealed by the plot of training and validation loss 
based on the Root Mean Square Error (RMSE) value. The 
model is effectively learning from the training data, indicating 
a successful training procedure, as seen by the decreasing trend 
in both training and validation loss. Given that there is little 
substantial divergence between the training and validation loss 
curves, it is possible that the model is not over fitting. This 
alignment shows that the model may generalize effectively to 
new, unexplored data points, increasing its dependability in 
real-world situations. 

The model's accuracy and precision in forecasting crop 
yields are further supported by the low RMSE values linked to 
the training and validation loss, securing its application in 
remote sensing and precision agriculture settings. The training 
and testing loss expressed as RMSE is shown in Fig. 10. 

Table IV showcases Mean Absolute Error (MAE) values 
for different predictive models. The Random Forest (RF) 
model achieved an MAE of 0.17. The Support Vector 
Regression (SVR) model exhibited a slightly lower MAE of 
0.16, indicating a marginally improved accuracy in prediction 
compared to RF. Remarkably, Optimized CNN-LSTM model. 
Model outperformed the others with the lowest MAE of 0.14, 
underscoring its exceptional precision in forecasting and its 
ability to minimize absolute prediction errors. These MAE 
values provide valuable insights into the predictive capabilities 
of each model, with the Optimized CNN-LSTM model. It 
demonstrates the highest level of accuracy in this context. 

The crop yield prediction models' accuracy was assessed 
using the accuracy assessment metrics coefficient of 
determination (R2), mean absolute deviation (MAE), and root 
mean square error (RMSE). The effectiveness of several 
prediction models, such as Random Forest (RF), Support 
Vector Regression (SVR), and Optimized CNN-LSTM model. 
It was evaluated using these measures. The outcomes showed 
that the Optimized CNN-LSTM model. It performed better 
than the competing models, earning the greatest R2 value of 

0.893, demonstrating its improved capacity to account for the 
variance in the crop production data. Optimized CNN-LSTM 
model further demonstrated the lowest RMSE and MAE values 
at 0.13 and 0.14, respectively, emphasizing its outstanding 
accuracy in predicting crop yields. These findings highlight the 
value of combining deep learning, spectrum unmixing, and 
hyperspectral imaging in precision agriculture, with Optimized 
CNN-LSTM model demonstrating the most promising 
outcomes. The observed and projected yield connection, which 
has an R2 value of 0.89 and indicates that almost 89% of the 
variability in observed yield can be explained by the predictive 
model, provided more evidence of the model's accuracy. With 
useful insights for large-scale farming operations, this research 
shows the potential of cutting-edge technology and machine 
learning approaches to improve crop output estimates. 

TABLE III.  ROOT MEAN SQUARE ERROR (RMSE) 

Model RMSE 

RF 0.22 

SVR 0.23 

Optimized CNN-LSTM 0.15 

 
Fig. 10. Training and validation loss. 

TABLE IV.  MAE VALUES COMPARISON 

Model MAE 

RF 0.17 

SVR 0.16 

Optimized CNN-LSTM 0.14 

C. Discussion 

The integration of self-governing computing and artificial 
intelligence in agriculture, particularly in crop monitoring and 
yield prediction, shows promise. Utilizing aerial hyper spectral 
systems and UAVs, combined with advanced machine learning 
techniques, improves crop yield predictions. Examples include 
AutoML regression models for wheat and an ensemble model 
for alfalfa. Deep learning technologies are used for disease 
identification and semi-supervised weed detection. Despite 
challenges like time-consuming processes and climate-
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dependent energy-harvesting systems, the adoption of neural 
networks and precision agriculture technologies is 
transforming crop management. 

VI. CONCLUSION AND FUTURE WORK 

The suggested model combines deep learning, spectral 
unmixing, and hyper spectral imaging in a way that improves 
upon earlier methods for projecting crop production. As 
opposed to traditional methods that depend on subjective 
evaluations, this new approach makes use of hyper spectral 
photography to gather copious amounts of non-visible data, 
which enables a thorough analysis of crop characteristics. 
Spectral unmixing methods allow for the accurate assessment 
of crop health and growth stages by identifying distinct spectral 
signatures. This improved spectral data is then used by deep 
learning algorithms to create a solid, data-driven basis for 
precise crop production forecasts. A model with the lowest 
Root Mean Square Error (RMSE) of 0.15 and Mean Absolute 
Error (MAE) of 0.14 is produced by integrating these cutting-
edge approaches with MATLAB, demonstrating improved 
prediction accuracy over existing models. This novel strategy 
overcomes the drawbacks of traditional approaches and greatly 
improves crop output forecast capabilities, marking a 
significant advance in precision agriculture. Future research in 
precision agriculture ought to concentrate on improving data 
integration by investigating the fusion of various sensors, IoT 
devices, and remote sensing technologies to capture a thorough 
dataset for crop monitoring. In order to provide openness and 
confidence in yield projections, explainable AI models also 
need to be developed. 
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