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Abstract—Weed detection is an essential component of smart 

agriculture, and the use of remote sensing technologies has the 

potential to significantly improve weed management practices, 

reduce herbicide usage, and increase crop yields. This study 

proposed an approach to weed detection using computer vision 

and deep learning technologies. By utilizing remote sensing 

methods based on DL, this approach has the potential to optimize 

weed management strategies, minimize herbicide use, and 

enhance crop productivity. The weed detection algorithm is 

based on the Yolov8 framework, and a custom model is trained 

using images from popular datasets as well as the internet. To 

evaluate the model's effectiveness, it is tested on both validation 

and testing sets. Furthermore, the model's performance is 

assessed using images that are not included in the original 

dataset. As experimental results shown, the deep learning-based 

approach is a promising solution for weed detection in 

agriculture. 
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I. INTRODUCTION 

Smart agriculture, also known as precision agriculture [1], 
involves the use of technology to enhance and optimize crop 
production while minimizing environmental impact. This 
includes using sensors and monitoring systems to collect data 
on soil conditions, weather patterns, and plant growth, as well 
as utilizing machine learning algorithms and automation to 
improve efficiency and reduce waste. Smart agriculture also 
encompasses the use of drones, robotics, and other advanced 
technologies to perform tasks such as planting, watering, and 
harvesting. Overall, smart agriculture aims to increase yields, 
reduce resource usage, and promote sustainable farming 
practices [2]. 

Weeds are unwanted plants that compete with crops for 
resources such as nutrients, water, and sunlight, which can 
reduce the yield and quality of agricultural products [3]. Weeds 
can also serve as hosts for pests and diseases, which can further 
impact crop health and productivity. To manage weeds, 
farmers may use various methods such as mechanical 
cultivation, hand weeding, or chemical herbicides. However, 
the use of herbicides can have negative effects on the 
environment and human health, so there is growing interest in 
alternative weed management strategies such as integrated 
weed management, cover cropping, and crop rotation. 
Effective weed management is essential for maintaining 
healthy and productive agricultural systems while minimizing 
negative impacts on the environment and human health [4, 5]. 

Weed detection is a critical aspect of precision agriculture, 
as it allows farmers to identify and manage weeds more 
effectively [6]. There are several methods for detecting weeds 
in agricultural fields, including visual inspections, manual 
sampling, and remote sensing technologies. Visual inspections 
involve physically observing the crop and looking for signs of 
weed growth. This method can be time-consuming and labor-
intensive, but it can be useful for identifying small infestations 
or for crops with lower weed densities. Manual sampling 
involves collecting samples of soil or plant material from 
different locations in the field and analyzing them for the 
presence of weeds [7]. This method is more accurate than 
visual inspections but can still be time-consuming and requires 
trained personnel. Remote sensing technologies, such as 
satellites, drones, or ground-based sensors, can provide rapid 
and accurate weed detection across large areas [8, 9]. These 
technologies use various sensors such as multispectral or 
hyperspectral cameras, which can detect differences in plant 
color, reflectance, or texture, to identify and map weeds [10]. 
Machine learning algorithms can then be used to analyze the 
data and develop weed management strategies [11]. 

Deep learning is a subset of machine learning that uses 
artificial neural networks to automatically learn and identify 
patterns in data [11, 12]. In the context of weed detection, deep 
learning algorithms can be trained on large datasets of images 
to recognize and classify different weed species. This involves 
using convolutional neural networks (CNNs) to extract features 
from the images and then using a combination of fully 
connected layers and softmax classifiers to classify the images 
[13]. Deep learning-based weed detection systems have shown 
high accuracy rates in detecting and classifying weeds, even in 
complex agricultural environments [14, 15]. These systems 
have the potential to revolutionize weed management practices 
by providing farmers with rapid and accurate information 
about weed infestations, allowing for more targeted and 
effective weed control strategies. 

In this study, a deep learning-based method is proposed for 
weed detection. In DL based which is in remote sensing 
technologies it has the potential to significantly improve weed 
management practices, reduce herbicide usage, and increase 
crop yields. In order to detect weeds, a Yolo based algorithm is 
developed to detect the weeds. For this detection, a model is 
trained using collected images from internet and other popular 
dataset. The generated model is evaluated and test using 
associated validation and testing sets. Finally, the model is 
tested with images outside of our dataset to make sure the 
performance of the method is effective. 
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The main research contributions of this study are as 
follows: 

1) The study introduces a novel deep learning-based 

method for weed detection in remote sensing technologies, 

offering the potential to enhance weed management practices 

and contribute to reductions in herbicide usage, ultimately 

leading to increased crop yields. 

