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Abstract—Autism spectrum disorder (ASD) is a 

neurodevelopmental condition characterized by deficits in social 

interaction, verbal and non-verbal communication, and is often 

associated with cognitive and neurobehavioral challenges. Timely 

screening and diagnosis of ASD are crucial for early educational 

planning, treatment, family support, and timely medical 

intervention. Manual diagnostic methods are time-consuming 

and labor-intensive, underscoring the need for automated 

approaches to assist caretakers and parents. While various 

researchers have employed machine learning and deep learning 

techniques for ASD diagnosis, existing models often fall short in 

capturing the complexity of multisite meltdowns and fully 

leveraging the interdependence among these meltdowns for 

severity assessment in acquired facial images of children, 

hindering the development of a comprehensive grading system. 

This paper introduces a novel approach using a Long Short 

Term Memory (LSTM) integrated Convolution Neural Network 

(CNN) designed to identify multisite meltdowns and exploit their 

interdependence for severity assessment in ASD. The process 

begins with image pre-processing, involving discrete convolution 

filters for noise removal and contrast enhancement to improve 

image quality. The enhanced image then undergoes instance 

segmentation using the Segment Anything model to identify 

significant regions in the child's image. The segmented region is 

subjected to principal component analysis for feature extraction, 

and these features are utilized by the LSTM-integrated CNN for 

meltdown detection and severity classification. The model is 

trained using children's images extracted from videos, and 

testing is performed on videos captured during children's 

observations. Performance analysis reveals superior results, with 

a training accuracy of 88% and validation accuracy of 84%, 

outperforming conventional methods. This innovative approach 

not only enhances the efficiency of ASD diagnosis but also 

provides a more nuanced understanding of multisite meltdowns 

and their impact on severity, contributing to the development of 

a robust grading system. 
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I. INTRODUCTION 

Autism spectrum disorder (ASD) represents a complex 
neurodevelopmental syndrome characterized by a wide range 
of challenges in verbal and nonverbal communication skills, 
as well as behavioral and social interactions [1]. While ASD 
can manifest at any age, it typically becomes evident around 
the age of 2 or 3 when children start to withdraw, exhibit 
distinct behaviors, and present challenges in social 

engagement. The etiology of this disorder is diverse, and the 
underlying neurodevelopmental mechanisms are not fully 
understood [2]. 

The detection of a high degree of autism severity in a child 
is particularly concerning, as it often leads to the development 
of more frequent meltdowns. These meltdowns not only pose 
a risk of self-injury to the child but can also result in harm to 
caregivers or parents [3]. Early diagnosis of ASD is crucial, 
offering significant benefits in terms of intellectual 
development, adaptive behavior, and the reduction of overall 
severity. The advent of noninvasive acquisition technology 
has made disease diagnosis more feasible, but manual 
diagnosis remains a highly challenging and labor-intensive 
task. Consequently, there is a pressing need to develop an 
automated disease diagnosis tool for ASD. 

In recent times, the pervasive influence of artificial 
intelligence (AI) has become increasingly apparent, bringing 
about transformative changes across a spectrum of fields and 
enriching various facets of our everyday existence [4,5]. It has 
redefined how we approach education [6], fine-tuned financial 
strategies [7], simplified agricultural workflows [8–16], and 
elevated healthcare diagnostics to new heights [17–23]. As it 
seamlessly integrates into these diverse sectors, AI continues 
to demonstrate its capacity for generating unparalleled 
efficiencies, refining decision-making procedures, and 
addressing intricate challenges with a precision derived from 
data-driven insights[24,25]. 

Researchers have turned to machine learning and deep 
learning approaches to enhance the accuracy of ASD 
diagnosis. These models leverage the concept of correlation 
and co-variation among spatio-temporal data. Specifically, 
Convolutional Neural Networks (CNNs) have proven highly 
capable of extracting features based on spatio-temporal 
descriptors to classify various gestures exhibited by ASD 
children. However, existing models have limitations, as they 
fail to compute the appearance of multisite meltdowns and 
fully exploit the interdependence among these meltdowns for 
severity computation in the acquired facial images of children, 
hindering the development of a comprehensive grading system 
[26]. 

This paper presents a novel approach, introducing a Long 
Short-Term Memory (LSTM) integrated Convolutional Neural 
Network designed to detect multisite meltdowns and exploit 
their interdependence for severity computation in ASD. The 
proposed methodology involves initial image pre-processing 
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using contrast enhancement and histogram equalization to 
improve image quality. The enhanced image is then subjected 
to an instance segmentation technique, termed the "segment 
anything" model, to identify significant regions in the child's 
image. These segmented regions undergo principal component 
analysis for feature extraction, which is then employed in the 
novel LSTM-integrated CNN [27] for meltdown detection and 
severity classification, achieving increased accuracy. The 
model is trained using images of children acquired from 
videos, and testing is conducted using videos acquired during 
children's observations. 

The subsequent sections of the article are organized as 
follows: Section II provides a detailed problem statement and 
a review of the literature on detecting the meltdown state of 
autism spectrum disorder. Section III outlines the proposed 
deep learning methodology for detecting and classifying 
multisite meltdown states and their severity to establish a 
grading system. Section IV presents an experimental analysis 
of the proposed methodology on the disease dataset, including 
performance metrics such as accuracy through a confusion 
matrix. Finally, Section V concludes the work and offers 
future suggestions. 

II. RELATED WORK 

In this part, numerous conventional approaches using 
machine learning and deep learning architecture to detect the 
autism spectrum disorder along meltdown state using 
behavioral and kinematics features has been detailed as 
follows: 

A. Autism Spectrum Disorder Detection using Restricted 

Kinematic Features 

In this literature, machine learning model is used to detect 
the Autism spectrum disorder using the restricted kinematic 
features from the kinematic data. In this computed on basis of 
movement during motor task. Entropy, amplitude, velocity, 
acceleration were considered as kinematic features and 
considered as symptom of the ASD. Machine learning 
classifier such as support vector machine were employed to 
classify or detect the ASD using the feature values which has 
cognitive flexibility and it has high manifestation [28]. 

B. Autism Spectrum Disorder Detection using Autoencoder-

based Support Vector Machine - Recursive Feature 

Elimination Technique 

In this literature, deep learning architecture is used to 
detect the ASD through functional connectivity features of the 
multiple regions. Functional connectivity feature is extracted 
and those features are employed to Recursive feature 
elimination technique to select the primitive features. Next, 
Autoencoder model is used to extract the high latent features 
and complicated features. It is considered as optimal features 
[29]. Those features were employed to softmax classifier 
which employs the Support vector machine to detect the ASD. 

C. Autism Spectrum Disorder and Meltdown Detection on 

Facial Geometric Features using Recurrent Neural 

Network 

In this literature, recurrent neural network is employed to 
detect and classify the autism spectrum disorder during the 

meltdown crisis. Initially model extracts the micro facial 
expression of children as geometric features and detects the 
child with autism or without autism. On detection of autism 
state , children is classified with severity of meltdown Hidden 
layer of the model process the feature to produce the optimal 
severity state of the children with meltdown [30]. 

D. Autism Spectrum Disorder and Meltdown Detection using 

Recurrent Attention Network on Morphological Features 

In this literature, recurrent attention network is employed 
to detect and classify the autism spectrum disorder during the 
meltdown crisis. Initially model extracts the morphological 
features and detects the child with autism or without autism. 
On detection of autism state, children are classified with 
severity of meltdown.  Attention layer of the model process 
the feature embedding to produce the optimal severity state of 
the children with meltdown with high efficiency [31]. 

E. Autism Spectrum Disorder and Meltdown Detection using 

Deep Neural Network on Audio-based Features 

In this literature, deep neural network is employed to 
detect and classify the autism spectrum disorder during the 
meltdown crisis using audio based signals. Initially model 
extract the audio based features on transforming the speech 
data to mel spectrogram and those audio based feature like 
pitch, RMS and MFFS used to detect the child with autism or 
without autism. On detection of autism state, children are 
classified with severity of meltdown.  Dense layer of the 
model process the features as embedding of features to 
produce the optimal severity state of the children with 
meltdown with high efficiency [32]. 

III. PROPOSED MODEL 

In this section, we introduce a sophisticated system for 
grading multisite meltdowns and classifying the severity of 
autism spectrum disorder in children. Our approach integrates 
a Long Short-Term Memory (LSTM) with a Convolutional 
Neural Network (CNN) specifically tailored for assessing the 
intensity of meltdowns across various sites, encompassing 
expressions of distress such as crying, screaming, and 
stimming. The step-by-step processing to achieve this 
overarching objective is detailed below: 

A. Image Preprocessing- Discrete Convolution Filter 

This section outlines the application of noise reduction and 
contrast enhancement techniques to the acquired training 
images through the utilization of a discrete convolution filter. 
The initial phase of noise reduction in training images serves 
to eliminate blurriness, while the subsequent contrast 
enhancement enhances the overall image quality. The discrete 
convolution filter method, employed in this process, 
effectively heightens the sharpness of object edges within each 
image [33]. 

The discrete convolution filter method is instrumental in 
achieving this enhancement, producing a pronounced increase 
in edge sharpness. A special case of this method involves the 
averaging of brightness values, exemplified by the formula: 

f(i,j)=w*h=∑ ∑  (   ) (       ) 
    

 
     (1) 
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This Formula depicts a linear operation wherein the 
resulting value in the output image pixel f(i,j) is calculated as 
a linear combination of the brightness in a local neighborhood 
of the pixel h(i,j) in the input image. The function (w) in this 
context represents the convolution kernel, encapsulating the 
linear operations involved in this discrete convolution process. 

B. Instance Segmentation - Segment Anything Model 

The enhanced image undergoes application of the instance 
segmentation technique, known as the "Segment Anything" 
model, aimed at delineating significant regions within the 
child image. This model excels in segmenting every pixel with 
similar values, employing boundary probability algorithms 
(gPb and UCM) to calculate edge and its weight. A threshold 
is then applied for each pixel and its adjacent pixel to refine 
the segmentation process [34]. 

The instance segmentation process, as expressed by the 
following formula: 

L(x,y)= ∑    (   )
       

       
 where 0<x<N and 0<y<M (2) 

Where 0<x<N and 0<y<M, involves aggregating pixel 
values within the specified range, providing a comprehensive 
representation of the preprocessed image. To integrate similar 
pixels within edges, a connected component approach is 
employed. The result is a hierarchical organization of regions 
obtained through a coarse-to-fine process. 