2) A YOLO-based algorithm is developed as part of the 

research, providing an effective and efficient means of 

detecting weeds, thereby contributing to the advancement of 

automated weed detection systems. 

3) The research contributes by presenting a meticulously 

trained model, utilizing a diverse set of images collected from 

the internet and other popular datasets, and evaluates its 

performance not only on associated validation and testing sets 

but also on external images, ensuring the method's 

effectiveness beyond the initial dataset. 

II. RELATED WORKS 

In research [12], custom lightweight deep learning models 
are suggested for detecting weeds in soybean crops. The 
models were trained using a dataset of images depicting 
soybean crops with varying weed types. The findings 
demonstrate that the proposed models outperform conventional 
machine learning algorithms in terms of speed, memory usage, 
and accuracy. The authors suggest that the custom lightweight 
deep learning models can efficiently detect weeds in soybean 
crops, which can result in improved crop management and 
reduced usage of herbicides. 

Peng et al, [16] presented an enhanced RetinaNet network 
for detecting weeds in paddy fields. The proposed network 
employs residual connections and feature pyramid network 
(FPN) to improve the accuracy of weed detection. The dataset 
used in this study consists of images of paddy fields containing 
different types of weeds, which were used for both training and 
testing the network. The findings of the study indicate that the 
proposed network outperforms existing methods and is 
effective in detecting weeds in paddy fields. The authors 
suggest that the improved RetinaNet network has the potential 
to aid in weed management and reduce the need for herbicides 
in agriculture. 

Haq et al, [17] developed an automated weed detection 
system that relies on CNNs and UAV imagery. The proposed 
system captures aerial images of crop fields using UAVs and 
employs CNNs to differentiate between crops and weeds. The 
CNNs are trained using a dataset of images containing both 
crops and weeds. The study reveals that the system can 
accurately detect weeds in a timely manner. Their experimental 
results show using UAVs and CNNs for weed detection can 
lead to better weed management in agriculture, enhancing 
efficiency and accuracy. 

The authors in study [18] presented an enhanced version of 
the YOLO v4 algorithm for detecting weeds in images of 
carrot fields. The proposed algorithm leverages data 
augmentation and transfer learning techniques to improve the 
performance of the YOLO v4 model. The authors collected a 
dataset of images of carrot fields with and without weeds, and 

the algorithm was trained and evaluated on this dataset. The 
findings indicate that the improved YOLO v4 algorithm 
surpasses the traditional YOLO v4 and other advanced 
algorithms. The authors suggest that the algorithm can 
effectively identify weeds in carrot fields, contributing to weed 
management and minimizing the use of herbicides. The study 
highlights the potential of deep learning methods in agriculture 
for weed detection. 

Alam [5] proposed a machine-learning based system for 
real-time crop/weed detection and classification, facilitating 
variable-rate spraying in precision agriculture. The system 
employs a CNN to detect and differentiate crops and weeds 
based on their visual features. The study reveals that the 
proposed system accurately identifies crops and weeds, which 
can improve targeted spraying and minimize herbicide usage. 
This study showed that the machine-learning based approach 
can enhance precision agriculture and promote sustainable crop 
management practices. 

III. METHODOLOGY 

A. Yolov8 Algorithm 

The YOLOv8 is an efficient object detection model that 
was introduced in early of 2023 [19]. It is an improvement over 
the previous versions of YOLO, which are known for their 
speed and accuracy in object detection. YOLOv8 is designed to 
be more accurate than its predecessors while still maintaining 
real-time performance. The YOLOv8 architecture is composed 
of several components, including a backbone network, a neck 
network, and a head network. Fig. 1 shows the architecture of 
YOLOv8 network. 

The backbone network is responsible for extracting features 
from the input image, while the neck network and the head 
network are responsible for detecting objects and generating 
bounding boxes. It uses several equations and formulas in its 
implementation, including: 

1) Sigmoid function: YOLOv8 uses a sigmoid function to 

transform the predicted outputs into probabilities. The sigmoid 

function is defined as follows: 

sigmoid(x) = 1 / (1 + e^-x) (1) 

where, x is the input to the function. 

2) Intersection over Union (IoU): IoU is used to measure 

the overlap between two bounding boxes. It is defined as the 

ratio of the area of the intersection of the two bounding boxes 

to the area of their union. 

IoU(A, B) = (area of intersection between A and B) / 

(area of union between A and B) 

(2) 

3) Anchor boxes: YOLOv8 uses anchor boxes to predict 

the location and size of objects in the image. Anchor boxes are 

fixed bounding boxes of different sizes and aspect ratios that 

are placed at various locations in the image. 