C. Feature Extraction - Principle Component Analysis 

The application of Principal Component Analysis (PCA) 
serves as a pivotal step in discerning the normal and meltdown 
states of children with autism. PCA, leveraging spatio-
temporal information within each frame, identifies highly 
discriminating features. The execution of PCA results in a set 
of training data characterized by disconnectedness among data 
points and dense similarity within classes [35]. 

The analysis extends to examining segmented objects 
across two consecutive frames of images, calculating and 
defining features at various focal points such as the left eye, 
right eye, right mouth corner, left mouth corner, and nose. 
Each principal component represents the maximum variance 
among these focal points. To handle the complexity of 
computing features in high dimensions, PCA effectively 
minimizes dimensions without significant loss of feature 
information through matrix formation and distance 
calculation. 

The composed feature vectors encapsulate facial interest 
components. Given an image of size N×N, it is initially 
transformed into a 1D vector U, housing variance values of 
substantial magnitude. The variance for a specified feature X 
in an image is calculated by the formula: 

variance(y) = 
∑   
   (   –  ) (   –  )

   
 (3) 

Furthermore, the covariance of features is calculated for 
the objects X and Y that change together with the mean, 
expressed as: 

Covariance(y,x) = 
∑   
   (   –  ) (   –  )

   
  (4) 

The resulting Covariance Matrix, a N×N feature matrix, is 
represented by: 

Mij= Covariance( x,y) (5) 

D. Eigen Vector Analysis for Facial Feature Classification 

The computation involves deriving the Eigen vector, 

denoted as    
     

, serving as a feature vector that 

encapsulates principle feature groups. These feature values are 
accompanied by Eigen values and are pivotal for the 
subsequent classification of facial features. 

For each meltdown and normal state, the associated feature 
values fall within the range of 0 to 1. Here, 0 signifies the 
normal state, while 1 designates the meltdown state. Table I 
presents the Eigen vector, composed of features extracted 
specifically for the meltdown state. 

TABLE I.  LIST OF FEATURE EXTRACTED FOR MELTDOWN STATE 

Feature Description 

Eyes Closed Distance between two eye lids 

Mouth Open Distance between two lips 

Lips enlargement Radius of the lips 

Object in ears Hand in the ears 

Object in head Hand in the head or hair 

These features provide a detailed description of facial 
expressions during the meltdown state, including eye and 
mouth behaviors, lip enlargement, and hand placements 
indicative of distress. The Eigen vector, with its associated 
Eigen values, serves as a valuable tool for the effective 
classification of these facial features, contributing to a 
comprehensive understanding of autism states. 

E. Long Short Term Memory Integrated Convolution Neural 

Network 

The extracted features play a pivotal role in the 
functionality of the novel Long Short-Term Memory 
Integrated Convolutional Neural Network (LSTM-CNN) 
designed for the detection and classification of meltdown 
states, with a focus on assessing the severity. This innovative 
approach leverages hyperparameter-optimized layers to 
enhance the processing of information [36]. 

1) Long short term memory: The Long Short-Term 

Memory (LSTM) component within our integrated model is a 

key element endowed with the unique ability to learn and 

comprehend long-term dependencies through its intricate 

network connections. It excels in the storage of pertinent 

information within a memory cell while effectively discarding 

extraneous details. Each LSTM unit comprises a memory cell 

equipped with two gates: input and output, and a forget gate. 

In the context of our research, the LSTM model serves as a 

repository for multisite meltdown feature maps, a product of 

the convolution and max-pooling layers in the Convolutional 

Neural Network (CNN). These feature maps encapsulate 

crucial patterns essential for the accurate detection and 

classification of meltdown states. 
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In order to fine-tune the performance of our LSTM-CNN 
model, we employ hyperparameter optimization, as outlined in 
Table II. 

TABLE II.  HYPERPARAMETER TUNING 

Hyperparameter Value 

Learning rate 10-6 

Epoch Value 100 

Activation function ReLu 

Loss Function Cross Entropy 

The hyperparameters, meticulously chosen and specified 
in Table II, play a pivotal role in shaping the learning 
dynamics of our model. The learning rate, set at 10^-6, 
determines the step size during optimization, ensuring a 
balance between accuracy and efficiency. The epoch value of 
100 signifies the number of times the entire dataset is 
processed during training, influencing the model's 
convergence. The ReLU activation function is employed to 
introduce non-linearity, enhancing the model's capacity to 
learn intricate patterns. Finally, the Cross Entropy loss 
function measures the dissimilarity between predicted and 
actual values, guiding the model towards optimal 
performance. This comprehensive hyperparameter tuning aims 
to maximize the LSTM-CNN model's efficacy in detecting 
and classifying meltdown states with a nuanced understanding 
of their severity. 

2) Convolution neural network: The Convolutional Neural 

Network (CNN) serves as a cornerstone in our methodology, 

tasked with processing the intricately extracted features across 

multiple layers. Its primary objective is to adeptly detect and 

classify the multisite meltdown state, discerning the severity 

level inherent in each case. The CNN's architecture is 

meticulously designed, incorporating essential elements such 

as the convolution layer, max-pooling layer, and fully 

connected layer. 
The convolution layer plays a critical role in feature 

extraction, employing filters to scan and identify distinctive 
patterns within the input data. This process enables the CNN 
to capture essential spatial hierarchies and dependencies in the 
multisite meltdown features. Subsequently, the max-pooling 
layer strategically downsizes the spatial dimensions of the 
extracted features, promoting computational efficiency and 
reducing the risk of overfitting. 

The fully connected layer, a crucial component of the 
CNN architecture, is responsible for processing linear features 
extracted from the preceding layers. It incorporates an 
activation function to introduce non-linearity, allowing the 
model to learn complex relationships within the data. 
Furthermore, the softmax function within the fully connected 
layer serves a dual purpose – detection and classification. It 
assigns probabilities to different meltdown states, facilitating a 
nuanced understanding of the severity levels associated with 
each classification. 

To guide the training process effectively, a loss function is 
integrated into the fully connected layer. This function 
calculates the classification error, providing feedback to the 
model during the training phase. The objective is to minimize 
this error, enhancing the CNN's ability to accurately detect 
and classify multisite meltdown states. 

For a visual representation of our proposed model's 
architecture, refer to Fig. 1. This diagram encapsulates the 
intricate interplay between the convolution layer, max-pooling 
layer, and fully connected layer, offering a comprehensive 
overview of the network's structure and functionality. The 
synergy of these components within the CNN underscores its 
efficacy in robustly addressing the detection and classification 
challenges posed by multisite meltdown scenarios. 

 
Fig. 1. Proposed architecture. 
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 Convolution Layer: The Convolution Layer is a pivotal 
element in our architecture, containing multiple filters 
and kernels that convolve with features extracted from 
different regions. This convolution operation produces a 
feature map that represents the underlying patterns in 
the meltdown state. Mathematically, convolution 
involves the multiplication of the feature vector, 
containing information about the meltdown state in a 
specified region, with multiple filters [37]. The 
convolution process is expressed as in the Formula: 

   =∑       
   
      (6) 

Here, Y represents the feature, and F is the filter. 

The convolution layer generates a feature map through 
convolution operations, encompassing both low-level and 
latent features. The convergence of this feature map is 
facilitated by epochs, incrementally increasing feature 
generation. Normalization through the Rectified Linear Unit 
(ReLU) activation function further refines the feature map, 
obtaining a linear representation. The cosine distance measure 
is then employed to compute the distance among features. 

 Pooling Layer: The Pooling Layer follows the 
convolutional operations, serving to further reduce the 
features obtained from the convolution layer. This step 
is crucial for high-level meltdown feature extraction and 
is essentially a form of down-sampling, diminishing the 
dimensions of facial features and retaining only selected 
weighted meltdown features. The Max Pooling layer 
plays a vital role in connecting the meltdown features 
into small patches, estimating the maximum number of 
features for each subset. This process enhances model 
generalization [38]. 

 Long Short Term Memory Layer: The LSTM Layer is 
employed to store the feature map derived from the 
convolution and max-pooling layers of the 
Convolutional Neural Network. It excels in preserving 
long-term dependencies through its intricate network 
connections. The stored meltdown features, each 
assigned a weight value, reside in the memory cell of 
each LSTM unit. These features, converted into a 
feature matrix, are input into the LSTM for the fusion 
of multisite meltdown information [39]. 

Ct = tanh(Xt* Vt+ Ht-1 *Wt) (7) 

In the CNN-LSTM hybrid model, normal and meltdown 
features are extracted from both the convolutional and LSTM 
layers. The ordering of these features is then utilized, where 
Ht represents cell memory information, and Wt represents the 
weight vector. 

 Dense Layer – Fully Connected Layer: The Dense 
Layer, organized as a fully connected layer, processes 
the feature map composed of multisite meltdown 
features across facial regions. This layer extracts 
discriminative features related to crying, stimming, and 
screaming. The activation function is applied for feature 
normalization and flattening, addressing non-linearity 
and overfitting concerns in the feature maps. 

 Softmax Layer: The Softmax Layer, integrated into the 
fully connected layer, is crucial for detecting the 
meltdown state. It combines these states, assigning 
aggregate weights to identify the severity of multisite 
meltdown states using a Naive Bayes classifier. A loss 
layer is further incorporated to minimize feature 
variance across classes. The Softmax function, as 
represented in Formula (8), calculates the probability 
distribution: 

Softmax Function Pj = 
 
  

∑     
 

   (8) 

where, e
xj
 is the feature map long dependency vector. 

 Classifier and Decision Rule: The feature vector is 
projected for classification by applying Bayes theorem, 
utilizing a maximum likelihood function to aggregate 
similar emotion features of autistic children based on 
feature values. The final classification result is 
generated by integrating results according to the 
decision rule. Feature values related to crying, 
screaming, and stimming form distinct classes. The 
Maximum Likelihood function, as given in Eq.9, 
incorporates the class, feature values, and density 
function: 

fn(y, θ) = ∏   
 
      (9) 

Here, Y is the class of the meltdown, θ is the vector 
containing feature values, and fk is the density function. This 
comprehensive approach ensures a robust and nuanced 
classification of multisite meltdown states based on their 
severity levels. 

Algorithm 1: Multisite Meltdown Detection and Severity 

Classification. 