4) Loss function: The loss function used in YOLOv8 is a 

combination of three different losses: the localization loss, the 

confidence loss, and the class loss. The localization loss 

measures the difference between the predicted and ground-
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truth bounding box coordinates. The confidence loss measures 

the difference between the predicted and ground-truth 

objectness scores. The class loss measures the difference 

between the predicted and ground-truth class probabilities. 

5) YOLOv8 output tensor: The output of YOLOv8 is a 

tensor that contains predictions for each anchor box. Each 

anchor box has a corresponding set of predicted values, which 

include the class probabilities, objectness score, and bounding 

box coordinates. The tensor is typically represented as 

follows: 

[batch_size, grid_size, grid_size, num_anchors, num_classes + 

5]   (3) 

 
Fig. 1. Architecture of YOLOv8 network [20].
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B. Dataset 

In this study, a dataset is used from internet resource. The 
dataset includes images taken from a public dataset in 
Roboflow. We have totally 4239 images in the dataset. Among 
these images, augmentation process is performed for extending 
the dataset. The structure for training task from this dataset, 
87% or 3700 images for training set, 9% or 359 images for 
validation set, and 4% or 180 images for testing set are 
organized. Some images from the dataset are shown in Fig. 2. 

C. Google Colab 

To conduct our experiments, we utilized Google's Colab 
research platform, which offers access to high-performance 
GPUs at no cost. We conducted all of our training and testing 
on a 12GB NVIDIA Tesla T4 GPU, which is described in more 
detail in Fig. 3. Our models were trained with a maximum of 

2500 iterations, a batch size of four images, and an image size 
of 640. 

D. Comparison of Yolo Models 

This section presents a companion of different models of 
Yolo networks, the purpose of this comparison is to justify why 
Yolov8 is selected in this study. Based on published 
performance analysis of different Yolo based models [20], this 
investigation is conducted. For this investigation, we can 
analyze the model’s graph where the X-axis represents the 
mean average precision (mAP) percentage, and the Y-axis 
represents the number of parameters in each YOLO-based 
model. The graph displays curves corresponding to different 
YOLO model versions: YOLOv8, YOLOv7, YOLOv6, and 
YOLOv5. Fig. 3 shows this graph. 

  

  
Fig. 2. Sample images of the dataset [20]. 

 
Fig. 3. Comparison of Yolo models in terms of mAP [20]. 
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The graph depicts a comparison between the mAP 
percentages and the number of parameters for each YOLO-
based model. The curves demonstrate the trade-off between the 
mAP performance and the complexity of the models, 
represented by the number of parameters. YOLOv8, having the 
best mAP performance among the models, exhibits a curve that 
consistently outperforms the other models in terms of mAP 
percentage. This indicates that YOLOv8 achieves higher 
accuracy without excessively increasing model complexity, 
making it a more efficient and scalable choice. Therefore, 
based on the assumptions provided, the graph illustrates that 
YOLOv8 surpasses the other models in terms of mAP 

performance while maintaining a reasonable number of 
parameters. This makes YOLOv8 the preferred option among 
the YOLO-based models considered in the graph, as it offers 
superior accuracy without excessive model complexity. 

Moreover, we can analyze the graph where the X-axis 
represents the average precision (AP) percentage, and the Y-
axis represents the performance of PyTorch FP16 running on 
the RTX 3080 platform. The performance measurements are 
conducted on the COCO dataset. The graph includes curves 
corresponding to different YOLO-based model versions: 
YOLOv8, YOLOv8-seg, YOLOv7, YOLOv6, YOLOv6, and 
YOLOv5.

 

Fig. 4. Comparison of performance for Yolo models in terms of AP [20]. 

As shown in Fig. 4, the graph presents a comparison 
between the AP percentages and the performance of PyTorch 
FP16 running on the RTX 3080 platform for each YOLO-
based model. The curves showcase the relationship between 
AP performance and the computational efficiency of the 
models. YOLOv8-seg, being the model with the best AP 
performance according to the assumption, exhibits a curve that 
consistently outperforms the other models in terms of AP 
percentage. This indicates that YOLOv8-seg achieves higher 
accuracy in object detection on the COCO dataset compared to 
the other versions. 

The YOLOv8-seg's superiority is justified not only in terms 
of AP but also in relation to the computational efficiency 
represented by the PyTorch FP16 performance on the RTX 
3080 platform. Despite its superior AP performance, YOLOv8-
seg manages to maintain efficient performance on the given 
hardware platform, suggesting that it strikes a balance between 
accuracy and computational efficiency. Therefore, based on the 
assumptions provided, the graph illustrates that YOLOv8-seg 
outperforms the other models in terms of AP performance on 

the COCO dataset while maintaining efficient performance on 
the specified hardware platform. This makes YOLOv8-seg the 
preferred choice among the YOLO-based models considered in 
the graph, as it offers higher accuracy without compromising 
computational efficiency. 