Input : Video and Images of the Child observations 

Output: Detection of Multisite Meltdown and severity classes 

Process 

Train() 

Preprocessing of training images () 

Contrast Enhancement () 

Preprocessed image =Discrete Convolution filter (Training images) 

Instance Segmentation() 

Segment = Segment Anything Model( Preprocessed image ) 

Feature extraction() 

Transform the image pixel of segment into matrix 

Compute the covariance and correlation on the matrix 

Determine the eigen value and eigen vector 

Eigen vector = Feature Vector 

Disease detection and classification () 

Convolution Neural Network() 

Convolution Layer () = VGG19() 

Low level feature  = Kernel (Feature vector) 

Feature map = ReLu( Low level Features ) 

Max pooling layer () 

High level feature = Kernel (Feature vector) 

Feature map = ReLu( Low level Features ) 

LTSM layer () 
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Store feature map as long terms dependencies 

Feature Dependencies=  combining the multiple meltdown 

Fully connected layer () 

Activation function = ReLu() 

Softmax function = Naive Bayes ( Feature dependencies 

map) 

Detection of disease = { Crying , Screaming , Stimming} 

Severity Class= { High , Moderate } 

Loss function - Cross Entropy() 

The algorithm offers a holistic approach to Multisite 
Meltdown Detection and Severity Classification. It integrates 
preprocessing, segmentation, feature extraction, and a robust 
combination of Convolution Neural Network and Long Short-
Term Memory for accurate and nuanced results. The inclusion 
of a variety of techniques, such as contrast enhancement, 
instance segmentation, and feature mapping, contributes to the 
algorithm's effectiveness in handling complex scenarios 
related to autism severity classification. The architecture 
demonstrates a deep understanding of both low-level and 
high-level features, providing a comprehensive solution for 
the challenging task at hand. 

IV. EXPERIMENTAL RESULTS 

In this pivotal section, we delve into a thorough analysis of 
the experimental outcomes, leveraging cross-fold validation 
on a simulated dataset within the Python environment [40]. 
The performance evaluation of our proposed architecture for 
autism severity classification is meticulously conducted, with 
optimal parameters defining the model's performance. The 
implementation utilizes the versatile Scikit-learn package, 
incorporating various machine learning algorithms, and 
OpenCV for efficient image processing and preparation. 

A. Dataset Description - Meltdown Crisis 

The cornerstone of our investigation lies in the Meltdown 
Crisis dataset, a robust collection designed for identifying 
multisite meltdown severity in autism children. Comprising 59 
videos, this dataset offers a detailed narrative, encompassing 
facial expressions and physical activities during the meltdown 
crisis. The dataset is structured into emotion frames and non-
emotion frames, categorizing various states such as normal, 
post-crisis, and meltdown crisis states. For streamlined 
evaluation, the dataset is strategically partitioned into training, 
testing, and validation sets [41]. 

The training phase involves the utilization of images 
extracted from children in the videos, while testing is 
conducted on videos observed during children's activities. Fig. 
2 presents the confusion matrix for the validation dataset, 
consisting of 59 videos. This visual representation 
encapsulates the model's proficiency in classifying instances 
across different categories. 

Fig. 3 provides a comprehensive snapshot of the training 
and validation accuracy of our model. This graphical 
representation elucidates the learning trajectory of the model 
over multiple epochs. The model achieves commendable 
results, boasting an 88% training accuracy and an 84% 
validation accuracy, reflecting its robust learning capabilities. 

 
Fig. 2. Confusion matrix. 

 
Fig. 3. Training and validation accuracy of the model. 

Performance analysis extends to the examination of the 
training and validation loss, as illustrated in Fig. 4. These 
curves offer insights into the model's optimization process, 
demonstrating a balanced and decreasing trend in error 
reduction over the course of training and validation. 

 

Fig. 4. Training and validation of the model. 

TABLE III.  PERFORMANCE EVALUATION OF THE MODEL 

Technique 
Accuracy Loss 

Training Validation Training Validation 

CNN+LSTM 88 84 0.8 0.1 

Table III meticulously encapsulates the quantitative results 
of our model. The training accuracy, validation accuracy, 
training loss, and validation loss are presented, offering a 
detailed performance snapshot. The CNN–LSTM models were 
meticulously trained for 100 epochs, employing a batch size of 
128, and utilizing a cross-entropy loss function. These 
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parameters were strategically chosen to ensure a robust and 
effective training process. 

The proposed model exhibits superior performance when 
benchmarked against conventional approaches. With a 
training accuracy of 88% and a validation accuracy of 84%, 
coupled with minimal training and validation loss, our CNN–
LSTM model demonstrates efficacy in autism severity 
classification. These findings underscore the potential of our 
integrated architecture in providing nuanced and accurate 
assessments in the context of multisite meltdown grading. 

V. CONCLUSION 

In this study, we introduced a novel approach for detecting 
multisite meltdowns in children with Autism Spectrum 
Disorder (ASD) using a Long Short-Term Memory (LSTM) 
[42] integrated Convolutional Neural Network (CNN). Our 
designed architecture aims to leverage the dependency among 
multisite meltdowns to enhance the severity computation, 
ultimately contributing to the development of a robust grading 
system. The comprehensive pipeline of our model 
encompasses pre-processing techniques to enhance image 
quality, the utilization of the Segment Anything model for 
segmentation, and principle component analysis for feature 
extraction. These steps are crucial in isolating significant 
regions within child images and extracting pertinent features. 

The extracted features are subsequently fed into the 
CNN+LSTM classifier, which effectively detects and 
classifies multisite meltdowns, providing valuable insights 
into their severity. The model's performance analysis yielded 
promising results, with a training accuracy of 88% and a 
validation accuracy of 84%. This underscores the efficacy of 
our proposed architecture in accurately identifying and 
grading multisite meltdowns in children with ASD. 

While our current model has shown promising results, 
there are avenues for future research and improvement. 
Firstly, the inclusion of a larger and more diverse dataset 
could enhance the model's generalization capabilities. 
Exploring advanced techniques for feature extraction and 
segmentation may further refine the model's ability to capture 
subtle nuances in facial expressions during meltdowns. 

Additionally, investigating real-time applications and 
deployment in clinical settings could provide valuable insights 
into the model's practical utility. Fine-tuning hyperparameters 
and exploring alternative neural network architectures may 
also contribute to optimizing the model's performance. 

ACKNOWLEDGMENT 

This work was supported by the Deanship of Scientific 
Research, Vice Presidency for Graduate Studies and Scientific 
Research, King Faisal University, Saudi Arabia, under the 
Project GRANT5, 306. 

REFERENCES 

[1] Alam, S.; Raja, P.; Gulzar, Y. Investigation of Machine Learning 
Methods for Early Prediction of Neurodevelopmental Disorders in 
Children. Wirel Commun Mob Comput 2022, 2022. 

[2] Guha, T.; Yang, Z.; Ramakrishna, A.; Grossman, R.B.; Darren, H.; Lee, 
S.; Narayanan, S.S. On Quantifying Facial Expression-Related 
Atypicality of Children with Autism Spectrum Disorder. Proc IEEE Int 

Conf Acoust Speech Signal Process 2015, 2015, 803–807, 
doi:10.1109/ICASSP.2015.7178080. 

[3] Guo, J.; Zhou, S.; Wu, J.; Wan, J.; Zhu, X.; Lei, Z.; Li, S.Z. Multi-
Modality Network with Visual and Geometrical Information for Micro 
Emotion Recognition. ieeexplore.ieee.orgJ Guo, S Zhou, J Wu, J Wan, 
X Zhu, Z Lei, SZ Li2017 12th IEEE international conference on 
automatic face, 2017•ieeexplore.ieee.org. 

[4] Ayoub, S.; Gulzar, Y.; Reegu, F.A.; Turaev, S. Generating Image 
Captions Using Bahdanau Attention Mechanism and Transfer Learning. 
Symmetry (Basel) 2022, 14, 2681. 

[5] Hamid, Y.; Elyassami, S.; Gulzar, Y.; Balasaraswathi, V.R.; Habuza, T.; 
Wani, S. An Improvised CNN Model for Fake Image Detection. 
International Journal of Information Technology 2023, 15, 5–15, 
doi:10.1007/S41870-022-01130-5. 

[6] Sahlan, F.; Hamidi, F.; Misrat, M.Z.; Adli, M.H.; Wani, S.; Gulzar, Y. 
Prediction of Mental Health Among University Students. International 
Journal on Perceptive and Cognitive Computing 2021, 7, 85–91. 

[7] Gulzar, Y.; Alwan, A.A.; Abdullah, R.M.; Abualkishik, A.Z.; Oumrani, 
M. OCA: Ordered Clustering-Based Algorithm for E-Commerce 
Recommendation System. Sustainability 2023, Vol. 15, Page 2947 2023, 
15, 2947, doi:10.3390/SU15042947. 

[8] Gulzar, Y. Fruit Image Classification Model Based on MobileNetV2 
with Deep Transfer Learning Technique. Sustainability 2023, 15, 1906. 

[9] Mamat, N.; Othman, M.F.; Abdulghafor, R.; Alwan, A.A.; Gulzar, Y. 
Enhancing Image Annotation Technique of Fruit Classification Using a 
Deep Learning Approach. Sustainability 2023, 15, 901. 

[10] Dhiman, P.; Kaur, A.; Balasaraswathi, V.R.; Gulzar, Y.; Alwan, A.A.; 
Hamid, Y. Image Acquisition, Preprocessing and Classification of Citrus 
Fruit Diseases: A Systematic Literature Review. Sustainability 2023, 
Vol. 15, Page 9643 2023, 15, 9643, doi:10.3390/SU15129643. 

[11] Albarrak, K.; Gulzar, Y.; Hamid, Y.; Mehmood, A.; Soomro, A.B. A 
Deep Learning-Based Model for Date Fruit Classification. Sustainability 
2022, 14. 

[12] Hamid, Y.; Wani, S.; Soomro, A.B.; Alwan, A.A.; Gulzar, Y. Smart 
Seed Classification System Based on MobileNetV2 Architecture. In 
Proceedings of the 2022 2nd International Conference on Computing 
and Information Technology (ICCIT); IEEE, 2022; pp. 217–222. 

[13] Gulzar, Y.; Hamid, Y.; Soomro, A.B.; Alwan, A.A.; Journaux, L. A 
Convolution Neural Network-Based Seed Classification System. 
Symmetry (Basel) 2020, 12, 2018. 