IV. EXPERIMENTAL RESULTS 

This section presents experimental results and discuss about 
performance evaluation in details. Firstly, experimental result 
is presented from the trained model using above details, and 
then performance evaluation is discussed. Fig. 5 shows some 
experimental results. 

Performance evaluation is an essential step in the 
development of object detection models, including the YOLO 
object detection algorithm. Model evaluation helps assess the 
performance of a model and determine whether it is meeting 
the desired accuracy criteria. Popular performance metrics used 
for model evaluation in object detection tasks are precision, 
recall, and mAP (mean Average Precision). Fig. 6 shows the 
performance results. 
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Fig. 5. The result of our experiments. 

To present the statistical reporting and data presentation in 
evaluating the YOLOv8-based model for weed detection, this 
study provides a detailed breakdown of precision, recall, and 
mAP values. Instead of a single mAP value, presenting 
precision-recall curves at different confidence thresholds can 
offer a nuanced understanding of the model's performance 
across a range of decision-making points. This not only adds 
depth to the analysis but also provides insights into the trade-
off between precision and recall, aiding in decision-making for 
real-world applications. Additionally, including a confusion 
matrix or a similar visual representation would offer a more 
granular view of the model's strengths and weaknesses, 
particularly in terms of false positives and false negatives. 

As shown in Fig. 6, precision, recall, and mAP are essential 
metrics used to assess the performance of a model, including 
its effectiveness in weed detection: 

Precision: Precision measures how well the model predicts 
true positive instances while minimizing false positives. High 
precision indicates that the model is accurate in identifying 
weeds and has fewer false alarms. 

Recall: Recall measures the model's ability to correctly 
identify all positive instances, or in this case, accurately 
detecting weeds. High recall suggests that the model is 
effective at capturing most of the weeds present in the dataset. 

mAP: mAP provides a comprehensive evaluation of the 
model's performance by considering both precision and recall 
at various thresholds. A higher mAP indicates a more accurate 
and effective model for weed detection. 
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Fig. 6. The performance results. 

By considering the precision, recall, and mAP metrics, we 
can assess the effectiveness of the generated YOLOv8 model 
for weed detection. If the precision curve demonstrates high 
precision values across different thresholds, it indicates that the 
model reliably detects weeds while minimizing false positives. 
A steep rise in precision suggests the model is precise at 
differentiating between weeds and non-weed instances. 
Similarly, if the recall curve shows high recall values, it 
implies that the model successfully captures a significant 
number of weed instances, reducing the chances of missing any 
weeds. Lastly, a high mAP indicates a balance between 
precision and recall, indicating that the model achieves both 
accurate weed detection and minimizes false positives. 

Therefore, by evaluating the precision, recall, and mAP 
metrics and ensuring high values for all these measures, we 
found that the generated YOLOv8 model is effective for 
accurate weed detection. 

V. CONCLUSION 

In this research, a deep learning approach for vision-based 
weeds detection in agriculture is proposed. The algorithm used 
for weed detection is built on the Yolov8 framework, and a 
customized model is created by training it on images from 
popular datasets as well as the internet. To assess the 
effectiveness of the model, it is tested on both validation and 
testing datasets, and its performance is evaluated using images 
that are not part of the original dataset. The experimental 
findings demonstrate that the deep learning-based approach is a 
promising solution for detecting weeds in agriculture. 
However, in this research for limitation addressing purpose, the 
diversity of the training data sources used for creating the 
YOLOv8-based weed detection model. While the model is 
trained on images from popular datasets and the internet, the 

potential presence of biases in these sources may affect the 
model's generalizability to a broader range of real-world 
agricultural scenarios. The use of internet-collected images 
might introduce variations in terms of lighting conditions, field 
types, and weed species that are not fully represented in the 
training dataset. Consequently, the model's performance might 
be over-optimized for the specific characteristics of the training 
data, limiting its effectiveness in more diverse and 
unpredictable agricultural environments. To address this 
limitation, future studies should focus on systematically 
expanding the diversity of the training dataset to ensure the 
model's robustness across a broader spectrum of agricultural 
conditions. This could involve incorporating images from 
geographically diverse locations, different seasons, and various 
agricultural practices. Additionally, efforts should be made to 
include images that capture the inherent variability in weed 
species and growth stages, ensuring that the model can 
accurately detect weeds under a wide range of circumstances. 
By addressing this limitation, researchers can enhance the 
model's applicability and reliability in real-world agricultural 
settings, ultimately contributing to the successful deployment 
of the proposed deep learning approach on a larger scale. 
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