[14] Gulzar, Y.; Ünal, Z.; Akta¸s, H.A.; Mir, M.S. Harnessing the Power of 
Transfer Learning in Sunflower Disease Detection: A Comparative 
Study. Agriculture 2023, Vol. 13, Page 1479 2023, 13, 1479, 
doi:10.3390/AGRICULTURE13081479. 

[15] Malik, I.; Ahmed, M.; Gulzar, Y.; Baba, S.H.; Mir, M.S.; Soomro, A.B.; 
Sultan, A.; Elwasila, O. Estimation of the Extent of the Vulnerability of 
Agriculture to Climate Change Using Analytical and Deep-Learning 
Methods: A Case Study in Jammu, Kashmir, and Ladakh. Sustainability 
2023, Vol. 15, Page 11465 2023, 15, 11465, doi:10.3390/SU151411465. 

[16] Aggarwal, S.; Gupta, S.; Gupta, D.; Gulzar, Y.; Juneja, S.; Alwan, A.A.; 
Nauman, A. An Artificial Intelligence-Based Stacked Ensemble 
Approach for Prediction of Protein Subcellular Localization in Confocal 
Microscopy Images. Sustainability 2023, Vol. 15, Page 1695 2023, 15, 
1695, doi:10.3390/SU15021695. 

[17] Gulzar, Y.; Khan, S.A. Skin Lesion Segmentation Based on Vision 
Transformers and Convolutional Neural Networks—A Comparative 
Study. Applied Sciences 2022, Vol. 12, Page 5990 2022, 12, 5990, 
doi:10.3390/APP12125990. 

[18] Mehmood, A.; Gulzar, Y.; Ilyas, Q.M.; Jabbari, A.; Ahmad, M.; Iqbal, 
S. SBXception: A Shallower and Broader Xception Architecture for 
Efficient Classification of Skin Lesions. Cancers 2023, Vol. 15, Page 
3604 2023, 15, 3604, doi:10.3390/CANCERS15143604. 

[19] Khan, F.; Ayoub, S.; Gulzar, Y.; Majid, M.; Reegu, F.A.; Mir, M.S.; 
Soomro, A.B.; Elwasila, O. MRI-Based Effective Ensemble 
Frameworks for Predicting Human Brain Tumor. Journal of Imaging 
2023, Vol. 9, Page 163 2023, 9, 163, doi:10.3390/JIMAGING9080163. 

[20] Majid, M.; Gulzar, Y.; Ayoub, S.; Khan, F.; Reegu, F.A.; Mir, M.S.; 
Jaziri, W.; Soomro, A.B. Enhanced Transfer Learning Strategies for 
Effective Kidney Tumor Classification with CT Imaging. International 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 12, 2023 

677 | P a g e  

www.ijacsa.thesai.org 

Journal of Advanced Computer Science and Applications 2023, 14, 
2023, doi:10.14569/IJACSA.2023.0140847. 

[21] Anand, V.; Gupta, S.; Gupta, D.; Gulzar, Y.; Xin, Q.; Juneja, S.; Shah, 
A.; Shaikh, A. Weighted Average Ensemble Deep Learning Model for 
Stratification of Brain Tumor in MRI Images. Diagnostics 2023, Vol. 
13, Page 1320 2023, 13, 1320, doi:10.3390/DIAGNOSTICS13071320. 

[22] Majid, M.; Gulzar, Y.; Ayoub, S.; Khan, F.; Reegu, F.A.; Mir, M.S.; 
Jaziri, W.; Soomro, A.B. Using Ensemble Learning and Advanced Data 
Mining Techniques to Improve the Diagnosis of Chronic Kidney 
Disease. International Journal of Advanced Computer Science and 
Applications 2023, 14, doi:10.14569/IJACSA.2023.0141050. 

[23] Khan, S.A.; Gulzar, Y.; Turaev, S.; Peng, Y.S. A Modified HSIFT 
Descriptor for Medical Image Classification of Anatomy Objects. 
Symmetry (Basel) 2021, 13, 1987. 

[24] Dhiman, P.; Bonkra, A.; Kaur, A.; Gulzar, Y.; Hamid, Y.; Mir, M.S.; 
Soomro, A.B.; Elwasila, O. Healthcare Trust Evolution with Explainable 
Artificial Intelligence: Bibliometric Analysis. Information 2023, Vol. 14, 
Page 541 2023, 14, 541, doi:10.3390/INFO14100541. 

[25] Hanafi, M.F.F.M.; Nasir, M.S.F.M.; Wani, S.; Abdulghafor, R.A.A.; 
Gulzar, Y.; Hamid, Y. A Real Time Deep Learning Based Driver 
Monitoring System. International Journal on Perceptive and Cognitive 
Computing 2021, 7, 79–84. 

[26] Masmoudi, M.; … S.J.-2019 15th I.; 2019, undefined Meltdowncrisis: 
Dataset of Autistic Children during Meltdown Crisis. 
ieeexplore.ieee.orgM Masmoudi, SK Jarraya, M Hammami2019 15th 
International Conference on Signal-Image Technology, 
2019•ieeexplore.ieee.org. 

[27] Haweel, R.; Dekhil, O.; Shalaby, A.; Mahmoud, A.; Ghazal, M.; Khalil, 
A.; Keynton, R.; Barnes, G.; El-Baz, A. A Novel Framework for 
Grading Autism Severity Using Task-Based FMRI. Proceedings - 
International Symposium on Biomedical Imaging 2020, 2020-April, 
1404–1407, doi:10.1109/ISBI45749.2020.9098430. 

[28] Herringshaw, A.J.; Ammons, C.J.; DeRamus, T.P.; Kana, R.K. 
Hemispheric Differences in Language Processing in Autism Spectrum 
Disorders: A Meta-Analysis of Neuroimaging Studies. Autism Research 
2016, 9, 1046–1057, doi:10.1002/AUR.1599. 

[29] Redcay, E.; Courchesne, E. Deviant Functional Magnetic Resonance 
Imaging Patterns of Brain Activity to Speech in 2-3-Year-Old Children 
with Autism Spectrum Disorder. Biol Psychiatry 2008, 64, 589–598, 
doi:10.1016/j.biopsych.2008.05.020. 

[30] Jarraya, S.K.; Masmoudi, M.; Hammami, M. Compound Emotion 
Recognition of Autistic Children During Meltdown Crisis Based on 
Deep Spatio-Temporal Analysis of Facial Geometric Features. IEEE 
Access 2020, 8, 69311–69326, doi:10.1109/access.2020.2986654. 

[31] Ke, F.; Yang, R. Classification and Biomarker Exploration of Autism 
Spectrum Disorders Based on Recurrent Attention Model. IEEE Access 
2020, 8, 216298–216307, doi:10.1109/access.2020.3038479. 

[32] Eni, M.; Dinstein, I.; Ilan, M.; Menashe, I.; Meiri, G.; Zigel, Y. 
Estimating Autism Severity in Young Children From Speech Signals 
Using a Deep Neural Network. IEEE Access 2020, 8, 139489–139500, 
doi:10.1109/access.2020.3012532. 

[33] Liu, W.; Li, M.; Yi, L. Identifying Children with Autism Spectrum 
Disorder Based on Their Face Processing Abnormality: A Machine 
Learning Framework. Autism Research 2016, 9, 888–898, 
doi:10.1002/aur.1615. 

[34] Rudovic, O.; Utsumi, Y.; Lee, J.; Hernandez, J.; Ferrer, E.C.; Schuller, 
B.; Picard, R.W. CultureNet: A Deep Learning Approach for 
Engagement Intensity Estimation from Face Images of Children with 
Autism. IEEE International Conference on Intelligent Robots and 
Systems 2018, 339–346, doi:10.1109/IROS.2018.8594177. 

[35] Lombardo, M. V; Pramparo, T.; Gazestani, V.; Warrier, V.; Bethlehem, 
R.A.I.; Carter Barnes, C.; Lopez, L.; Lewis, N.E.; Eyler, L.; Pierce, K.; 
et al. Large-Scale Associations between the Leukocyte Transcriptome 
and BOLD Responses to Speech Differ in Autism Early Language 
Outcome Subtypes. Nat Neurosci 2018, 21, 1680–1688, 
doi:10.1038/s41593-018-0281-3. 

[36] Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism 
Spectrum Disorder. Lancet 2018, 392, 508–520, doi:10.1016/S0140-
6736(18)31129-2. 

[37] Gotham, K.; Pickles, A.; Lord, C. Standardizing ADOS Scores for a 
Measure of Severity in Autism Spectrum Disorders. J Autism Dev 
Disord 2009, 39, 693–705, doi:10.1007/s10803-008-0674-3. 

[38] Stoner, R.; Chow, M.L.; Boyle, M.P.; Sunkin, S.M.; Mouton, P.R.; Roy, 
S.; Wynshaw-Boris, A.; Colamarino, S.A.; Lein, E.S.; Courchesne, E. 
Patches of Disorganization in the Neocortex of Children with Autism. N 
Engl J Med 2014, 370, 1209–1219, doi:10.1056/NEJMoa1307491. 

[39] Karten, A.; Hirsch, J. Brief Report: Anomalous Neural Deactivations 
and Functional Connectivity during Receptive Language in Autism 
Spectrum Disorder: A Functional MRI Study. J Autism Dev Disord 
2015, 45, 1905–1914, doi:10.1007/s10803-014-2344-y. 

[40] Kliuev, E.A.; Sheyko, G.E.; Dunayev, M.G.; Abramov, S.A.; 
Dvoryaninova, V. V; Balandina, O. V; Karyakin, N.N.; Belova, A.N. 
The Role of Functional MRI in Understanding the Origin of Speech 
Delay in Autism Spectrum Disorders. Sovremennye tehnologii v 
medicine 2019, 11, 66, doi:10.17691/stm2019.11.3.09. 

[41] Ayoub, S.; Gulzar, Y.; Rustamov, J.; Jabbari, A.; Reegu, F.A.; Turaev, 
S. Adversarial Approaches to Tackle Imbalanced Data in Machine 
Learning. Sustainability 2023, Vol. 15, Page 7097 2023, 15, 7097, 
doi:10.3390/SU15097097. 

[42] Khan, F.; Gulzar, Y.; Ayoub, S.; Majid, M.; Mir, M.S.; Soomro, A.B. 
Least Square-Support Vector Machine Based Brain Tumor 
Classification System with Multi Model Texture Features. Front Appl 
Math Stat 2023, 9, 1324054, doi:10.3389/FAMS.2023.1324054. 

 


